summaryrefslogtreecommitdiff
path: root/lib/libpthread/pthreads/fd.c
blob: e603c0da0f9a5c43c8c63ceca11354d95c445b8a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
/* ==== fd.c ============================================================
 * Copyright (c) 1993, 1994 by Chris Provenzano, proven@mit.edu
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *  This product includes software developed by Chris Provenzano.
 * 4. The name of Chris Provenzano may not be used to endorse or promote 
 *	  products derived from this software without specific prior written
 *	  permission.
 *
 * THIS SOFTWARE IS PROVIDED BY CHRIS PROVENZANO ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL CHRIS PROVENZANO BE LIABLE FOR ANY 
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 
 * SUCH DAMAGE.
 *
 * Description : All the syscalls dealing with fds.
 *
 *  1.00 93/08/14 proven
 *      -Started coding this file.
 *
 *	1.01 93/11/13 proven
 *		-The functions readv() and writev() added.
 */

#ifndef lint
static const char rcsid[] = "$Id: fd.c,v 1.2 1998/07/21 19:48:00 peter Exp $";
#endif

#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/uio.h>
#include <sys/ioctl.h>
#ifdef HAVE_SYS_FILIO_H
#include <sys/filio.h>				/* For ioctl */
#endif
#if __STDC__
#include <stdarg.h>
#else
#include <varargs.h>
#endif
#include <fcntl.h>
#include <errno.h>
#include <pthread/posix.h>

/*
 * These first functions really should not be called by the user.
 *
 * I really should dynamically figure out what the table size is.
 */
static pthread_mutex_t fd_table_mutex = PTHREAD_MUTEX_INITIALIZER;
static const int dtablecount = 4096/sizeof(struct fd_table_entry);
int dtablesize;

static int fd_get_pthread_fd_from_kernel_fd( int );

/* ==========================================================================
 * Allocate dtablecount entries at once and populate the fd_table.
 *
 * fd_init_entry()
 */
int fd_init_entry(int entry)
{
	struct fd_table_entry *fd_entry;
	int i, round;

	if (fd_table[entry] == NULL) {
		round = entry - entry % dtablecount;

		if ((fd_entry = (struct fd_table_entry *)malloc(
		  sizeof(struct fd_table_entry) * dtablecount)) == NULL) {
			return(NOTOK);
		}
		
		for (i = 0; i < dtablecount && round+i < dtablesize; i++) {
			fd_table[round + i] = &fd_entry[i];

			fd_table[round + i]->ops 	= NULL;
			fd_table[round + i]->type 	= FD_NT;
			fd_table[round + i]->fd.i 	= NOTOK;
			fd_table[round + i]->flags 	= 0;
			fd_table[round + i]->count 	= 0;

			pthread_mutex_init(&(fd_table[round + i]->mutex), NULL);
			pthread_queue_init(&(fd_table[round + i]->r_queue));
			pthread_queue_init(&(fd_table[round + i]->w_queue));
			fd_table[round + i]->r_owner 	= NULL;
			fd_table[round + i]->w_owner 	= NULL;
			fd_table[round + i]->r_lockcount= 0;
			fd_table[round + i]->w_lockcount= 0;

			fd_table[round + i]->next 		= NULL;
		}
	}
	return(OK);
}

/* ==========================================================================
 * fd_check_entry()
 */
int fd_check_entry(unsigned int entry) 
{
	int ret = OK;

	pthread_mutex_lock(&fd_table_mutex);

	if (entry < dtablesize) { 
		if (fd_table[entry] == NULL) {
			if (fd_init_entry(entry)) {
				SET_ERRNO(EBADF);
				ret = -EBADF;
			}
		}
	} else {
		SET_ERRNO(EBADF);
		ret = -EBADF;
	}

	pthread_mutex_unlock(&fd_table_mutex);
	return(ret);
}

/* ==========================================================================
 * fd_init()
 */
void fd_init(void)
{
	int i;

	if ((dtablesize = machdep_sys_getdtablesize()) < 0) {
		/* Can't figure out the table size. */
		PANIC();
	}

	/* select() can only handle FD_SETSIZE descriptors, so our inner loop will
	 * break if dtablesize is higher than that.  This should be removed if and
	 * when the inner loop is rewritten to use poll(). */
	if (dtablesize > FD_SETSIZE) {
		dtablesize = FD_SETSIZE;
	}

	if (fd_table = (struct fd_table_entry **)malloc(
	  sizeof(struct fd_table_entry) * dtablesize)) {
		memset(fd_table, 0, sizeof(struct fd_table_entry) * dtablesize);
		if (fd_check_entry(0) == OK) {
			return;
		}
	}

