summaryrefslogtreecommitdiff
path: root/lib/libm/noieee_src/n_log.c
blob: ac367f7242910eba68781cfffcea4e40c11133a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
/*      $NetBSD: n_log.c,v 1.1 1995/10/10 23:36:57 ragge Exp $ */
/*
 * Copyright (c) 1992, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#ifndef lint
static char sccsid[] = "@(#)log.c	8.2 (Berkeley) 11/30/93";
#endif /* not lint */

#include <math.h>
#include <errno.h>

#include "mathimpl.h"

/* Table-driven natural logarithm.
 *
 * This code was derived, with minor modifications, from:
 *	Peter Tang, "Table-Driven Implementation of the
 *	Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
 *	Math Software, vol 16. no 4, pp 378-400, Dec 1990).
 *
 * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
 * where F = j/128 for j an integer in [0, 128].
 *
 * log(2^m) = log2_hi*m + log2_tail*m
 * since m is an integer, the dominant term is exact.
 * m has at most 10 digits (for subnormal numbers),
 * and log2_hi has 11 trailing zero bits.
 *
 * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
 * logF_hi[] + 512 is exact.
 *
 * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
 * the leading term is calculated to extra precision in two
 * parts, the larger of which adds exactly to the dominant
 * m and F terms.
 * There are two cases:
 *	1. when m, j are non-zero (m | j), use absolute
 *	   precision for the leading term.
 *	2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
 *	   In this case, use a relative precision of 24 bits.
 * (This is done differently in the original paper)
 *
 * Special cases:
 *	0	return signalling -Inf
 *	neg	return signalling NaN
 *	+Inf	return +Inf
*/

#if defined(__vax__) || defined(tahoe)
#define _IEEE		0
#define TRUNC(x)	x = (double) (float) (x)
#else
#define _IEEE		1
#define endian		(((*(int *) &one)) ? 1 : 0)
#define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000
#define infnan(x)	0.0
#endif

#define N 128

/* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
 * Used for generation of extend precision logarithms.
 * The constant 35184372088832 is 2^45, so the divide is exact.
 * It ensures correct reading of logF_head, even for inaccurate
 * decimal-to-binary conversion routines.  (Everybody gets the
 * right answer for integers less than 2^53.)
 * Values for log(F) were generated using error < 10^-57 absolute
 * with the bc -l package.
*/
static double	A1 = 	  .08333333333333178827;
static double	A2 = 	  .01250000000377174923;
static double	A3 =	 .002232139987919447809;
static double	A4 =	.0004348877777076145742;

static double logF_head[N+1] = {
	0.,
	.007782140442060381246,
	.015504186535963526694,
	.023167059281547608406,
	.030771658666765233647,
	.038318864302141264488,
	.045809536031242714670,
	.053244514518837604555,
	.060624621816486978786,
	.067950661908525944454,
	.075223421237524235039,
	.082443669210988446138,
	.089612158689760690322,
	.096729626458454731618,
	.103796793681567578460,
	.110814366340264314203,
	.117783035656430001836,
	.124703478501032805070,
	.131576357788617315236,
	.138402322859292326029,
	.145182009844575077295,
	.151916042025732167530,
	.158605030176659056451,
	.165249572895390883786,
	.171850256926518341060,
	.178407657472689606947,
	.184922338493834104156,
	.191394852999565046047,
	.197825743329758552135,
	.204215541428766300668,
	.210564769107350002741,
	.216873938300523150246,
	.223143551314024080056,
	.229374101064877322642,
	.235566071312860003672,
	.241719936886966024758,
	.247836163904594286577,
	.253915209980732470285,
	.259957524436686071567,
	.265963548496984003577,
	.271933715484010463114,
	.277868451003087102435,
	.283768173130738432519,
	.289633292582948342896,
	.295464212893421063199,
	.301261330578199704177,
	.307025035294827830512,
	.312755710004239517729,
	.318453731118097493890,
	.324119468654316733591,
	.329753286372579168528,
	.335355541920762334484,
	.340926586970454081892,
	.346466767346100823488,
	.351976423156884266063,
	.357455888922231679316,
	.362905493689140712376,
	.368325561158599157352,
	.373716409793814818840,
	.379078352934811846353,
	.384411698910298582632,
	.389716751140440464951,
	.394993808240542421117,
	.400243164127459749579,
	.405465108107819105498,
	.410659924985338875558,
	.415827895143593195825,
	.420969294644237379543,
	.426084395310681429691,
	.431173464818130014464,
	.436236766774527495726,
	.441274560805140936281,
	.446287102628048160113,
	.451274644139630254358,
	.456237433481874177232,
	.461175715122408291790,
	.466089729924533457960,
	.470979715219073113985,
	.475845904869856894947,
	.480688529345570714212,
	.485507815781602403149,
	.490303988045525329653,
	.495077266798034543171,
	.499827869556611403822,
	.504556010751912253908,
	.509261901790523552335,
	.513945751101346104405,
	.518607764208354637958,
	.523248143765158602036,
	.527867089620485785417,
	.532464798869114019908,
	.537041465897345915436,
	.541597282432121573947,
	.546132437597407260909,
	.550647117952394182793,
	.555141507540611200965,
	.559615787935399566777,
	.564070138285387656651,
	.568504735352689749561,
	.572919753562018740922,
	.577315365035246941260,
	.581691739635061821900,
	.586049045003164792433,
	.590387446602107957005,
	.594707107746216934174,
	.599008189645246602594,
	.603290851438941899687,
	.607555250224322662688,
	.611801541106615331955,
	.616029877215623855590,
	.620240409751204424537,
	.624433288012369303032,
	.628608659422752680256,
	.632766669570628437213,
	.636907462236194987781,
	.641031179420679109171,
	.645137961373620782978,
	.649227946625615004450,
	.653301272011958644725,
	.657358072709030238911,
	.661398482245203922502,
	.665422632544505177065,
	.669430653942981734871,
	.673422675212350441142,
	.677398823590920073911,
	.681359224807238206267,
	.685304003098281100392,
	.689233281238557538017,
	.693147180560117703862
};

