1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
|
/* $OpenBSD: s3_cbc.c,v 1.17 2018/09/08 14:39:41 jsing Exp $ */
/* ====================================================================
* Copyright (c) 2012 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include "ssl_locl.h"
#include <openssl/md5.h>
#include <openssl/sha.h>
/* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
* field. (SHA-384/512 have 128-bit length.) */
#define MAX_HASH_BIT_COUNT_BYTES 16
/* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
* Currently SHA-384/512 has a 128-byte block size and that's the largest
* supported by TLS.) */
#define MAX_HASH_BLOCK_SIZE 128
/* Some utility functions are needed:
*
* These macros return the given value with the MSB copied to all the other
* bits. They use the fact that arithmetic shift shifts-in the sign bit.
* However, this is not ensured by the C standard so you may need to replace
* them with something else on odd CPUs. */
#define DUPLICATE_MSB_TO_ALL(x) ((unsigned)((int)(x) >> (sizeof(int) * 8 - 1)))
#define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x)))
/* constant_time_lt returns 0xff if a<b and 0x00 otherwise. */
static unsigned
constant_time_lt(unsigned a, unsigned b)
{
a -= b;
return DUPLICATE_MSB_TO_ALL(a);
}
/* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */
static unsigned
constant_time_ge(unsigned a, unsigned b)
{
a -= b;
return DUPLICATE_MSB_TO_ALL(~a);
}
/* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */
static unsigned char
constant_time_eq_8(unsigned a, unsigned b)
{
unsigned c = a ^ b;
c--;
return DUPLICATE_MSB_TO_ALL_8(c);
}
/* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
* record in |rec| in constant time and returns 1 if the padding is valid and
* -1 otherwise. It also removes any explicit IV from the start of the record
* without leaking any timing about whether there was enough space after the
* padding was removed.
*
* block_size: the block size of the cipher used to encrypt the record.
* returns:
* 0: (in non-constant time) if the record is publicly invalid.
* 1: if the padding was valid
* -1: otherwise. */
int
tls1_cbc_remove_padding(const SSL* s, SSL3_RECORD *rec, unsigned block_size,
unsigned mac_size)
{
unsigned padding_length, good, to_check, i;
const unsigned overhead = 1 /* padding length byte */ + mac_size;
/* Check if version requires explicit IV */
if (SSL_USE_EXPLICIT_IV(s)) {
/* These lengths are all public so we can test them in
* non-constant time.
*/
if (overhead + block_size > rec->length)
return 0;
/* We can now safely skip explicit IV */
rec->data += block_size;
rec->input += block_size;
rec->length -= block_size;
} else if (overhead > rec->length)
return 0;
padding_length = rec->data[rec->length - 1];
good = constant_time_ge(rec->length, overhead + padding_length);
/* The padding consists of a length byte at the end of the record and
* then that many bytes of padding, all with the same value as the
* length byte. Thus, with the length byte included, there are i+1
* bytes of padding.
*
* We can't check just |padding_length+1| bytes because that leaks
* decrypted information. Therefore we always have to check the maximum
* amount of padding possible. (Again, the length of the record is
* public information so we can use it.) */
to_check = 255; /* maximum amount of padding. */
if (to_check > rec->length - 1)
to_check = rec->length - 1;
for (i = 0; i < to_check; i++) {
unsigned char mask = constant_time_ge(padding_length, i);
unsigned char b = rec->data[rec->length - 1 - i];
/* The final |padding_length+1| bytes should all have the value
* |padding_length|. Therefore the XOR should be zero. */
good &= ~(mask&(padding_length ^ b));
}
/* If any of the final |padding_length+1| bytes had the wrong value,
* one or more of the lower eight bits of |good| will be cleared. We
* AND the bottom 8 bits together and duplicate the result to all the
* bits. */
good &= good >> 4;
good &= good >> 2;
good &= good >> 1;
good <<= sizeof(good)*8 - 1;
good = DUPLICATE_MSB_TO_ALL(good);
padding_length = good & (padding_length + 1);
rec->length -= padding_length;
rec->type |= padding_length<<8; /* kludge: pass padding length */
return (int)((good & 1) | (~good & -1));
}
/* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
* constant time (independent of the concrete value of rec->length, which may
* vary within a 256-byte window).
*
* ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
* this function.
*
* On entry:
* rec->orig_len >= md_size
* md_size <= EVP_MAX_MD_SIZE
*
* If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
* variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
* a single or pair of cache-lines, then the variable memory accesses don't
* actually affect the timing. CPUs with smaller cache-lines [if any] are
* not multi-core and are not considered vulnerable to cache-timing attacks.