	/*
	 * There isn't enough memory to allocate a fd table at init time.
	 * This is a problem.
	 */
	PANIC();

}

/* ==========================================================================
 * fd_allocate()
 */
int fd_allocate()
{
	pthread_mutex_t * mutex;
	int i;

	for (i = 0; i < dtablesize; i++) {
		if (fd_check_entry(i) == OK) {
			mutex = &(fd_table[i]->mutex);
			if (pthread_mutex_trylock(mutex)) {
				continue;
			}
			if (fd_table[i]->count || fd_table[i]->r_owner
			  || fd_table[i]->w_owner) {
				pthread_mutex_unlock(mutex);
				continue;
			}
			if (fd_table[i]->type == FD_NT) {
				/* Test to see if the kernel version is in use */
				if ((machdep_sys_fcntl(i, F_GETFL, NULL)) >= OK) {
					/* If so continue; */
					pthread_mutex_unlock(mutex);
					continue;
				}
			}
			fd_table[i]->count++;
			pthread_mutex_unlock(mutex);
			return(i);
		}
	}
	SET_ERRNO(ENFILE);
	return(NOTOK);
}

/*----------------------------------------------------------------------
 * Function:	fd_get_pthread_fd_from_kernel_fd
 * Purpose:		get the fd_table index of a kernel fd
 * Args:		fd	= kernel fd to convert
 * Returns:		fd_table index, -1 if not found
 * Notes:
 *----------------------------------------------------------------------*/
static int
fd_get_pthread_fd_from_kernel_fd( int kfd )
{
	int j;

	/* This is *SICK*, but unless there is a faster way to
	 * turn a kernel fd into an fd_table index, this has to do.
	 */
	for( j=0; j < dtablesize; j++ ) {
		if( fd_table[j] &&
			fd_table[j]->type != FD_NT &&
			fd_table[j]->type != FD_NIU &&
			fd_table[j]->fd.i == kfd ) {
			return j;
		}
	}

	/* Not listed byfd, Check for kernel fd == pthread fd */
	if( fd_table[kfd] == NULL || fd_table[kfd]->type == FD_NT ) {
		/* Assume that the kernel fd is the same */
		return kfd;
	}

	return NOTOK;							/* Not found */
}

/* ==========================================================================
 * fd_basic_basic_unlock()
 *
 * The real work of unlock without the locking of fd_table[fd].lock.
 */
void fd_basic_basic_unlock(struct fd_table_entry * entry, int lock_type)
{
	struct pthread *pthread;

	if (entry->r_owner == pthread_run) {
		if ((entry->type == FD_HALF_DUPLEX) ||
	      (entry->type == FD_TEST_HALF_DUPLEX) ||
		  (lock_type == FD_READ) || (lock_type == FD_RDWR)) {
			if (entry->r_lockcount == 0) {
				if (pthread = pthread_queue_deq(&entry->r_queue)) {
					pthread_sched_prevent();
					entry->r_owner = pthread;
 					if ((SET_PF_DONE_EVENT(pthread)) == OK) {
						pthread_sched_other_resume(pthread);
					} else {
						pthread_sched_resume();
					}
				} else {
					entry->r_owner = NULL;
   	    		}
			} else {
				entry->r_lockcount--;
			}
		}
	}

	if (entry->w_owner == pthread_run) {
		if ((entry->type != FD_HALF_DUPLEX) &&
	      (entry->type != FD_TEST_HALF_DUPLEX) &&
		  ((lock_type == FD_WRITE) || (lock_type == FD_RDWR))) {
			if (entry->w_lockcount == 0) {
				if (pthread = pthread_queue_deq(&entry->w_queue)) {
					pthread_sched_prevent();
					entry->w_owner = pthread;
 					if ((SET_PF_DONE_EVENT(pthread)) == OK) {
						pthread_sched_other_resume(pthread);
					} else {
						pthread_sched_resume();
					}
				} else {
					entry->w_owner = NULL;
        		}
			} else {
				entry->w_lockcount--;
			}
		}
	}
}

