1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
|
/* OpenBSD S/Key (skeysubr.c)
*
* Authors:
* Neil M. Haller <nmh@thumper.bellcore.com>
* Philip R. Karn <karn@chicago.qualcomm.com>
* John S. Walden <jsw@thumper.bellcore.com>
* Scott Chasin <chasin@crimelab.com>
* Todd C. Miller <Todd.Miller@courtesan.com>
*
* S/Key misc routines.
*
* $OpenBSD: skeysubr.c,v 1.33 2014/03/25 04:28:28 lteo Exp $
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <signal.h>
#include <termios.h>
#include <unistd.h>
#include <md5.h>
#include <sha1.h>
#include <rmd160.h>
#include "skey.h"
/* Default hash function to use (index into skey_algorithm_table array) */
#ifndef SKEY_HASH_DEFAULT
#define SKEY_HASH_DEFAULT 0 /* md5 */
#endif
static int keycrunch_md5(char *, char *, char *);
static int keycrunch_sha1(char *, char *, char *);
static int keycrunch_rmd160(char *, char *, char *);
static void lowcase(char *);
static void skey_echo(int);
static void trapped(int);
/* Current hash type (index into skey_algorithm_table array) */
static int skey_hash_type = SKEY_HASH_DEFAULT;
/*
* Hash types we support.
* Each has an associated keycrunch() and f() function.
*/
struct skey_algorithm_table {
const char *name;
int (*keycrunch)(char *, char *, char *);
};
static struct skey_algorithm_table skey_algorithm_table[] = {
{ "md5", keycrunch_md5 },
{ "sha1", keycrunch_sha1 },
{ "rmd160", keycrunch_rmd160 },
{ NULL }
};
/*
* Crunch a key:
* Concatenate the seed and the password, run through hash function and
* collapse to 64 bits. This is defined as the user's starting key.
* The result pointer must have at least SKEY_BINKEY_SIZE bytes of storage.
* The seed and password may be of any length.
*/
int
keycrunch(char *result, char *seed, char *passwd)
{
return(skey_algorithm_table[skey_hash_type].keycrunch(result, seed, passwd));
}
static int
keycrunch_md5(char *result, char *seed, char *passwd)
{
char *buf;
MD5_CTX md;
u_int32_t results[4];
unsigned int buflen;
/*
* If seed and passwd are defined we are in keycrunch() mode,
* else we are in f() mode.
*/
if (seed && passwd) {
buflen = strlen(seed) + strlen(passwd);
if ((buf = malloc(buflen + 1)) == NULL)
return(-1);
(void)strlcpy(buf, seed, buflen + 1);
lowcase(buf);
(void)strlcat(buf, passwd, buflen + 1);
sevenbit(buf);
} else {
buf = result;
buflen = SKEY_BINKEY_SIZE;
}
/* Crunch the key through MD5 */
MD5Init(&md);
MD5Update(&md, (unsigned char *)buf, buflen);
MD5Final((unsigned char *)results, &md);
/* Fold result from 128 to 64 bits */
results[0] ^= results[2];
results[1] ^= results[3];
(void)memcpy((void *)result, (void *)results, SKEY_BINKEY_SIZE);
if (buf != result)
(void)free(buf);
return(0);
}
static int
keycrunch_sha1(char *result, char *seed, char *passwd)
{
char *buf;
SHA1_CTX sha;
unsigned int buflen;
int i, j;
/*
* If seed and passwd are defined we are in keycrunch() mode,
* else we are in f() mode.
*/
if (seed && passwd) {
buflen = strlen(seed) + strlen(passwd);
if ((buf = malloc(buflen + 1)) == NULL)
return(-1);
(void)strlcpy(buf, seed, buflen + 1);
lowcase(buf);
(void)strlcat(buf, passwd, buflen + 1);
sevenbit(buf);
} else {
buf = result;
buflen = SKEY_BINKEY_SIZE;
}
/* Crunch the key through SHA1 */
SHA1Init(&sha);
SHA1Update(&sha, (unsigned char *)buf, buflen);
SHA1Pad(&sha);
/* Fold 160 to 64 bits */
sha.state[0] ^= sha.state[2];
sha.state[1] ^= sha.state[3];
sha.state[0] ^= sha.state[4];
/*
* SHA1 is a big endian algorithm but RFC2289 mandates that
* the result be in little endian form, so we copy to the
* result buffer manually.
*/
for (i = 0, j = 0; j < 8; i++, j += 4) {
result[j] = (u_char)(sha.state[i] & 0xff);
result[j+1] = (u_char)((sha.state[i] >> 8) & 0xff);
result[j+2] = (u_char)((sha.state[i] >> 16) & 0xff);
result[j+3] = (u_char)((sha.state[i] >> 24) & 0xff);
}
if (buf != result)
(void)free(buf);
return(0);
}
static int
keycrunch_rmd160(char *result, char *seed, char *passwd)
{
char *buf;
RMD160_CTX rmd;
u_int32_t results[5];
unsigned int buflen;
/*
* If seed and passwd are defined we are in keycrunch() mode,
* else we are in f() mode.