*/
#define CBC_MAC_ROTATE_IN_PLACE
void
ssl3_cbc_copy_mac(unsigned char* out, const SSL3_RECORD *rec,
unsigned md_size, unsigned orig_len)
{
#if defined(CBC_MAC_ROTATE_IN_PLACE)
unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE];
unsigned char *rotated_mac;
#else
unsigned char rotated_mac[EVP_MAX_MD_SIZE];
#endif
/* mac_end is the index of |rec->data| just after the end of the MAC. */
unsigned mac_end = rec->length;
unsigned mac_start = mac_end - md_size;
/* scan_start contains the number of bytes that we can ignore because
* the MAC's position can only vary by 255 bytes. */
unsigned scan_start = 0;
unsigned i, j;
unsigned div_spoiler;
unsigned rotate_offset;
OPENSSL_assert(orig_len >= md_size);
OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
#if defined(CBC_MAC_ROTATE_IN_PLACE)
rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf)&63);
#endif
/* This information is public so it's safe to branch based on it. */
if (orig_len > md_size + 255 + 1)
scan_start = orig_len - (md_size + 255 + 1);
/* div_spoiler contains a multiple of md_size that is used to cause the
* modulo operation to be constant time. Without this, the time varies
* based on the amount of padding when running on Intel chips at least.
*
* The aim of right-shifting md_size is so that the compiler doesn't
* figure out that it can remove div_spoiler as that would require it
* to prove that md_size is always even, which I hope is beyond it. */
div_spoiler = md_size >> 1;
div_spoiler <<= (sizeof(div_spoiler) - 1) * 8;
rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
memset(rotated_mac, 0, md_size);
for (i = scan_start, j = 0; i < orig_len; i++) {
unsigned char mac_started = constant_time_ge(i, mac_start);
unsigned char mac_ended = constant_time_ge(i, mac_end);
unsigned char b = rec->data[i];
rotated_mac[j++] |= b & mac_started & ~mac_ended;
j &= constant_time_lt(j, md_size);
}
/* Now rotate the MAC */
#if defined(CBC_MAC_ROTATE_IN_PLACE)
j = 0;
for (i = 0; i < md_size; i++) {
/* in case cache-line is 32 bytes, touch second line */
((volatile unsigned char *)rotated_mac)[rotate_offset^32];
out[j++] = rotated_mac[rotate_offset++];
rotate_offset &= constant_time_lt(rotate_offset, md_size);
}
#else
memset(out, 0, md_size);
rotate_offset = md_size - rotate_offset;
rotate_offset &= constant_time_lt(rotate_offset, md_size);
for (i = 0; i < md_size; i++) {
for (j = 0; j < md_size; j++)
out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
rotate_offset++;
rotate_offset &= constant_time_lt(rotate_offset, md_size);
}
#endif
}
/* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
* little-endian order. The value of p is advanced by four. */
#define u32toLE(n, p) \
(*((p)++)=(unsigned char)(n), \
*((p)++)=(unsigned char)(n>>8), \
*((p)++)=(unsigned char)(n>>16), \
*((p)++)=(unsigned char)(n>>24))
/* These functions serialize the state of a hash and thus perform the standard
* "final" operation without adding the padding and length that such a function
* typically does. */
static void
tls1_md5_final_raw(void* ctx, unsigned char *md_out)
{
MD5_CTX *md5 = ctx;
u32toLE(md5->A, md_out);
u32toLE(md5->B, md_out);
u32toLE(md5->C, md_out);
u32toLE(md5->D, md_out);
}
static void
tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
{
SHA_CTX *sha1 = ctx;
l2n(sha1->h0, md_out);
l2n(sha1->h1, md_out);
l2n(sha1->h2, md_out);
l2n(sha1->h3, md_out);
l2n(sha1->h4, md_out);
}
static void
tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
{
SHA256_CTX *sha256 = ctx;
unsigned i;
for (i = 0; i < 8; i++) {
l2n(sha256->h[i], md_out);
}
}
static void
tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
{
SHA512_CTX *sha512 = ctx;
unsigned i;
for (i = 0; i < 8; i++) {
l2n8(sha512->h[i], md_out);
}
}
/* Largest hash context ever used by the functions above. */
#define LARGEST_DIGEST_CTX SHA512_CTX
/* Type giving the alignment needed by the above */
#define LARGEST_DIGEST_CTX_ALIGNMENT SHA_LONG64
/* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
* which ssl3_cbc_digest_record supports. */
char
ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
{
switch (EVP_MD_CTX_type(ctx)) {
case NID_md5:
case NID_sha1:
case NID_sha224:
case NID_sha256:
case NID_sha384:
case NID_sha512:
return 1;
default:
return 0;
}
}
/* ssl3_cbc_digest_record computes the MAC of a decrypted, padded TLS
* record.