/* ==========================================================================
 * fd_basic_unlock()
 */
void fd_basic_unlock(int fd, int lock_type)
{
	fd_basic_basic_unlock(fd_table[fd], lock_type);
}

/* ==========================================================================
 * fd_unlock()
 */
void fd_unlock(int fd, int lock_type)
{
	pthread_mutex_t *mutex;

	mutex = &(fd_table[fd]->mutex);
	pthread_mutex_lock(mutex);
	fd_basic_basic_unlock(fd_table[fd], lock_type);
	pthread_mutex_unlock(mutex);
}

/* ==========================================================================
 * fd_basic_lock()
 * 
 * The real work of lock without the locking of fd_table[fd].lock.
 * Be sure to leave the lock the same way you found it. i.e. locked.
 */
int fd_basic_lock(unsigned int fd, int lock_type, pthread_mutex_t * mutex, 
  struct timespec * timeout)
{
	semaphore *plock;

	switch (fd_table[fd]->type) {
	case FD_NIU:
		/* If not in use return EBADF error */
		SET_ERRNO(EBADF);
		return(NOTOK);
		break;
	case FD_NT:
		/*
		 * If not tested, test it and see if it is valid 
		 * If not ok return EBADF error 
		 */
		fd_kern_init(fd);
		if (fd_table[fd]->type == FD_NIU) {
			SET_ERRNO(EBADF);
			return(NOTOK);
		}
		break;
	case FD_TEST_HALF_DUPLEX:
	case FD_TEST_FULL_DUPLEX:
		/* If a parent process reset the fd to its proper state */
		if (!fork_lock) {
			/* It had better be a kernel fd */
			fd_kern_reset(fd);
		}
		break;
	default:
		break;
	}

	if ((fd_table[fd]->type == FD_HALF_DUPLEX) ||
      (fd_table[fd]->type == FD_TEST_HALF_DUPLEX) ||
	  (lock_type == FD_READ) || (lock_type == FD_RDWR)) {
		if (fd_table[fd]->r_owner) {
			if (fd_table[fd]->r_owner != pthread_run) {
				pthread_sched_prevent();
   	    		pthread_queue_enq(&fd_table[fd]->r_queue, pthread_run);
				SET_PF_WAIT_EVENT(pthread_run);
				pthread_mutex_unlock(mutex);
	
				if (timeout) {
					/* get current time */
					struct timespec current_time;
					machdep_gettimeofday(&current_time);
					sleep_schedule(&current_time, timeout);

					/* Reschedule will unlock pthread_run */
					pthread_run->data.fd.fd = fd;
					pthread_run->data.fd.branch = __LINE__;
					pthread_resched_resume(PS_FDLR_WAIT);
					pthread_mutex_lock(mutex);

					/* If we're the owner then we have to cancel the sleep */
					if (fd_table[fd]->r_owner != pthread_run) {
						CLEAR_PF_DONE_EVENT(pthread_run);
						SET_ERRNO(ETIMEDOUT);
						return(NOTOK);
					}
					sleep_cancel(pthread_run);
				} else {
					/* Reschedule will unlock pthread_run */
					pthread_run->data.fd.fd = fd;
					pthread_run->data.fd.branch = __LINE__;
					pthread_resched_resume(PS_FDLR_WAIT);
					pthread_mutex_lock(mutex);
				}
				CLEAR_PF_DONE_EVENT(pthread_run);
			} else {
				fd_table[fd]->r_lockcount++;
			}
		}
		fd_table[fd]->r_owner = pthread_run;
	}
	if ((fd_table[fd]->type != FD_HALF_DUPLEX) &&
      (fd_table[fd]->type != FD_TEST_HALF_DUPLEX) &&
	  ((lock_type == FD_WRITE) || (lock_type == FD_RDWR))) {
		if (fd_table[fd]->w_owner) {
			if (fd_table[fd]->w_owner != pthread_run) {
				pthread_sched_prevent();
   	    		pthread_queue_enq(&fd_table[fd]->w_queue, pthread_run);
				SET_PF_WAIT_EVENT(pthread_run);
				pthread_mutex_unlock(mutex);
	
				if (timeout) {
					/* get current time */
					struct timespec current_time;
					machdep_gettimeofday(&current_time);
					sleep_schedule(&current_time, timeout);

					/* Reschedule will unlock pthread_run */
					pthread_run->data.fd.fd = fd;
					pthread_run->data.fd.branch = __LINE__;
					pthread_resched_resume(PS_FDLR_WAIT);
					pthread_mutex_lock(mutex);

