1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
|
/* $OpenBSD: rtld_machine.c,v 1.59 2017/01/24 07:48:37 guenther Exp $ */
/*
* Copyright (c) 1999 Dale Rahn
* Copyright (c) 2001 Niklas Hallqvist
* Copyright (c) 2001 Artur Grabowski
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 2000 Eduardo Horvath.
* Copyright (c) 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Paul Kranenburg.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#define _DYN_LOADER
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <sys/unistd.h>
#include <machine/trap.h>
#include <nlist.h>
#include <link.h>
#include "syscall.h"
#include "archdep.h"
#include "resolve.h"
int64_t pcookie __attribute__((section(".openbsd.randomdata"))) __dso_hidden;
/*
* The following table holds for each relocation type:
* - the width in bits of the memory location the relocation
* applies to (not currently used)
* - the number of bits the relocation value must be shifted to the
* right (i.e. discard least significant bits) to fit into
* the appropriate field in the instruction word.
* - flags indicating whether
* * the relocation involves a symbol
* * the relocation is relative to the current position
* * the relocation is for a GOT entry
* * the relocation is relative to the load address
*
*/
#define _RF_S 0x80000000 /* Resolve symbol */
#define _RF_A 0x40000000 /* Use addend */
#define _RF_P 0x20000000 /* Location relative */
#define _RF_G 0x10000000 /* GOT offset */
#define _RF_B 0x08000000 /* Load address relative */
#define _RF_U 0x04000000 /* Unaligned */
#define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */
#define _RF_RS(s) ((s) & 0xff) /* right shift */
static int reloc_target_flags[] = {
0, /* NONE */
_RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */
_RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */
_RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */
_RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */
_RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */
_RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */
_RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HI22 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 22 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 13 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LO10 */
_RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */
_RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */
_RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */
_RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */
_RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */
_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */
_RF_S| _RF_SZ(32) | _RF_RS(0), /* COPY */
_RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* GLOB_DAT */
_RF_S| _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */
_RF_A| _RF_B| _RF_SZ(64) | _RF_RS(0), /* RELATIVE */
_RF_S|_RF_A| _RF_U| _RF_SZ(32) | _RF_RS(0), /* UA_32 */
_RF_A| _RF_SZ(32) | _RF_RS(0), /* PLT32 */
_RF_A| _RF_SZ(32) | _RF_RS(10), /* HIPLT22 */
_RF_A| _RF_SZ(32) | _RF_RS(0), /* LOPLT10 */
_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT32 */
_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PCPLT22 */
_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT10 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 10 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 11 */
_RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* 64 */
_RF_S|_RF_A|/*extra*/ _RF_SZ(32) | _RF_RS(0), /* OLO10 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(42), /* HH22 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(32), /* HM10 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* LM22 */
_RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(42), /* PC_HH22 */
_RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(32), /* PC_HM10 */
_RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC_LM22 */
_RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP16 */
_RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP19 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_JMP */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 7 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 5 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 6 */