*
* ctx: the EVP_MD_CTX from which we take the hash function.
* ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
* md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
* md_out_size: if non-NULL, the number of output bytes is written here.
* header: the 13-byte, TLS record header.
* data: the record data itself, less any preceeding explicit IV.
* data_plus_mac_size: the secret, reported length of the data and MAC
* once the padding has been removed.
* data_plus_mac_plus_padding_size: the public length of the whole
* record, including padding.
*
* On entry: by virtue of having been through one of the remove_padding
* functions, above, we know that data_plus_mac_size is large enough to contain
* a padding byte and MAC. (If the padding was invalid, it might contain the
* padding too. )
*/
int
ssl3_cbc_digest_record(const EVP_MD_CTX *ctx, unsigned char* md_out,
size_t* md_out_size, const unsigned char header[13],
const unsigned char *data, size_t data_plus_mac_size,
size_t data_plus_mac_plus_padding_size, const unsigned char *mac_secret,
unsigned mac_secret_length)
{
union {
/*
* Alignment here is to allow this to be cast as SHA512_CTX
* without losing alignment required by the 64-bit SHA_LONG64
* integer it contains.
*/
LARGEST_DIGEST_CTX_ALIGNMENT align;
unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
} md_state;
void (*md_final_raw)(void *ctx, unsigned char *md_out);
void (*md_transform)(void *ctx, const unsigned char *block);
unsigned md_size, md_block_size = 64;
unsigned header_length, variance_blocks,
len, max_mac_bytes, num_blocks,
num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
unsigned int bits; /* at most 18 bits */
unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
/* hmac_pad is the masked HMAC key. */
unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
unsigned char first_block[MAX_HASH_BLOCK_SIZE];
unsigned char mac_out[EVP_MAX_MD_SIZE];
unsigned i, j, md_out_size_u;
EVP_MD_CTX md_ctx;
/* mdLengthSize is the number of bytes in the length field that terminates
* the hash. */
unsigned md_length_size = 8;
char length_is_big_endian = 1;
/* This is a, hopefully redundant, check that allows us to forget about
* many possible overflows later in this function. */
OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024);
switch (EVP_MD_CTX_type(ctx)) {
case NID_md5:
MD5_Init((MD5_CTX*)md_state.c);
md_final_raw = tls1_md5_final_raw;
md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform;
md_size = 16;
length_is_big_endian = 0;
break;
case NID_sha1:
SHA1_Init((SHA_CTX*)md_state.c);
md_final_raw = tls1_sha1_final_raw;
md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform;
md_size = 20;
break;
case NID_sha224:
SHA224_Init((SHA256_CTX*)md_state.c);
md_final_raw = tls1_sha256_final_raw;
md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
md_size = 224/8;
break;
case NID_sha256:
SHA256_Init((SHA256_CTX*)md_state.c);
md_final_raw = tls1_sha256_final_raw;
md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
md_size = 32;
break;
case NID_sha384:
SHA384_Init((SHA512_CTX*)md_state.c);
md_final_raw = tls1_sha512_final_raw;
md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
md_size = 384/8;
md_block_size = 128;
md_length_size = 16;
break;
case NID_sha512:
SHA512_Init((SHA512_CTX*)md_state.c);
md_final_raw = tls1_sha512_final_raw;
md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
md_size = 64;
md_block_size = 128;
md_length_size = 16;
break;
default:
/* ssl3_cbc_record_digest_supported should have been
* called first to check that the hash function is
* supported. */
OPENSSL_assert(0);
if (md_out_size)
*md_out_size = 0;
return 0;
}
OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
header_length = 13;
/* variance_blocks is the number of blocks of the hash that we have to
* calculate in constant time because they could be altered by the
* padding value.
*
* TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
* required to be minimal. Therefore we say that the final six blocks
* can vary based on the padding.