					/* If we're the owner then we have to cancel the sleep */
					if (fd_table[fd]->w_owner != pthread_run) {
						if (lock_type == FD_RDWR) {
							/* Unlock current thread */
							fd_basic_unlock(fd, FD_READ);
						}
						CLEAR_PF_DONE_EVENT(pthread_run);
						SET_ERRNO(ETIMEDOUT);
						return(NOTOK);
					}
					sleep_cancel(pthread_run);
				} else {
					/* Reschedule will unlock pthread_run */
					pthread_run->data.fd.fd = fd;
					pthread_run->data.fd.branch = __LINE__;
					pthread_resched_resume(PS_FDLR_WAIT);
					pthread_mutex_lock(mutex);
				}
				CLEAR_PF_DONE_EVENT(pthread_run);
			} else {
				fd_table[fd]->w_lockcount++;
			}
		}
		fd_table[fd]->w_owner = pthread_run;
	}
	if (!fd_table[fd]->count) {
		fd_basic_unlock(fd, lock_type);
        return(NOTOK);
    }
	return(OK);
}

/*----------------------------------------------------------------------
 * Function:	fd_unlock_for_cancel
 * Purpose:		Unlock all fd locks held prior to being cancelled
 * Args:		void
 * Returns:
 *		OK or NOTOK
 * Notes:
 *	Assumes the kernel is locked on entry
 *----------------------------------------------------------------------*/
int
fd_unlock_for_cancel( void )
{
	int i, fd;
	struct pthread_select_data *data;
	int rdlk, wrlk, lktype;
	int found;

	/* What we do depends on the previous state of the thread */
	switch( pthread_run->old_state ) {
	case PS_RUNNING:
	case PS_JOIN:
	case PS_SLEEP_WAIT:
	case PS_WAIT_WAIT:
	case PS_SIGWAIT:
	case PS_FDLR_WAIT:
	case PS_FDLW_WAIT:
	case PS_DEAD:
	case PS_UNALLOCED:
		break;							/* Nothing to do */

	case PS_COND_WAIT:
	    CLEAR_PF_GROUP( pthread_run, PF_EVENT_GROUP );
		/* Must reaquire the mutex according to the standard */
		if( pthread_run->data.mutex == NULL ) {
			PANIC();
		}
		pthread_mutex_lock( pthread_run->data.mutex );
	    break;

	case PS_FDR_WAIT:
	    CLEAR_PF_GROUP( pthread_run, PF_EVENT_GROUP);
		/* Free the lock on the fd being used */
		fd = fd_get_pthread_fd_from_kernel_fd( pthread_run->data.fd.fd );
		if( fd == NOTOK ) {
			PANIC();					/* Can't find fd */
		}
		fd_unlock( fd, FD_READ );
		break;

	case PS_FDW_WAIT:					/* Waiting on i/o */
	    CLEAR_PF_GROUP( pthread_run, PF_EVENT_GROUP);
		/* Free the lock on the fd being used */
		fd = fd_get_pthread_fd_from_kernel_fd( pthread_run->data.fd.fd );
		if( fd == NOTOK ) {
			PANIC();					/* Can't find fd */
		}
		fd_unlock( fd, FD_WRITE );
		break;

	case PS_SELECT_WAIT:
		data = pthread_run->data.select_data;

	    CLEAR_PF_GROUP( pthread_run, PF_EVENT_GROUP);

		for( i = 0; i < data->nfds; i++) {
			rdlk =(FD_ISSET(i,&data->readfds)
					   || FD_ISSET(i,&data->exceptfds));
			wrlk = FD_ISSET(i, &data->writefds);
			lktype = rdlk ? (wrlk ? FD_RDWR : FD_READ) : FD_WRITE;

			if( ! (rdlk || wrlk) )
				continue;				/* No locks, no unlock */

			if( (fd = fd_get_pthread_fd_from_kernel_fd( i )) == NOTOK ) {
				PANIC();				/* Can't find fd */
			}

			fd_unlock( fd, lktype );
		}
	    break;

	case PS_MUTEX_WAIT:
		PANIC();						/* Should never cancel a mutex wait */

	default:
		PANIC();						/* Unknown thread status */
	}
}

/* ==========================================================================
 * fd_lock()
 */
#define pthread_mutex_lock_timedwait(a, b) pthread_mutex_lock(a)