_RF_S|_RF_A|_RF_P| _RF_SZ(64) | _RF_RS(0), /* DISP64 */
_RF_A| _RF_SZ(64) | _RF_RS(0), /* PLT64 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HIX22 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LOX10 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(22), /* H44 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(12), /* M44 */
_RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* L44 */
_RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* REGISTER */
_RF_S|_RF_A| _RF_U| _RF_SZ(64) | _RF_RS(0), /* UA64 */
_RF_S|_RF_A| _RF_U| _RF_SZ(16) | _RF_RS(0), /* UA16 */
};
#define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0)
#define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0)
#define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0)
#define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0)
#define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0)
#define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff)
#define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff)
static long reloc_target_bitmask[] = {
#define _BM(x) (~(-(1ULL << (x))))
0, /* NONE */
_BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */
_BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */
_BM(30), _BM(22), /* WDISP30, WDISP22 */
_BM(22), _BM(22), /* HI22, _22 */
_BM(13), _BM(10), /* RELOC_13, _LO10 */
_BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */
_BM(10), _BM(22), /* _PC10, _PC22 */
_BM(30), 0, /* _WPLT30, _COPY */
-1, _BM(32), -1, /* _GLOB_DAT, JMP_SLOT, _RELATIVE */
_BM(32), _BM(32), /* _UA32, PLT32 */
_BM(22), _BM(10), /* _HIPLT22, LOPLT10 */
_BM(32), _BM(22), _BM(10), /* _PCPLT32, _PCPLT22, _PCPLT10 */
_BM(10), _BM(11), -1, /* _10, _11, _64 */
_BM(10), _BM(22), /* _OLO10, _HH22 */
_BM(10), _BM(22), /* _HM10, _LM22 */
_BM(22), _BM(10), _BM(22), /* _PC_HH22, _PC_HM10, _PC_LM22 */
_BM(16), _BM(19), /* _WDISP16, _WDISP19 */
-1, /* GLOB_JMP */
_BM(7), _BM(5), _BM(6) /* _7, _5, _6 */
-1, -1, /* DISP64, PLT64 */
_BM(22), _BM(13), /* HIX22, LOX10 */
_BM(22), _BM(10), _BM(13), /* H44, M44, L44 */
-1, -1, _BM(16), /* REGISTER, UA64, UA16 */
#undef _BM
};
#define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t])
int _dl_reloc_plt(Elf_Word *where1, Elf_Word *where2, Elf_Word *pltaddr,
Elf_Addr value);
void _dl_install_plt(Elf_Word *pltgot, Elf_Addr proc);
int
_dl_md_reloc(elf_object_t *object, int rel, int relasz)
{
long i;
long numrela;
long relrel;
int fails = 0;
Elf_Addr loff;
Elf_Addr prev_value = 0;
const Elf_Sym *prev_sym = NULL;
Elf_RelA *relas;
struct load_list *llist;
loff = object->obj_base;
numrela = object->Dyn.info[relasz] / sizeof(Elf64_Rela);
relrel = rel == DT_RELA ? object->relacount : 0;
relas = (Elf64_Rela *)(object->Dyn.info[rel]);
if (relas == NULL)
return(0);
if (relrel > numrela)
_dl_die("relacount > numrel: %ld > %ld", relrel, numrela);
/*
* unprotect some segments if we need it.
*/
if ((object->dyn.textrel == 1) && (rel == DT_REL || rel == DT_RELA)) {
for (llist = object->load_list; llist != NULL; llist = llist->next) {
if (!(llist->prot & PROT_WRITE))
_dl_mprotect(llist->start, llist->size,
PROT_READ | PROT_WRITE);
}
}
/* tight loop for leading RELATIVE relocs */
for (i = 0; i < relrel; i++, relas++) {
Elf_Addr *where;
#ifdef DEBUG
if (ELF_R_TYPE(relas->r_info) != R_TYPE(RELATIVE))
_dl_die("RELACOUNT wrong");
#endif
where = (Elf_Addr *)(relas->r_offset + loff);
*where = relas->r_addend + loff;
}
for (; i < numrela; i++, relas++) {
Elf_Addr *where, value, ooff, mask;
Elf_Word type;
const Elf_Sym *sym, *this;
const char *symn;
type = ELF_R_TYPE(relas->r_info);
if (type == R_TYPE(NONE) || type == R_TYPE(JMP_SLOT))
continue;
where = (Elf_Addr *)(relas->r_offset + loff);
if (RELOC_USE_ADDEND(type))
value = relas->r_addend;
else
value = 0;
sym = NULL;
symn = NULL;
if (RELOC_RESOLVE_SYMBOL(type)) {
sym = object->dyn.symtab;
sym += ELF_R_SYM(relas->r_info);
symn = object->dyn.strtab + sym->st_name;
if (sym->st_shndx != SHN_UNDEF &&
ELF_ST_BIND(sym->st_info) == STB_LOCAL) {
value += loff;
} else if (sym == prev_sym) {
value += prev_value;
} else {
this = NULL;
ooff = _dl_find_symbol_bysym(object,
ELF_R_SYM(relas->r_info), &this,
SYM_SEARCH_ALL|SYM_WARNNOTFOUND|
((type == R_TYPE(JMP_SLOT)) ?