static double logF_tail[N+1] = {
	0.,
	-.00000000000000543229938420049,
	 .00000000000000172745674997061,
	-.00000000000001323017818229233,
	-.00000000000001154527628289872,
	-.00000000000000466529469958300,
	 .00000000000005148849572685810,
	-.00000000000002532168943117445,
	-.00000000000005213620639136504,
	-.00000000000001819506003016881,
	 .00000000000006329065958724544,
	 .00000000000008614512936087814,
	-.00000000000007355770219435028,
	 .00000000000009638067658552277,
	 .00000000000007598636597194141,
	 .00000000000002579999128306990,
	-.00000000000004654729747598444,
	-.00000000000007556920687451336,
	 .00000000000010195735223708472,
	-.00000000000017319034406422306,
	-.00000000000007718001336828098,
	 .00000000000010980754099855238,
	-.00000000000002047235780046195,
	-.00000000000008372091099235912,
	 .00000000000014088127937111135,
	 .00000000000012869017157588257,
	 .00000000000017788850778198106,
	 .00000000000006440856150696891,
	 .00000000000016132822667240822,
	-.00000000000007540916511956188,
	-.00000000000000036507188831790,
	 .00000000000009120937249914984,
	 .00000000000018567570959796010,
	-.00000000000003149265065191483,
	-.00000000000009309459495196889,
	 .00000000000017914338601329117,
	-.00000000000001302979717330866,
	 .00000000000023097385217586939,
	 .00000000000023999540484211737,
	 .00000000000015393776174455408,
	-.00000000000036870428315837678,
	 .00000000000036920375082080089,
	-.00000000000009383417223663699,
	 .00000000000009433398189512690,
	 .00000000000041481318704258568,
	-.00000000000003792316480209314,
	 .00000000000008403156304792424,
	-.00000000000034262934348285429,
	 .00000000000043712191957429145,
	-.00000000000010475750058776541,
	-.00000000000011118671389559323,
	 .00000000000037549577257259853,
	 .00000000000013912841212197565,
	 .00000000000010775743037572640,
	 .00000000000029391859187648000,
	-.00000000000042790509060060774,
	 .00000000000022774076114039555,
	 .00000000000010849569622967912,
	-.00000000000023073801945705758,
	 .00000000000015761203773969435,
	 .00000000000003345710269544082,
	-.00000000000041525158063436123,
	 .00000000000032655698896907146,
	-.00000000000044704265010452446,
	 .00000000000034527647952039772,
	-.00000000000007048962392109746,
	 .00000000000011776978751369214,
	-.00000000000010774341461609578,
	 .00000000000021863343293215910,
	 .00000000000024132639491333131,
	 .00000000000039057462209830700,
	-.00000000000026570679203560751,
	 .00000000000037135141919592021,
	-.00000000000017166921336082431,
	-.00000000000028658285157914353,
	-.00000000000023812542263446809,
	 .00000000000006576659768580062,
	-.00000000000028210143846181267,
	 .00000000000010701931762114254,
	 .00000000000018119346366441110,
	 .00000000000009840465278232627,
	-.00000000000033149150282752542,
	-.00000000000018302857356041668,
	-.00000000000016207400156744949,
	 .00000000000048303314949553201,
	-.00000000000071560553172382115,
	 .00000000000088821239518571855,
	-.00000000000030900580513238244,
	-.00000000000061076551972851496,
	 .00000000000035659969663347830,
	 .00000000000035782396591276383,
	-.00000000000046226087001544578,
	 .00000000000062279762917225156,
	 .00000000000072838947272065741,
	 .00000000000026809646615211673,
	-.00000000000010960825046059278,
	 .00000000000002311949383800537,
	-.00000000000058469058005299247,
	-.00000000000002103748251144494,
	-.00000000000023323182945587408,
	-.00000000000042333694288141916,
	-.00000000000043933937969737844,
	 .00000000000041341647073835565,
	 .00000000000006841763641591466,
	 .00000000000047585534004430641,
	 .00000000000083679678674757695,
	-.00000000000085763734646658640,
	 .00000000000021913281229340092,
	-.00000000000062242842536431148,
	-.00000000000010983594325438430,
	 .00000000000065310431377633651,
	-.00000000000047580199021710769,
	-.00000000000037854251265457040,
	 .00000000000040939233218678664,
	 .00000000000087424383914858291,
	 .00000000000025218188456842882,
	-.00000000000003608131360422557,
	-.00000000000050518555924280902,
	 .00000000000078699403323355317,
	-.00000000000067020876961949060,
	 .00000000000016108575753932458,
	 .00000000000058527188436251509,
	-.00000000000035246757297904791,
	-.00000000000018372084495629058,
	 .00000000000088606689813494916,
	 .00000000000066486268071468700,
	 .00000000000063831615170646519,
	 .00000000000025144230728376072,
	-.00000000000017239444525614834
};