int fd_lock(unsigned int fd, int lock_type, struct timespec * timeout)
{
	struct timespec current_time;
	pthread_mutex_t *mutex;
	int error;

	if ((error = fd_check_entry(fd)) == OK) {
		mutex = &(fd_table[fd]->mutex);
		if (pthread_mutex_lock_timedwait(mutex, timeout)) {
			SET_ERRNO(ETIMEDOUT);
			return(-ETIMEDOUT);
		}
		error = fd_basic_lock(fd, lock_type, mutex, timeout);
		pthread_mutex_unlock(mutex);
	}
	return(error);
}

/* ==========================================================================
 * fd_free()
 *
 * Assumes fd is locked and owner by pthread_run
 * Don't clear the queues, fd_unlock will do that.
 */
struct fd_table_entry * fd_free(int fd)
{
	struct fd_table_entry *fd_valid;

    fd_valid = NULL;
	fd_table[fd]->r_lockcount = 0;
	fd_table[fd]->w_lockcount = 0;
	if (--fd_table[fd]->count) {
		fd_valid = fd_table[fd];
		fd_table[fd] = fd_table[fd]->next;
		fd_valid->next = fd_table[fd]->next;
		/* Don't touch queues of fd_valid */
	}

	fd_table[fd]->type 	= FD_NIU;
	fd_table[fd]->fd.i 	= NOTOK;
	fd_table[fd]->next 	= NULL;
	fd_table[fd]->flags = 0;
	fd_table[fd]->count = 0;
	return(fd_valid);
}


/* ==========================================================================
 * ======================================================================= */

/* ==========================================================================
 * read_timedwait()
 */
ssize_t read_timedwait(int fd, void *buf, size_t nbytes, 
  struct timespec * timeout)
{
	int ret;

	if ((ret = fd_lock(fd, FD_READ, NULL)) == OK) {
     	ret = fd_table[fd]->ops->read(fd_table[fd]->fd,
		  fd_table[fd]->flags, buf, nbytes, timeout); 
		fd_unlock(fd, FD_READ);
	} 
	return(ret);
}

/* ==========================================================================
 * read()
 */
ssize_t read(int fd, void *buf, size_t nbytes)
{
	return(read_timedwait(fd, buf, nbytes, NULL));
}

/* ==========================================================================
 * readv_timedwait()
 */
int readv_timedwait(int fd, const struct iovec *iov, int iovcnt,
  struct timespec * timeout)
{
	int ret;

	if ((ret = fd_lock(fd, FD_READ, NULL)) == OK) {
     	ret = fd_table[fd]->ops->readv(fd_table[fd]->fd,
		  fd_table[fd]->flags, iov, iovcnt, timeout); 
		fd_unlock(fd, FD_READ);
	} 
	return(ret);
}

/* ==========================================================================
 * readv()
 */
ssize_t readv(int fd, const struct iovec *iov, int iovcnt)
{
	return(readv_timedwait(fd, iov, iovcnt, NULL));
}

/* ==========================================================================
 * write()
 */
ssize_t write_timedwait(int fd, const void *buf, size_t nbytes, 
			struct timespec * timeout)
{
  int ret;

  if ((ret = fd_lock(fd, FD_WRITE, NULL)) == OK)
  {
    ret = fd_table[fd]->ops->write(fd_table[fd]->fd,
				   fd_table[fd]->flags, buf, nbytes,
				   timeout); 
    fd_unlock(fd, FD_WRITE);
  }
  return(ret);
}

/* ==========================================================================
 * write()
 */
ssize_t write(int fd, const void * buf, size_t nbytes)
{
	return(write_timedwait(fd,  buf, nbytes, NULL));
}

/* ==========================================================================
 * writev_timedwait()
 */
int writev_timedwait(int fd, const struct iovec *iov, int iovcnt,
  struct timespec * timeout)
{
	int ret;

	 if ((ret = fd_lock(fd, FD_WRITE, NULL)) == OK) {
     	ret = fd_table[fd]->ops->writev(fd_table[fd]->fd,
		  fd_table[fd]->flags, iov, iovcnt, timeout); 
        fd_unlock(fd, FD_WRITE);
    }
    return(ret);
}

/* ==========================================================================
 * writev()
 */
ssize_t writev(int fd, const struct iovec *iov, int iovcnt)
{
	return(writev_timedwait(fd, iov, iovcnt, NULL));
}