SYM_PLT : SYM_NOTPLT),
sym, NULL);
if (this == NULL) {
resolve_failed:
if (ELF_ST_BIND(sym->st_info) !=
STB_WEAK)
fails++;
continue;
}
prev_sym = sym;
prev_value = (Elf_Addr)(ooff + this->st_value);
value += prev_value;
}
}
if (type == R_TYPE(COPY)) {
void *dstaddr = where;
const void *srcaddr;
const Elf_Sym *dstsym = sym, *srcsym = NULL;
size_t size = dstsym->st_size;
Elf_Addr soff;
soff = _dl_find_symbol(symn, &srcsym,
SYM_SEARCH_OTHER|SYM_WARNNOTFOUND|SYM_NOTPLT,
dstsym, object, NULL);
if (srcsym == NULL)
goto resolve_failed;
srcaddr = (void *)(soff + srcsym->st_value);
_dl_bcopy(srcaddr, dstaddr, size);
continue;
}
if (RELOC_PC_RELATIVE(type))
value -= (Elf_Addr)where;
if (RELOC_BASE_RELATIVE(type))
value += loff;
mask = RELOC_VALUE_BITMASK(type);
value >>= RELOC_VALUE_RIGHTSHIFT(type);
value &= mask;
if (RELOC_UNALIGNED(type)) {
/* Handle unaligned relocations. */
Elf_Addr tmp = 0;
char *ptr = (char *)where;
int i, size = RELOC_TARGET_SIZE(type)/8;
/* Read it in one byte at a time. */
for (i=0; i<size; i++)
tmp = (tmp << 8) | ptr[i];
tmp &= ~mask;
tmp |= value;
/* Write it back out. */
for (i=0; i<size; i++)
ptr[i] = ((tmp >> (8*i)) & 0xff);
} else if (RELOC_TARGET_SIZE(type) > 32) {
*where &= ~mask;
*where |= value;
} else {
Elf32_Addr *where32 = (Elf32_Addr *)where;
*where32 &= ~mask;
*where32 |= value;
}
}
/* reprotect the unprotected segments */
if ((object->dyn.textrel == 1) && (rel == DT_REL || rel == DT_RELA)) {
for (llist = object->load_list; llist != NULL; llist = llist->next) {
if (!(llist->prot & PROT_WRITE))
_dl_mprotect(llist->start, llist->size,
llist->prot);
}
}
return (fails);
}
/*
* Instruction templates:
*/
#define BAA 0x30680000 /* ba,a %xcc, 0 */
#define SETHI 0x03000000 /* sethi %hi(0), %g1 */
#define JMP 0x81c06000 /* jmpl %g1+%lo(0), %g0 <-- simm13 */
#define NOP 0x01000000 /* sethi %hi(0), %g0 */
#define OR 0x82106000 /* or %g1, 0, %g1 */
#define ORG5 0x8a116000 /* or %g5, 0, %g5 */
#define XOR 0x82186000 /* xor %g1, 0, %g1 */
#define MOV71 0x8210000f /* or %o7, 0, %g1 */
#define MOV17 0x9e100001 /* or %g1, 0, %o7 */
#define CALL 0x40000000 /* call 0 <-- disp30 */
#define SLLX 0x83287000 /* sllx %g1, 0, %g1 */
#define SLLXG5 0x8b297000 /* sllx %g5, 0, %g5 */
#define SRAX 0x83387000 /* srax %g1, 0, %g1 */
#define SETHIG5 0x0b000000 /* sethi %hi(0), %g5 */
#define ORG15 0x82804005 /* or %g1, %g5, %g1 */
/* %hi(v) with variable shift */
#define HIVAL(v, s) (((v) >> (s)) & 0x003fffff)
#define LOVAL(v) ((v) & 0x000003ff)
int
_dl_reloc_plt(Elf_Word *where1, Elf_Word *where2, Elf_Word *pltaddr,
Elf_Addr value)
{
Elf_Addr offset;
/*
* At the PLT entry pointed at by `where', we now construct
* a direct transfer to the now fully resolved function
* address.
*
* A PLT entry is supposed to start by looking like this:
*
* sethi %hi(. - .PLT0), %g1
* ba,a,pt %xcc, .PLT1
* nop
* nop
* nop
* nop
* nop
* nop
*
* When we replace these entries we either (a) only replace
* the second word (the ba,a,pt), or (b) replace multiple
* words: one or more nops, then finally the ba,a,pt. By
* replacing the ba,a,pt last, we guarantee that the PLT can
* be used by other threads even while it's being updated.
* This is made slightly more complicated by kbind, for which
* we need to pass them to the kernel in the order they get
* written. To that end, we store the word to overwrite the
* ba,a,pt at *where1, and the words to overwrite the nops at
* where2[0], where2[1], ...
*
* We now need to find out how far we need to jump. We
* have a choice of several different relocation techniques
* which are increasingly expensive.
