summaryrefslogtreecommitdiff
path: root/regress/lib/libm/cephes/polevll.c
blob: ae8b6b7375772d70c60dc8c686bf004e5a1670a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/*	$OpenBSD: polevll.c,v 1.2 2011/06/02 21:47:40 martynas Exp $	*/

/*
 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

/*							polevll.c
 *							p1evll.c
 *
 *	Evaluate polynomial
 *
 *
 *
 * SYNOPSIS:
 *
 * int N;
 * long double x, y, coef[N+1], polevl[];
 *
 * y = polevll( x, coef, N );
 *
 *
 *
 * DESCRIPTION:
 *
 * Evaluates polynomial of degree N:
 *
 *                     2          N
 * y  =  C  + C x + C x  +...+ C x
 *        0    1     2          N
 *
 * Coefficients are stored in reverse order:
 *
 * coef[0] = C  , ..., coef[N] = C  .
 *            N                   0
 *
 *  The function p1evll() assumes that coef[N] = 1.0 and is
 * omitted from the array.  Its calling arguments are
 * otherwise the same as polevll().
 *
 *  This module also contains the following globally declared constants:
 * MAXNUML = 1.189731495357231765021263853E4932L;
 * MACHEPL = 5.42101086242752217003726400434970855712890625E-20L;
 * MAXLOGL =  1.1356523406294143949492E4L;
 * MINLOGL = -1.1355137111933024058873E4L;
 * LOGE2L  = 6.9314718055994530941723E-1L;
 * LOG2EL  = 1.4426950408889634073599E0L;
 * PIL     = 3.1415926535897932384626L;
 * PIO2L   = 1.5707963267948966192313L;
 * PIO4L   = 7.8539816339744830961566E-1L;
 *
 * SPEED:
 *
 * In the interest of speed, there are no checks for out
 * of bounds arithmetic.  This routine is used by most of
 * the functions in the library.  Depending on available
 * equipment features, the user may wish to rewrite the
 * program in microcode or assembly language.
 *
 */

#include <float.h>

#if	LDBL_MANT_DIG == 64
#include "mconf.h"

#if UNK
/* almost 2^16384 */
long double MAXNUML = 1.189731495357231765021263853E4932L;
/* 2^-64 */
long double MACHEPL = 5.42101086242752217003726400434970855712890625E-20L;
/* log( MAXNUML ) */
long double MAXLOGL =  1.1356523406294143949492E4L;
#ifdef DENORMAL
/* log(smallest denormal number = 2^-16446) */
long double MINLOGL = -1.13994985314888605586758E4L;
#else
/* log( underflow threshold = 2^(-16382) ) */
long double MINLOGL = -1.1355137111933024058873E4L;
#endif
long double LOGE2L  = 6.9314718055994530941723E-1L;
long double LOG2EL  = 1.4426950408889634073599E0L;
long double PIL     = 3.1415926535897932384626L;
long double PIO2L   = 1.5707963267948966192313L;
long double PIO4L   = 7.8539816339744830961566E-1L;
#ifdef INFINITIES
long double NANL = 0.0L / 0.0L;
long double INFINITYL = 1.0L / 0.0L;
#else
long double INFINITYL = 1.189731495357231765021263853E4932L;
long double NANL = 0.0L;
#endif
#endif
#if IBMPC
short MAXNUML[] = {0xffff,0xffff,0xffff,0xffff,0x7ffe, XPD};
short MAXLOGL[] = {0x79ab,0xd1cf,0x17f7,0xb172,0x400c, XPD};
#ifdef INFINITIES
short INFINITYL[] = {0,0,0,0x8000,0x7fff, XPD};
short NANL[] = {0,0,0,0xc000,0x7fff, XPD};
#else
short INFINITYL[] = {0xffff,0xffff,0xffff,0xffff,0x7ffe, XPD};
long double NANL = 0.0L;
#endif
#ifdef DENORMAL
short MINLOGL[] = {0xbaaa,0x09e2,0xfe7f,0xb21d,0xc00c, XPD};
#else
short MINLOGL[] = {0xeb2f,0x1210,0x8c67,0xb16c,0xc00c, XPD};
#endif
short MACHEPL[] = {0x0000,0x0000,0x0000,0x8000,0x3fbf, XPD};
short LOGE2L[]  = {0x79ac,0xd1cf,0x17f7,0xb172,0x3ffe, XPD};
short LOG2EL[]  = {0xf0bc,0x5c17,0x3b29,0xb8aa,0x3fff, XPD};
short PIL[]     = {0xc235,0x2168,0xdaa2,0xc90f,0x4000, XPD};
short PIO2L[]   = {0xc235,0x2168,0xdaa2,0xc90f,0x3fff, XPD};
short PIO4L[]   = {0xc235,0x2168,0xdaa2,0xc90f,0x3ffe, XPD};
#endif
#if MIEEE
long MAXNUML[] = {0x7ffe0000,0xffffffff,0xffffffff};
long MAXLOGL[] = {0x400c0000,0xb17217f7,0xd1cf79ab};
#ifdef INFINITIES
long INFINITY[] = {0x7fff0000,0x80000000,0x00000000};
long NANL[] = {0x7fff0000,0xffffffff,0xffffffff};
#else
long INFINITYL[] = {0x7ffe0000,0xffffffff,0xffffffff};
long double NANL = 0.0L;
#endif
#ifdef DENORMAL
long MINLOGL[] = {0xc00c0000,0xb21dfe7f,0x09e2baaa};
#else
long MINLOGL[] = {0xc00c0000,0xb16c8c67,0x1210eb2f};
#endif
long MACHEPL[] = {0x3fbf0000,0x80000000,0x00000000};
long LOGE2L[]  = {0x3ffe0000,0xb17217f7,0xd1cf79ac};
long LOG2EL[]  = {0x3fff0000,0xb8aa3b29,0x5c17f0bc};
long PIL[]     = {0x40000000,0xc90fdaa2,0x2168c235};
long PIO2L[]   = {0x3fff0000,0xc90fdaa2,0x2168c235};
long PIO4L[]   = {0x3ffe0000,0xc90fdaa2,0x2168c235};
#endif

#ifdef MINUSZERO
long double NEGZEROL = -0.0L;
#else
long double NEGZEROL = 0.0L;
#endif

/* Polynomial evaluator:
 *  P[0] x^n  +  P[1] x^(n-1)  +  ...  +  P[n]
 */
long double polevll( x, p, n )
long double x;
void *p;
int n;
{
register long double y;
register long double *P = (long double *)p;

y = *P++;
do
	{
	y = y * x + *P++;
	}
while( --n );
return(y);
}



/* Polynomial evaluator:
 *  x^n  +  P[0] x^(n-1)  +  P[1] x^(n-2)  +  ...  +  P[n]
 */
long double p1evll( x, p, n )
long double x;
void *p;
int n;
{
register long double y;
register long double *P = (long double *)p;

n -= 1;
y = x + *P++;
do
	{
	y = y * x + *P++;
	}
while( --n );
return( y );
}
#endif	/* LDBL_MANT_DIG == 64 */