/* ==========================================================================
 * lseek()
 */
off_t lseek(int fd, off_t offset, int whence)
{
	int ret;

	 if ((ret = fd_lock(fd, FD_RDWR, NULL)) == OK) {
     	ret = fd_table[fd]->ops->seek(fd_table[fd]->fd,
		  fd_table[fd]->flags, offset, whence); 
        fd_unlock(fd, FD_RDWR);
    }
    return(ret);
}

/* ==========================================================================
 * close()
 *
 * The whole close procedure is a bit odd and needs a bit of a rethink.
 * For now close() locks the fd, calls fd_free() which checks to see if
 * there are any other fd values poinging to the same real fd. If so
 * It breaks the wait queue into two sections those that are waiting on fd
 * and those waiting on other fd's. Those that are waiting on fd are connected
 * to the fd_table[fd] queue, and the count is set to zero, (BUT THE LOCK IS NOT
 * RELEASED). close() then calls fd_unlock which give the fd to the next queued
 * element which determins that the fd is closed and then calls fd_unlock etc...
 *
 * XXX close() is even uglier now. You may assume that the kernel fd is the
 * same as fd if fd_table[fd] == NULL or if fd_table[fd]->type == FD_NT.
 * This is true because before any fd_table[fd] is allocated the corresponding
 * kernel fd must be checks to see if it's valid.
 */
int close(int fd)
{
  struct fd_table_entry * entry;
  pthread_mutex_t *mutex;
  union fd_data realfd;
  int ret, flags;

  if(fd < 0 || fd >= dtablesize)
  {
    SET_ERRNO(EBADF);
    return -1;
  }
  /* Need to lock the newfd by hand */
  pthread_mutex_lock(&fd_table_mutex);
  if (fd_table[fd]) {
    pthread_mutex_unlock(&fd_table_mutex);
    mutex = &(fd_table[fd]->mutex);
    pthread_mutex_lock(mutex);

    /*
     * XXX Gross hack ... because of fork(), any fd closed by the
     * parent should not change the fd of the child, unless it owns it.
     */
    switch(fd_table[fd]->type) {
    case FD_NIU:
      pthread_mutex_unlock(mutex);
      ret = -EBADF;
      break;
    case FD_NT:	
      /* 
       * If it's not tested then the only valid possibility is it's
       * kernel fd.
       */
      ret = machdep_sys_close(fd);
      fd_table[fd]->type = FD_NIU;
      pthread_mutex_unlock(mutex);
      break;
    case FD_TEST_FULL_DUPLEX:
    case FD_TEST_HALF_DUPLEX:
      realfd = fd_table[fd]->fd;
      flags = fd_table[fd]->flags;
      if ((entry = fd_free(fd)) == NULL) {
	ret = fd_table[fd]->ops->close(realfd, flags);
      } else {
	/* There can't be any others waiting for fd. */
	pthread_mutex_unlock(&entry->mutex);
	/* Note: entry->mutex = mutex */
	mutex = &(fd_table[fd]->mutex);
      }
      pthread_mutex_unlock(mutex);
      break;
    default:
      ret = fd_basic_lock(fd, FD_RDWR, mutex, NULL);
      if (ret == OK) {
	realfd = fd_table[fd]->fd;
	flags = fd_table[fd]->flags;
	pthread_mutex_unlock(mutex);
	if ((entry = fd_free(fd)) == NULL) {
	  ret = fd_table[fd]->ops->close(realfd, flags);
	} else {
	  fd_basic_basic_unlock(entry, FD_RDWR);
	  pthread_mutex_unlock(&entry->mutex);
						/* Note: entry->mutex = mutex */
	}
	fd_unlock(fd, FD_RDWR);
      } else {
	pthread_mutex_unlock(mutex);
      }
      break;
    }
  } else {
    /* Don't bother creating a table entry */
    pthread_mutex_unlock(&fd_table_mutex);
    ret = machdep_sys_close(fd);
  }
  if( ret < 0) {
    SET_ERRNO(-ret);
    ret = -1;
  }
  return(ret);
}