*/
if (seed && passwd) {
buflen = strlen(seed) + strlen(passwd);
if ((buf = malloc(buflen + 1)) == NULL)
return(-1);
(void)strlcpy(buf, seed, buflen + 1);
lowcase(buf);
(void)strlcat(buf, passwd, buflen + 1);
sevenbit(buf);
} else {
buf = result;
buflen = SKEY_BINKEY_SIZE;
}
/* Crunch the key through RMD-160 */
RMD160Init(&rmd);
RMD160Update(&rmd, (unsigned char *)buf, buflen);
RMD160Final((unsigned char *)results, &rmd);
/* Fold 160 to 64 bits */
results[0] ^= results[2];
results[1] ^= results[3];
results[0] ^= results[4];
(void)memcpy((void *)result, (void *)results, SKEY_BINKEY_SIZE);
if (buf != result)
(void)free(buf);
return(0);
}
/*
* The one-way hash function f().
* Takes SKEY_BINKEY_SIZE bytes and returns SKEY_BINKEY_SIZE bytes in place.
*/
void
f(char *x)
{
(void)skey_algorithm_table[skey_hash_type].keycrunch(x, NULL, NULL);
}
/* Strip trailing cr/lf from a line of text */
void
rip(char *buf)
{
buf += strcspn(buf, "\r\n");
if (*buf)
*buf = '\0';
}
/* Read in secret password (turns off echo) */
char *
readpass(char *buf, int n)
{
void (*old_handler)(int);
/* Turn off echoing */
skey_echo(0);
/* Catch SIGINT and save old signal handler */
old_handler = signal(SIGINT, trapped);
if (fgets(buf, n, stdin) == NULL)
buf[0] = '\0';
rip(buf);
(void)putc('\n', stderr);
(void)fflush(stderr);
/* Restore signal handler and turn echo back on */
if (old_handler != SIG_ERR)
(void)signal(SIGINT, old_handler);
skey_echo(1);
sevenbit(buf);
return(buf);
}
/* Read in an s/key OTP (does not turn off echo) */
char *
readskey(char *buf, int n)
{
if (fgets(buf, n, stdin) == NULL)
buf[0] = '\0';
rip(buf);
sevenbit(buf);
return(buf);
}
/* Signal handler for trapping ^C */
/*ARGSUSED*/
static void
trapped(int sig)
{
write(STDERR_FILENO, "^C\n", 3);
/* Turn on echo if necessary */
skey_echo(1);
_exit(1);
}
/*
* Convert 16-byte hex-ascii string to 8-byte binary array
* Returns 0 on success, -1 on error
*/
int
atob8(char *out, char *in)
{
int i;
int val;
if (in == NULL || out == NULL)
return(-1);
for (i=0; i < 8; i++) {
if ((in = skipspace(in)) == NULL)
return(-1);
if ((val = htoi(*in++)) == -1)
return(-1);
*out = val << 4;
if ((in = skipspace(in)) == NULL)
return(-1);
if ((val = htoi(*in++)) == -1)
return(-1);
*out++ |= val;
}
return(0);
}
/* Convert 8-byte binary array to 16-byte hex-ascii string */
int
btoa8(char *out, char *in)
{
if (in == NULL || out == NULL)
return(-1);
(void)snprintf(out, 17, "%02x%02x%02x%02x%02x%02x%02x%02x",
in[0] & 0xff, in[1] & 0xff, in[2] & 0xff, in[3] & 0xff,
in[4] & 0xff, in[5] & 0xff, in[6] & 0xff, in[7] & 0xff);
return(0);
}
/* Convert hex digit to binary integer */
int
htoi(int c)
{
if ('0' <= c && c <= '9')
return(c - '0');
if ('a' <= c && c <= 'f')
return(10 + c - 'a');
if ('A' <= c && c <= 'F')
return(10 + c - 'A');
return(-1);
}
/* Skip leading spaces from the string */
char *
skipspace(char *cp)
{
while (*cp == ' ' || *cp == '\t')
cp++;
if (*cp == '\0')
return(NULL);
else
return(cp);
}
/* Remove backspaced over characters from the string */
void
backspace(char *buf)
{
char bs = 0x8;
char *cp = buf;
char *out = buf;
while (*cp) {
if (*cp == bs) {
if (out == buf) {
cp++;
continue;
} else {
cp++;
out--;
}
} else {
*out++ = *cp++;
}
}
*out = '\0';
}
/* Make sure line is all seven bits */
void
sevenbit(char *s)
{
while (*s)
*s++ &= 0x7f;
}
/* Set hash algorithm type */
char *
skey_set_algorithm(char *new)
{
int i;
for (i = 0; skey_algorithm_table[i].name; i++) {
if (strcmp(new, skey_algorithm_table[i].name) == 0) {
skey_hash_type = i;
return(new);
}
}
return(NULL);
}
/* Get current hash type */
const char *
skey_get_algorithm(void)
{
return(skey_algorithm_table[skey_hash_type].name);
}
/* Turn echo on/off */
static void
skey_echo(int action)
{
static struct termios term;
static int echo = 0;
if (action == 0) {
/* Turn echo off */
(void) tcgetattr(fileno(stdin), &term);
if ((echo = (term.c_lflag & ECHO))) {
term.c_lflag &= ~ECHO;
(void) tcsetattr(fileno(stdin), TCSAFLUSH|TCSASOFT, &term);
}
} else if (action && echo) {
/* Turn echo on */
term.c_lflag |= ECHO;
(void) tcsetattr(fileno(stdin), TCSAFLUSH|TCSASOFT, &term);
echo = 0;
}
}
/* Convert string to lower case */
static void
lowcase(char *s)
{
char *p;
for (p = s; *p; p++) {
if (isupper((unsigned char)*p))
*p = (char)tolower((unsigned char)*p);
}
}
|