*/
offset = value - ((Elf_Addr)pltaddr);
if ((int64_t)(offset-4) <= (1L<<20) &&
(int64_t)(offset-4) >= -(1L<<20)) {
/*
* We're within 1MB -- we can use a direct branch insn.
*
* We can generate this pattern:
*
* sethi %hi(. - .PLT0), %g1
* ba,a,pt %xcc, addr
* nop
* nop
* nop
* nop
* nop
* nop
*
*/
*where1 = BAA | (((offset-4) >> 2) &0x7ffff);
return (0);
} else if (value < (1UL<<32)) {
/*
* We're within 32-bits of address zero.
*
* The resulting code in the jump slot is:
*
* sethi %hi(. - .PLT0), %g1
* sethi %hi(addr), %g1
* jmp %g1+%lo(addr)
* nop
* nop
* nop
* nop
* nop
*
*/
*where1 = SETHI | HIVAL(value, 10);
where2[0] = JMP | LOVAL(value);
return (1);
} else if (value > -(1UL<<32)) {
/*
* We're within 32-bits of address -1.
*
* The resulting code in the jump slot is:
*
* sethi %hi(. - .PLT0), %g1
* sethi %hix(~addr), %g1
* xor %g1, %lox(~addr), %g1
* jmp %g1
* nop
* nop
* nop
* nop
*
*/
*where1 = SETHI | HIVAL(~value, 10);
where2[0] = XOR | ((~value) & 0x00001fff);
where2[1] = JMP;
return (2);
} else if ((int64_t)(offset-8) <= (1L<<31) &&
(int64_t)(offset-8) >= -((1L<<31) - 4)) {
/*
* We're within 32-bits -- we can use a direct call insn
*
* The resulting code in the jump slot is:
*
* sethi %hi(. - .PLT0), %g1
* mov %o7, %g1
* call (.+offset)
* mov %g1, %o7
* nop
* nop
* nop
* nop
*
*/
*where1 = MOV71;
where2[0] = CALL | (((offset-8) >> 2) & 0x3fffffff);
where2[1] = MOV17;
return (2);
} else if (value < (1L<<42)) {
/*
* Target 42bits or smaller.
* We can generate this pattern:
*
* The resulting code in the jump slot is:
*
* sethi %hi(. - .PLT0), %g1
* sethi %hi(addr >> 20), %g1
* or %g1, %lo(addr >> 10), %g1
* sllx %g1, 10, %g1
* jmp %g1+%lo(addr)
* nop
* nop
* nop
*
* this can handle addresses 0 - 0x3fffffffffc
*/
*where1 = SETHI | HIVAL(value, 20);
where2[0] = OR | LOVAL(value >> 10);
where2[1] = SLLX | 10;
where2[2] = JMP | LOVAL(value);
return (3);
} else if (value > -(1UL<<41)) {
/*
* Large target >= 0xfffffe0000000000UL
* We can generate this pattern:
*
* The resulting code in the jump slot is:
*
* sethi %hi(. - .PLT0), %g1
* sethi %hi(addr >> 20), %g1
* or %g1, %lo(addr >> 10), %g1
* sllx %g1, 32, %g1
* srax %g1, 22, %g1
* jmp %g1+%lo(addr)
* nop
* nop
* nop
*
*/
*where1 = SETHI | HIVAL(value, 20);
where2[0] = OR | LOVAL(value >> 10);
where2[1] = SLLX | 32;
where2[2] = SRAX | 22;
where2[3] = JMP | LOVAL(value);
return (4);
} else {
/*
* We need to load all 64-bits
*
* The resulting code in the jump slot is:
*
* sethi %hi(. - .PLT0), %g1
* sethi %hi(addr >> 42), %g5
* sethi %hi(addr >> 10), %g1
* or %g1, %lo(addr >> 32), %g5
* sllx %g5, 32, %g5
* or %g1, %g5, %g1
* jmp %g1+%lo(addr)
* nop
*
*/
*where1 = SETHIG5 | HIVAL(value, 42);
where2[0] = SETHI | HIVAL(value, 10);
where2[1] = ORG5 | LOVAL(value >> 32);
where2[2] = SLLXG5 | 32;
where2[3] = ORG15;
where2[4] = JMP | LOVAL(value);
return (5);
}
}
/*
* Resolve a symbol at run-time.