double
#ifdef _ANSI_SOURCE
log(double x)
#else
log(x) double x;
#endif
{
	int m, j;
	double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
	volatile double u1;

	/* Catch special cases */
	if (x <= 0)
		if (_IEEE && x == zero)	/* log(0) = -Inf */
			return (-one/zero);
		else if (_IEEE)		/* log(neg) = NaN */
			return (zero/zero);
		else if (x == zero)	/* NOT REACHED IF _IEEE */
			return (infnan(-ERANGE));
		else
			return (infnan(EDOM));
	else if (!finite(x))
		if (_IEEE)		/* x = NaN, Inf */
			return (x+x);
		else
			return (infnan(ERANGE));
	
	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
	/* y = F*(1 + f/F) for |f| <= 2^-8		*/

	m = logb(x);
	g = ldexp(x, -m);
	if (_IEEE && m == -1022) {
		j = logb(g), m += j;
		g = ldexp(g, -j);
	}
	j = N*(g-1) + .5;
	F = (1.0/N) * j + 1;	/* F*128 is an integer in [128, 512] */
	f = g - F;

	/* Approximate expansion for log(1+f/F) ~= u + q */
	g = 1/(2*F+f);
	u = 2*f*g;
	v = u*u;
	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));

    /* case 1: u1 = u rounded to 2^-43 absolute.  Since u < 2^-8,
     * 	       u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
     *         It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
    */
	if (m | j)
		u1 = u + 513, u1 -= 513;

    /* case 2:	|1-x| < 1/256. The m- and j- dependent terms are zero;
     * 		u1 = u to 24 bits.
    */
	else
		u1 = u, TRUNC(u1);
	u2 = (2.0*(f - F*u1) - u1*f) * g;
			/* u1 + u2 = 2f/(2F+f) to extra precision.	*/

	/* log(x) = log(2^m*F*(1+f/F)) =				*/
	/* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q);	*/
	/* (exact) + (tiny)						*/

	u1 += m*logF_head[N] + logF_head[j];		/* exact */
	u2 = (u2 + logF_tail[j]) + q;			/* tiny */
	u2 += logF_tail[N]*m;
	return (u1 + u2);
}

/*
 * Extra precision variant, returning struct {double a, b;};
 * log(x) = a+b to 63 bits, with a is rounded to 26 bits.
 */
struct Double
#ifdef _ANSI_SOURCE
__log__D(double x)
#else
__log__D(x) double x;
#endif
{
	int m, j;
	double F, f, g, q, u, v, u2, one = 1.0;
	volatile double u1;
	struct Double r;

	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
	/* y = F*(1 + f/F) for |f| <= 2^-8		*/

	m = logb(x);
	g = ldexp(x, -m);
	if (_IEEE && m == -1022) {
		j = logb(g), m += j;
		g = ldexp(g, -j);
	}
	j = N*(g-1) + .5;
	F = (1.0/N) * j + 1;
	f = g - F;

	g = 1/(2*F+f);
	u = 2*f*g;
	v = u*u;
	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
	if (m | j)
		u1 = u + 513, u1 -= 513;
	else
		u1 = u, TRUNC(u1);
	u2 = (2.0*(f - F*u1) - u1*f) * g;

	u1 += m*logF_head[N] + logF_head[j];

	u2 +=  logF_tail[j]; u2 += q;
	u2 += logF_tail[N]*m;
	r.a = u1 + u2;			/* Only difference is here */
	TRUNC(r.a);
	r.b = (u1 - r.a) + u2;
	return (r);
}