1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
|
.\" $OpenBSD: ral.4,v 1.116 2020/05/16 18:28:23 jmc Exp $
.\"
.\" Copyright (c) 2005-2010 Damien Bergamini <damien.bergamini@free.fr>
.\"
.\" Permission to use, copy, modify, and distribute this software for any
.\" purpose with or without fee is hereby granted, provided that the above
.\" copyright notice and this permission notice appear in all copies.
.\"
.\" THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
.\" WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
.\" MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
.\" ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
.\" WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
.\" ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
.\" OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
.\"
.Dd $Mdocdate: May 16 2020 $
.Dt RAL 4
.Os
.Sh NAME
.Nm ral
.Nd Ralink Technology/MediaTek IEEE 802.11a/b/g/n wireless network device
.Sh SYNOPSIS
.Cd "ral* at cardbus?"
.Cd "ral* at pci?"
.Sh DESCRIPTION
The
.Nm
driver supports PCI/PCIe/CardBus wireless adapters based on the Ralink RT2500,
RT2501, RT2600, RT2700, RT2800, RT3090 and RT3900E chipsets.
.Pp
The RT2500 chipset is the first generation of 802.11b/g adapters from Ralink.
It consists of two integrated chips, an RT2560 MAC/BBP and an RT2525 radio
transceiver.
.Pp
The RT2501 chipset is the second generation of 802.11a/b/g adapters from
Ralink.
It consists of two integrated chips, an RT2561 MAC/BBP and an RT2527 radio
transceiver.
This chipset provides support for the IEEE 802.11e standard with multiple
hardware transmission queues and allows scatter/gather for efficient DMA
operations.
.Pp
The RT2600 chipset consists of two integrated chips, an RT2661 MAC/BBP and an
RT2529 radio transceiver.
This chipset uses the MIMO (multiple-input multiple-output) technology with
multiple radio transceivers to extend the operating range of the adapter and
to achieve higher throughput.
However, the RT2600 chipset does not support any of the 802.11n features.
.Pp
The RT2700 chipset is a low-cost version of the RT2800 chipset.
It supports a single transmit path and two receiver paths (1T2R).
It consists of two integrated chips, an RT2760 or RT2790 (PCIe) MAC/BBP and
an RT2720 (2.4GHz) or RT2750 (2.4GHz/5GHz) radio transceiver.
.Pp
The RT2800 chipset is the first generation of 802.11n adapters from Ralink.
It consists of two integrated chips, an RT2860 or RT2890 (PCIe) MAC/BBP and
an RT2820 (2.4GHz) or RT2850 (2.4GHz/5GHz) radio transceiver.
The RT2800 chipset supports two transmit paths and up to three receiver
paths (2T2R/2T3R).
It can achieve speeds up to 144Mbps (20MHz bandwidth) and 300Mbps (40MHz
bandwidth.)
.Pp
The RT3090 chipset is the first generation of single-chip 802.11n adapters
from Ralink.
.Pp
The RT3900E chipset is a single-chip 802.11n adapter from Ralink.
The MAC/Baseband Processor can be an RT3290, RT5390 or RT5392.
The RT3290 is a combo 802.11n and Bluetooth chip.
It operates in the 2GHz spectrum and supports one transmit path and on one
receiver path (1T1R).
The RT5390 chip operates in the 2GHz spectrum and supports one transmit path
and one receiver path (1T1R).
The RT5392 chip operates in the 2GHz spectrum and supports up to two transmit
paths and two receiver paths (2T2R).
.Pp
These are the modes the
.Nm
driver can operate in:
.Bl -tag -width "IBSS-masterXX"
.It BSS mode
Also known as
.Em infrastructure
mode, this is used when associating with an access point, through
which all traffic passes.
This mode is the default.
.It IBSS mode
Also known as
.Em IEEE ad-hoc
mode or
.Em peer-to-peer
mode.
This is the standardized method of operating without an access point.
Stations associate with a service set.
However, actual connections between stations are peer-to-peer.
.It Host AP
In this mode the driver acts as an access point (base station)
for other cards.
.It monitor mode
In this mode the driver is able to receive packets without
associating with an access point.
This disables the internal receive filter and enables the card to
capture packets from networks which it wouldn't normally have access to,
or to scan for access points.
.El
.Pp
The
.Nm
driver can be configured to use
Wired Equivalent Privacy (WEP) or
Wi-Fi Protected Access (WPA1 and WPA2).
WPA2 is the current encryption standard for wireless networks.
It is strongly recommended that neither WEP nor WPA1
are used as the sole mechanism to secure wireless communication,
due to serious weaknesses.
WPA1 is disabled by default and may be enabled using the option
.Qq Cm wpaprotos Ar wpa1,wpa2 .
For standard WPA networks which use pre-shared keys (PSK),
keys are configured using the
.Qq Cm wpakey
option.
WPA-Enterprise networks require use of the wpa_supplicant package.
.Pp
The
.Nm
driver relies on the software 802.11 stack for both encryption and
decryption of data frames on the RT2500, RT2501 and RT2600 chipsets.
On the RT2700 and RT2800 chipsets, the
.Nm
driver offloads both encryption and decryption of data frames to the
hardware for the WEP40, WEP104, TKIP(+MIC) and CCMP ciphers.
.Pp
The transmit speed is user-selectable or can be adapted automatically by the
driver depending on the number of hardware transmission retries.