*/
Elf_Addr
_dl_bind(elf_object_t *object, int index)
{
Elf_RelA *rela;
Elf_Word *addr;
Elf_Addr ooff, newvalue;
const Elf_Sym *sym, *this;
const char *symn;
const elf_object_t *sobj;
int64_t cookie = pcookie;
struct {
struct __kbind param[2];
Elf_Word newval[6];
} buf;
struct __kbind *param;
size_t psize;
int i;
rela = (Elf_RelA *)(object->Dyn.info[DT_JMPREL]);
if (ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT)) {
/*
* XXXX
*
* The first four PLT entries are reserved. There
* is some disagreement whether they should have
* associated relocation entries. Both the SPARC
* 32-bit and 64-bit ELF specifications say that
* they should have relocation entries, but the
* 32-bit SPARC binutils do not generate them,
* and now the 64-bit SPARC binutils have stopped
* generating them too.
*
* So, to provide binary compatibility, we will
* check the first entry, if it is reserved it
* should not be of the type JMP_SLOT. If it
* is JMP_SLOT, then the 4 reserved entries were
* not generated and our index is 4 entries too far.
*/
rela += index - 4;
} else
rela += index;
sym = object->dyn.symtab;
sym += ELF64_R_SYM(rela->r_info);
symn = object->dyn.strtab + sym->st_name;
this = NULL;
ooff = _dl_find_symbol(symn, &this,
SYM_SEARCH_ALL|SYM_WARNNOTFOUND|SYM_PLT, sym, object, &sobj);
if (this == NULL)
_dl_die("lazy binding failed!");
newvalue = ooff + this->st_value;
if (__predict_false(sobj->traced) && _dl_trace_plt(sobj, symn))
return (newvalue);
/*
* While some relocations just need to write one word and
* can do that with kbind() with just one block, many
* require two blocks to be written: all but first word,
* then the first word. So, if we want to write 5 words
* in total, then the layout of the buffer we pass to
* kbind() needs to be one of these:
* +------------+
* | kbind.addr |
* | """ |
* | kbind.size |
* | """ | +------------+
* | kbind.addr | | kbind.addr |
* | """ | | """ |
* | kbind.size | | kbind.size |
* | """ | | """ |
* | word 2 | | word |
* | word 3 | +------------+
* | word 4 |
* | word 5 |
* | word 1 |
* +------------+
*
* We first handle the special case of relocations with a
* non-zero r_addend, which have one block to update whose
* address is the relocation address itself. This is only
* used for PLT entries after the 2^15th, i.e., truly monstrous
* programs, thus the __predict_false().
*/
addr = (Elf_Word *)(object->obj_base + rela->r_offset);
_dl_memset(&buf, 0, sizeof(buf));
if (__predict_false(rela->r_addend)) {
/*
* This entry is >32768. The relocation points to a
* PC-relative pointer to the _dl_bind_start_0 stub at
* the top of the PLT section. Update it to point to
* the target function.
*/
buf.newval[0] = rela->r_addend + newvalue
- object->Dyn.info[DT_PLTGOT];
buf.param[1].kb_addr = addr;
buf.param[1].kb_size = sizeof(buf.newval[0]);
param = &buf.param[1];
psize = sizeof(struct __kbind) + sizeof(buf.newval[0]);
} else {
Elf_Word first;
/*
* For the other relocations, the word at the relocation
* address will be left unchanged. Assume _dl_reloc_plt()
* will tell us to update multiple words, so save the first
* word to the side.
*/
i = _dl_reloc_plt(&first, &buf.newval[0], addr, newvalue);
/*
* _dl_reloc_plt() returns the number of words that must be
* written after the first word in location, but before it
* in time. If it returns zero, then only a single block
* with one word is needed, so we just put it in place per
* the right-hand diagram and just use param[1] and newval[0]
*/
if (i == 0) {
/* fill in the __kbind structure */
buf.param[1].kb_addr = &addr[1];
buf.param[1].kb_size = sizeof(Elf_Word);
buf.newval[0] = first;
param = &buf.param[1];
psize = sizeof(struct __kbind) + sizeof(buf.newval[0]);
} else {
/*
* Two blocks are necessary. Save the first word
* after the other words.