*
* Later in the function, if the message is short and there obviously
* cannot be this many blocks then variance_blocks can be reduced. */
variance_blocks = 6;
/* From now on we're dealing with the MAC, which conceptually has 13
* bytes of `header' before the start of the data (TLS) */
len = data_plus_mac_plus_padding_size + header_length;
/* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
* |header|, assuming that there's no padding. */
max_mac_bytes = len - md_size - 1;
/* num_blocks is the maximum number of hash blocks. */
num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
/* In order to calculate the MAC in constant time we have to handle
* the final blocks specially because the padding value could cause the
* end to appear somewhere in the final |variance_blocks| blocks and we
* can't leak where. However, |num_starting_blocks| worth of data can
* be hashed right away because no padding value can affect whether
* they are plaintext. */
num_starting_blocks = 0;
/* k is the starting byte offset into the conceptual header||data where
* we start processing. */
k = 0;
/* mac_end_offset is the index just past the end of the data to be
* MACed. */
mac_end_offset = data_plus_mac_size + header_length - md_size;
/* c is the index of the 0x80 byte in the final hash block that
* contains application data. */
c = mac_end_offset % md_block_size;
/* index_a is the hash block number that contains the 0x80 terminating
* value. */
index_a = mac_end_offset / md_block_size;
/* index_b is the hash block number that contains the 64-bit hash
* length, in bits. */
index_b = (mac_end_offset + md_length_size) / md_block_size;
/* bits is the hash-length in bits. It includes the additional hash
* block for the masked HMAC key. */
if (num_blocks > variance_blocks) {
num_starting_blocks = num_blocks - variance_blocks;
k = md_block_size*num_starting_blocks;
}
bits = 8*mac_end_offset;
/* Compute the initial HMAC block. */
bits += 8*md_block_size;
memset(hmac_pad, 0, md_block_size);
OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
memcpy(hmac_pad, mac_secret, mac_secret_length);
for (i = 0; i < md_block_size; i++)
hmac_pad[i] ^= 0x36;
md_transform(md_state.c, hmac_pad);
if (length_is_big_endian) {
memset(length_bytes, 0, md_length_size - 4);
length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
length_bytes[md_length_size - 1] = (unsigned char)bits;
} else {
memset(length_bytes, 0, md_length_size);
length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
length_bytes[md_length_size - 8] = (unsigned char)bits;
}
if (k > 0) {
/* k is a multiple of md_block_size. */
memcpy(first_block, header, 13);
memcpy(first_block + 13, data, md_block_size - 13);
md_transform(md_state.c, first_block);
for (i = 1; i < k/md_block_size; i++)
md_transform(md_state.c, data + md_block_size*i - 13);
}
memset(mac_out, 0, sizeof(mac_out));
/* We now process the final hash blocks. For each block, we construct
* it in constant time. If the |i==index_a| then we'll include the 0x80
* bytes and zero pad etc. For each block we selectively copy it, in
* constant time, to |mac_out|. */
for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks; i++) {
unsigned char block[MAX_HASH_BLOCK_SIZE];
unsigned char is_block_a = constant_time_eq_8(i, index_a);
unsigned char is_block_b = constant_time_eq_8(i, index_b);
for (j = 0; j < md_block_size; j++) {
unsigned char b = 0, is_past_c, is_past_cp1;
if (k < header_length)
b = header[k];
else if (k < data_plus_mac_plus_padding_size + header_length)
b = data[k - header_length];
k++;
is_past_c = is_block_a & constant_time_ge(j, c);
is_past_cp1 = is_block_a & constant_time_ge(j, c + 1);
/* If this is the block containing the end of the
* application data, and we are at the offset for the
* 0x80 value, then overwrite b with 0x80. */
b = (b&~is_past_c) | (0x80&is_past_c);
/* If this is the block containing the end of the
* application data and we're past the 0x80 value then
* just write zero. */
b = b&~is_past_cp1;
/* If this is index_b (the final block), but not
* index_a (the end of the data), then the 64-bit
* length didn't fit into index_a and we're having to
* add an extra block of zeros. */
b &= ~is_block_b | is_block_a;
/* The final bytes of one of the blocks contains the
* length. */
if (j >= md_block_size - md_length_size) {
/* If this is index_b, write a length byte. */
b = (b&~is_block_b) | (is_block_b&length_bytes[j - (md_block_size - md_length_size)]);
}
block[j] = b;
}
md_transform(md_state.c, block);
md_final_raw(md_state.c, block);
/* If this is index_b, copy the hash value to |mac_out|. */
for (j = 0; j < md_size; j++)
mac_out[j] |= block[j]&is_block_b;
}
EVP_MD_CTX_init(&md_ctx);
if (!EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */)) {
EVP_MD_CTX_cleanup(&md_ctx);
return 0;
}
/* Complete the HMAC in the standard manner. */
for (i = 0; i < md_block_size; i++)
hmac_pad[i] ^= 0x6a;
EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
EVP_DigestUpdate(&md_ctx, mac_out, md_size);
EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
if (md_out_size)
*md_out_size = md_out_size_u;
EVP_MD_CTX_cleanup(&md_ctx);
return 1;
}
|