/* ==========================================================================
 * fd_basic_dup()
 *
 *
 * This is a MAJOR guess!! I don't know if the mutext unlock is valid
 * in the BIG picture.  But it seems to be needed to avoid deadlocking
 * with ourselves when we try to close the duped file descriptor.
 */
static inline void fd_basic_dup(int fd, int newfd)
{
	fd_table[newfd]->next = fd_table[fd]->next;
	fd_table[fd]->next = fd_table[newfd];
	fd_table[newfd] = fd_table[fd];
	fd_table[fd]->count++;
	pthread_mutex_unlock(&fd_table[newfd]->next->mutex);

}

/* ==========================================================================
 * dup2()
 *
 * Note: Always lock the lower number fd first to avoid deadlocks.
 * Note: Leave the newfd locked. It will be unlocked at close() time.
 * Note: newfd must be locked by hand so it can be closed if it is open,
 * 		 or it won't be opened while dup is in progress.
 */
int dup2(fd, newfd)
{
	struct fd_table_entry * entry;
	pthread_mutex_t *mutex;
	union fd_data realfd;
	int ret, flags;

	if ((ret = fd_check_entry(newfd)) != OK)
	  return ret;

	if (newfd < dtablesize) {
		if (fd < newfd) {
			if ((ret = fd_lock(fd, FD_RDWR, NULL)) == OK) {
				/* Need to lock the newfd by hand */
				mutex = &(fd_table[newfd]->mutex);
				pthread_mutex_lock(mutex);

				/* Is it inuse */
				if (fd_basic_lock(newfd, FD_RDWR, mutex, NULL) == OK) {
					realfd = fd_table[newfd]->fd;
					flags = fd_table[newfd]->flags;
					/* free it and check close status */
					if ((entry = fd_free(newfd)) == NULL) {
						entry = fd_table[newfd];
     					entry->ops->close(realfd, flags);
						if (entry->r_queue.q_next) {
							if (fd_table[fd]->next) {
						  		fd_table[fd]->r_queue.q_last->next = 
							      entry->r_queue.q_next;
							} else {
						  		fd_table[fd]->r_queue.q_next = 
							      entry->r_queue.q_next;
							}
							fd_table[fd]->r_queue.q_last = 
							  entry->r_queue.q_last;
						}
						if (entry->w_queue.q_next) {
							if (fd_table[fd]->next) {
						  		fd_table[fd]->w_queue.q_last->next = 
							      entry->w_queue.q_next;
							} else {
						  		fd_table[fd]->w_queue.q_next = 
							      entry->w_queue.q_next;
							}
							fd_table[fd]->w_queue.q_last = 
							  entry->w_queue.q_last;
						}
						entry->r_queue.q_next = NULL;
						entry->w_queue.q_next = NULL;
						entry->r_queue.q_last = NULL;
						entry->w_queue.q_last = NULL;
						entry->r_owner = NULL;
						entry->w_owner = NULL;
						ret = OK;
					} else {
						fd_basic_basic_unlock(entry, FD_RDWR);
						pthread_mutex_unlock(&entry->mutex);
						/* Note: entry->mutex = mutex */
					}
				}
				fd_basic_dup(fd, newfd);
			}
			fd_unlock(fd, FD_RDWR);
		} else {
			/* Need to lock the newfd by hand */
			mutex = &(fd_table[newfd]->mutex);
			pthread_mutex_lock(mutex);

			if ((ret = fd_lock(fd, FD_RDWR, NULL)) == OK) {
				/* Is newfd inuse */
				if ((ret = fd_basic_lock(newfd, FD_RDWR, mutex, NULL)) == OK) {
					realfd = fd_table[newfd]->fd;
					flags = fd_table[newfd]->flags;
					/* free it and check close status */
					if ((entry = fd_free(newfd)) == NULL) {
						entry = fd_table[newfd];
   		  				entry->ops->close(realfd, flags);
						if (entry->r_queue.q_next) {
							if (fd_table[fd]->next) {
						  		fd_table[fd]->r_queue.q_last->next = 
							      entry->r_queue.q_next;
							} else {
						  		fd_table[fd]->r_queue.q_next = 
							      entry->r_queue.q_next;
							}
							fd_table[fd]->r_queue.q_last = 
							  entry->r_queue.q_last;
						}
						if (entry->w_queue.q_next) {
							if (fd_table[fd]->next) {
						  		fd_table[fd]->w_queue.q_last->next = 
							      entry->w_queue.q_next;
							} else {
						  		fd_table[fd]->w_queue.q_next = 
							      entry->w_queue.q_next;
							}
							fd_table[fd]->w_queue.q_last = 
							  entry->w_queue.q_last;
						}
						entry->r_queue.q_next = NULL;
						entry->w_queue.q_next = NULL;
						entry->r_queue.q_last = NULL;
						entry->w_queue.q_last = NULL;
						entry->r_owner = NULL;
						entry->w_owner = NULL;
						ret = OK;
					} else {
						fd_basic_basic_unlock(entry, FD_RDWR);
						pthread_mutex_unlock(&entry->mutex);
						/* Note: entry->mutex = mutex */
					}
					fd_basic_dup(fd, newfd);
				}
				fd_unlock(fd, FD_RDWR);
			}
		}
	} else {
		ret = NOTOK;
	}
	return(ret);
			
