1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
/* $NetBSD: n_jn.c,v 1.1 1995/10/10 23:36:54 ragge Exp $ */
/*-
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef lint
static char sccsid[] = "@(#)jn.c 8.2 (Berkeley) 11/30/93";
#endif /* not lint */
/*
* 16 December 1992
* Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
*/
/*
* ====================================================
* Copyright (C) 1992 by Sun Microsystems, Inc.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
* ******************* WARNING ********************
* This is an alpha version of SunPro's FDLIBM (Freely
* Distributable Math Library) for IEEE double precision
* arithmetic. FDLIBM is a basic math library written
* in C that runs on machines that conform to IEEE
* Standard 754/854. This alpha version is distributed
* for testing purpose. Those who use this software
* should report any bugs to
*
* fdlibm-comments@sunpro.eng.sun.com
*
* -- K.C. Ng, Oct 12, 1992
* ************************************************
*/
/*
* jn(int n, double x), yn(int n, double x)
* floating point Bessel's function of the 1st and 2nd kind
* of order n
*
* Special cases:
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
* Note 2. About jn(n,x), yn(n,x)
* For n=0, j0(x) is called,
* for n=1, j1(x) is called,
* for n<x, forward recursion us used starting
* from values of j0(x) and j1(x).
* for n>x, a continued fraction approximation to
* j(n,x)/j(n-1,x) is evaluated and then backward
* recursion is used starting from a supposed value
* for j(n,x). The resulting value of j(0,x) is
* compared with the actual value to correct the
* supposed value of j(n,x).
*
* yn(n,x) is similar in all respects, except
* that forward recursion is used for all
* values of n>1.
*
*/
#include <math.h>
#include <float.h>
#include <errno.h>
#if defined(__vax__) || defined(tahoe)
#define _IEEE 0
#else
#define _IEEE 1
#define infnan(x) (0.0)
#endif
static double
invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
two = 2.0,
zero = 0.0,
one = 1.0;
double jn(n,x)
int n; double x;
{
int i, sgn;
double a, b, temp;
double z, w;
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
* Thus, J(-n,x) = J(n,-x)
*/
/* if J(n,NaN) is NaN */
if (_IEEE && isnan(x)) return x+x;
if (n<0){
n = -n;
x = -x;
}
if (n==0) return(j0(x));
if (n==1) return(j1(x));
sgn = (n&1)&(x < zero); /* even n -- 0, odd n -- sign(x) */
x = fabs(x);
if (x == 0 || !finite (x)) /* if x is 0 or inf */
b = zero;
else if ((double) n <= x) {
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
if (_IEEE && x >= 8.148143905337944345e+090) {
/* x >= 2**302 */
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
* ----------------------------------
* 0 s-c c+s
* 1 -s-c -c+s
* 2 -s+c -c-s
* 3 s+c c-s
*/
switch(n&3) {
case 0: temp = cos(x)+sin(x); break;
case 1: temp = -cos(x)+sin(x); break;
case 2: temp = -cos(x)-sin(x); break;
case 3: temp = cos(x)-sin(x); break;
}
b = invsqrtpi*temp/sqrt(x);
} else {
a = j0(x);
b = j1(x);
for(i=1;i<n;i++){
temp = b;
b = b*((double)(i+i)/x) - a; /* avoid underflow */
a = temp;
}
}
} else {
if (x < 1.86264514923095703125e-009) { /* x < 2**-29 */
/* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
if (n > 33) /* underflow */
b = zero;
else {
temp = x*0.5; b = temp;
for (a=one,i=2;i<=n;i++) {
a *= (double)i; /* a = n! */
b *= temp; /* b = (x/2)^n */
}
b = b/a;
}
} else {
/* use backward recurrence */
/* x x^2 x^2
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
* 2n - 2(n+1) - 2(n+2)
*
* 1 1 1
* (for large x) = ---- ------ ------ .....
* 2n 2(n+1) 2(n+2)
* -- - ------ - ------ -
* x x x
*
* Let w = 2n/x and h=2/x, then the above quotient
* is equal to the continued fraction:
* 1
* = -----------------------
* 1
* w - -----------------
* 1
* w+h - ---------
* w+2h - ...
*
* To determine how many terms needed, let
* Q(0) = w, Q(1) = w(w+h) - 1,
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
* When Q(k) > 1e4 good for single
* When Q(k) > 1e9 good for double
* When Q(k) > 1e17 good for quadruple
*/
/* determine k */
double t,v;
double q0,q1,h,tmp; int k,m;
w = (n+n)/(double)x; h = 2.0/(double)x;
q0 = w; z = w+h; q1 = w*z - 1.0; k=1;
while (q1<1.0e9) {
k += 1; z += h;
tmp = z*q1 - q0;
q0 = q1;
q1 = tmp;
}
m = n+n;
for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
a = t;
b = one;
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
* Hence, if n*(log(2n/x)) > ...
* single 8.8722839355e+01
* double 7.09782712893383973096e+02
* long double 1.1356523406294143949491931077970765006170e+04
* then recurrent value may overflow and the result will
* likely underflow to zero
*/
tmp = n;
v = two/x;
tmp = tmp*log(fabs(v*tmp));
for (i=n-1;i>0;i--){
temp = b;
b = ((i+i)/x)*b - a;
a = temp;
/* scale b to avoid spurious overflow */
# if defined(__vax__) || defined(tahoe)
# define BMAX 1e13
# else
# define BMAX 1e100
# endif /* defined(__vax__) || defined(tahoe) */
if (b > BMAX) {
a /= b;
t /= b;
b = one;
}
}
b = (t*j0(x)/b);
}
}
return ((sgn == 1) ? -b : b);
}
double yn(n,x)
int n; double x;
{
int i, sign;
double a, b, temp;
/* Y(n,NaN), Y(n, x < 0) is NaN */
if (x <= 0 || (_IEEE && x != x))
if (_IEEE && x < 0) return zero/zero;
else if (x < 0) return (infnan(EDOM));
else if (_IEEE) return -one/zero;
else return(infnan(-ERANGE));
else if (!finite(x)) return(0);
sign = 1;
if (n<0){
n = -n;
sign = 1 - ((n&1)<<2);
}
if (n == 0) return(y0(x));
if (n == 1) return(sign*y1(x));
if(_IEEE && x >= 8.148143905337944345e+090) { /* x > 2**302 */
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
* ----------------------------------
* 0 s-c c+s
* 1 -s-c -c+s
* 2 -s+c -c-s
* 3 s+c c-s
*/
switch (n&3) {
case 0: temp = sin(x)-cos(x); break;
case 1: temp = -sin(x)-cos(x); break;
case 2: temp = -sin(x)+cos(x); break;
case 3: temp = sin(x)+cos(x); break;
}
b = invsqrtpi*temp/sqrt(x);
} else {
a = y0(x);
b = y1(x);
/* quit if b is -inf */
for (i = 1; i < n && !finite(b); i++){
temp = b;
b = ((double)(i+i)/x)*b - a;
a = temp;
}
}
if (!_IEEE && !finite(b))
return (infnan(-sign * ERANGE));
return ((sign > 0) ? b : -b);
}
|