*/
buf.param[0].kb_addr = &addr[2];
buf.param[0].kb_size = i * sizeof(Elf_Word);
buf.param[1].kb_addr = &addr[1];
buf.param[1].kb_size = sizeof(Elf_Word);
buf.newval[i] = first;
param = &buf.param[0];
psize = 2 * sizeof(struct __kbind) +
(i + 1) * sizeof(buf.newval[0]);
}
}
/* directly code the syscall, so that it's actually inline here */
{
register long syscall_num __asm("g1") = SYS_kbind;
register void *arg1 __asm("o0") = param;
register long arg2 __asm("o1") = psize;
register long arg3 __asm("o2") = cookie;
__asm volatile("t %2" : "+r" (arg1), "+r" (arg2)
: "i" (ST_SYSCALL), "r" (syscall_num), "r" (arg3)
: "cc", "memory");
}
return (newvalue);
}
/*
* Install rtld function call into this PLT slot.
*/
#define SAVE 0x9de3bf50
#define SETHI_l0 0x21000000
#define SETHI_l1 0x23000000
#define OR_l0_l0 0xa0142000
#define SLLX_l0_32_l0 0xa12c3020
#define OR_l0_l1_l0 0xa0140011
#define JMPL_l0_o1 0x93c42000
#define MOV_g1_o0 0x90100001
void
_dl_install_plt(Elf_Word *pltgot, Elf_Addr proc)
{
pltgot[0] = SAVE;
pltgot[1] = SETHI_l0 | HIVAL(proc, 42);
pltgot[2] = SETHI_l1 | HIVAL(proc, 10);
pltgot[3] = OR_l0_l0 | LOVAL((proc) >> 32);
pltgot[4] = SLLX_l0_32_l0;
pltgot[5] = OR_l0_l1_l0;
pltgot[6] = JMPL_l0_o1 | LOVAL(proc);
pltgot[7] = MOV_g1_o0;
}
void _dl_bind_start_0(long, long);
void _dl_bind_start_1(long, long);
static int
_dl_md_reloc_all_plt(elf_object_t *object)
{
long i;
long numrela;
int fails = 0;
Elf_Addr loff;
Elf_RelA *relas;
loff = object->obj_base;
numrela = object->Dyn.info[DT_PLTRELSZ] / sizeof(Elf64_Rela);
relas = (Elf64_Rela *)(object->Dyn.info[DT_JMPREL]);
if (relas == NULL)
return(0);
for (i = 0; i < numrela; i++, relas++) {
Elf_Addr value;
Elf_Word *where;
const Elf_Sym *sym, *this;
if (ELF_R_TYPE(relas->r_info) != R_TYPE(JMP_SLOT))
continue;
sym = object->dyn.symtab + ELF_R_SYM(relas->r_info);
this = NULL;
value = _dl_find_symbol_bysym(object, ELF_R_SYM(relas->r_info),
&this, SYM_SEARCH_ALL|SYM_WARNNOTFOUND|SYM_PLT, sym, NULL);
if (this == NULL) {
if (ELF_ST_BIND(sym->st_info) != STB_WEAK)
fails++;
continue;
}
where = (Elf_Word *)(relas->r_offset + loff);
value += this->st_value;
if (__predict_false(relas->r_addend)) {
/*
* This entry is >32768. The relocation points to a
* PC-relative pointer to the _dl_bind_start_0 stub at
* the top of the PLT section. Update it to point to
* the target function.
*/
*(Elf_Addr *)where = relas->r_addend + value -
object->Dyn.info[DT_PLTGOT];
} else
_dl_reloc_plt(&where[1], &where[2], where, value);
}
return (fails);
}
/*
* Relocate the Global Offset Table (GOT).
*/
int
_dl_md_reloc_got(elf_object_t *object, int lazy)
{
int fails = 0;
Elf_Addr *pltgot = (Elf_Addr *)object->Dyn.info[DT_PLTGOT];
Elf_Word *entry = (Elf_Word *)pltgot;
if (object->Dyn.info[DT_PLTREL] != DT_RELA)
return (0);
if (object->traced)
lazy = 1;
/* temporarily make the PLT writable */
_dl_protect_segment(object, 0, "__plt_start", "__plt_end",
PROT_READ|PROT_WRITE);
if (!lazy) {
fails = _dl_md_reloc_all_plt(object);
} else {
_dl_install_plt(&entry[0], (Elf_Addr)&_dl_bind_start_0);
_dl_install_plt(&entry[8], (Elf_Addr)&_dl_bind_start_1);
pltgot[8] = (Elf_Addr)object;
}
/* mprotect the GOT */
_dl_protect_segment(object, 0, "__got_start", "__got_end", PROT_READ);
/* mprotect the PLT */
_dl_protect_segment(object, 0, "__plt_start", "__plt_end",
PROT_READ|PROT_EXEC);
return (fails);
}
|