}

/* ==========================================================================
 * dup()
 */
int dup(int fd)
{
	int ret;

	if ((ret = fd_lock(fd, FD_RDWR, NULL)) == OK) {
		ret = fd_allocate();
		fd_basic_dup(fd, ret);
		fd_unlock(fd, FD_RDWR);
	}
	return(ret);
}

/* ==========================================================================
 * fcntl()
 */
int fcntl(int fd, int cmd, ...)
{
	int ret, realfd, flags;
	struct flock *flock;
	semaphore *plock;
	va_list ap;

	flags = 0;
	if ((ret = fd_lock(fd, FD_RDWR, NULL)) == OK) {
		va_start(ap, cmd);
		switch(cmd) {
		case F_DUPFD:
			ret = fd_allocate();
			fd_basic_dup(va_arg(ap, int), ret);
			break;
		case F_SETFD:
			break;
		case F_GETFD:
			break;
		case F_GETFL:
			ret = fd_table[fd]->flags;
			break;
		case F_SETFL:
			flags = va_arg(ap, int);
     		if ((ret = fd_table[fd]->ops->fcntl(fd_table[fd]->fd,
			  fd_table[fd]->flags, cmd, flags | __FD_NONBLOCK)) == OK) {
				fd_table[fd]->flags = flags;
			}
			break;
/*		case F_SETLKW: */
			/*
			 * Do the same as SETLK but if it fails with EACCES or EAGAIN
			 * block the thread and try again later, not implemented yet
			 */
/*		case F_SETLK: */
/*		case F_GETLK: 
			flock = va_arg(ap, struct flock*);
     		ret = fd_table[fd]->ops->fcntl(fd_table[fd]->fd,
			  fd_table[fd]->flags, cmd, flock);
			break; */
		default:
			/* Might want to make va_arg use a union */
     		ret = fd_table[fd]->ops->fcntl(fd_table[fd]->fd,
			  fd_table[fd]->flags, cmd, va_arg(ap, void*));
			break;
		}
		va_end(ap);
		fd_unlock(fd, FD_RDWR);
	}
	return(ret);
}

/* ==========================================================================
 * getdtablesize()
 */
int getdtablesize()
{
	return dtablesize;
}

/* ==========================================================================
 * ioctl()
 *
 * Really want to do a real implementation of this that parses the args ala
 * fcntl(), above, but it will have to be a totally platform-specific,
 * nightmare-on-elm-st-style sort of thing.  Might even deserve its own file
 * ala select()... --SNL
 */
#ifndef ioctl_request_type
#define ioctl_request_type unsigned long	/* Dummy patch by Monty */
#endif

int
ioctl(int fd, ioctl_request_type request, ...)
{
    int ret;
	pthread_va_list ap;
	caddr_t arg;

	va_start( ap, request );			/* Get the arg */
	arg = va_arg(ap,caddr_t);
	va_end( ap );

	if (fd < 0 || fd >= dtablesize)
	    ret = NOTOK;
	else if (fd_table[fd]->fd.i == NOTOK)
	    ret = machdep_sys_ioctl(fd, request, arg);
	else if ((ret = fd_lock(fd, FD_RDWR, NULL)) == OK) {
	    ret = machdep_sys_ioctl(fd_table[fd]->fd.i, request, arg);
		if( ret == 0 && request == FIONBIO ) {
			/* Properly set NONBLOCK flag */
			int v = *(int *)arg;
			if( v )
				fd_table[fd]->flags |= __FD_NONBLOCK;
			else
				fd_table[fd]->flags &= ~__FD_NONBLOCK;
		}
		fd_unlock(fd, FD_RDWR);
	}
	return ret;
}