.Pp
In Host AP mode,
devices with the RT2700, RT2800, RT3090, and RT3900E chipsets
are compatible with clients using powersave.
.Pp
The
.Nm
driver can be configured at runtime with
.Xr ifconfig 8
or on boot with
.Xr hostname.if 5 .
.Sh FILES
The RT2501, RT2600, RT2700 and RT2800 chipsets require the following firmware
files to be loaded when an interface is brought up:
.Pp
.Bl -tag -width Ds -offset indent -compact
.It /etc/firmware/ral-rt2561
.It /etc/firmware/ral-rt2561s
.It /etc/firmware/ral-rt2661
.It /etc/firmware/ral-rt2860
.It /etc/firmware/ral-rt3290
.El
.Pp
The RT2500 chipset does not require a firmware file to operate.
.Sh HARDWARE
The following PCI adapters should work:
.Bd -filled
A-Link WL54H.
AirLive WN-5000PCI.
Amigo AWI-926W.
AMIT WL531P.
AOpen AOI-831.
ASUS WL-130G.
ASUS WL-130N.
ASUS WIFI-G-AAY.
Atlantis Land A02-PCI-W54.
Belkin F5D7000 v3.
Canyon CN-WF511.
CNet CWP-854.
Compex WLP54G.
Conceptronic C54Ri.
Corega CG-WLPCI54GL.
D-Link DWA-525 rev A2.
Digitus DN-7006G-RA.
Dynalink WLG25PCI.
E-Tech WGPI02.
Edimax EW-7128g.
Edimax EW-7628Ig.
Edimax EW-7728In.
Eminent EM3037.
Encore ENLWI-G-RLAM.
Eusso UGL2454-VPR.
Fiberline WL-400P.
Foxconn WLL-3350.
Gigabyte GN-WPKG.
Gigabyte GN-WP01GS.
Gigabyte GN-WI02GM.
Gigabyte GN-WP01GM.
Hawking HWP54GR.
Hercules HWGPCI-54.
iNexQ CR054g-009 (R03).
JAHT WN-4054PCI.
KCORP LifeStyle KLS-660.
LevelOne WNC-0301 v2.
Linksys WMP54G v4.
Longshine LCS-8031N.
Micronet SP906GK.
Minitar MN54GPC-R.
MSI MS-6834.
MSI PC54G2.
OvisLink EVO-W54PCI.
PheeNet HWL-PCIG/RA.
Planex PCI-GW-DS300N.
Pro-Nets PC80211G.
Repotec RP-WP0854.
SATech SN-54P.
Signamax 065-1798.
Sitecom WL-115.
SparkLAN WL-660R.
Surecom EP-9321-g.
Surecom EP-9321-g1.
Sweex LC700030.
TekComm NE-9321-g.
Tonze PC-6200C.
Unex CR054g-R02.
Zinwell ZWX-G361.
Zonet ZEW1600.
.Ed
.Pp
The following CardBus adapters should work:
.Bd -filled
A-Link WL54PC.
Alfa AWPC036.
Amigo AWI-914W.
AMIT WL531C.
ASUS WL-107G.
Atlantis Land A02-PCM-W54.
Belkin F5D7010 v2.
Canyon CN-WF513.
CC&C WL-2102.
CNet CWC-854.
Compex WL54.
Conceptronic C54RC.
Corega CG-WLCB54GL.
Digiconnect WL591C.
Digitus DN-7001G-RA.
Dynalink WLG25CARDBUS.
E-Tech WGPC02.
E-Tech WGPC03.
Edimax EW-7108PCg.
Edimax EW-7708PN.
Eminent EM3036.
Encore ENPWI-G-RLAM.
Eusso UGL2454-01R.
Fiberline WL-400X.
Gigabyte GN-WMKG.
Gigabyte GN-WM01GS.
Gigabyte GN-WM01GM.
Hawking HWC54GR.
Hercules HWGPCMCIA-54.
JAHT WN-4054P(E).
KCORP LifeStyle KLS-611.
LevelOne WPC-0301 v2.
Micronet SP908GK V3.
Minitar MN54GCB-R.
MSI CB54G2.
MSI MS-6835.
Pro-Nets CB80211G.
Repotec RP-WB7108.
SATech SN-54C.
Sitecom WL-112.
SparkLAN WL-611R.
SparkLAN WPCR-501.
Surecom EP-9428-g.
Sweex LC500050.
TekComm NE-9428-g.
Tonze PW-6200C.
Unex MR054g-R02.
Zinwell ZWX-G160.
Zonet ZEW1500.
.Ed
.Pp
The following Mini PCI adapters should work:
.Bd -filled
Amigo AWI-922W.
Billionton MIWLGRL.
Gigabyte GN-WIKG.
Gigabyte GN-WI01GS.
Gigabyte GN-WI02GM.
MSI MP54G2.
MSI MS-6833.
SparkLAN WMIR-215GN.
Tonze PC-620C.
Zinwell ZWX-G360.
.Ed
.Sh EXAMPLES
The following example scans for available networks:
.Pp
.Dl # ifconfig ral0 scan
.Pp
The following
.Xr hostname.if 5
example configures ral0 to join network
.Dq mynwid ,
using WPA key
.Dq mywpakey ,
obtaining an IP address using DHCP:
.Bd -literal -offset indent
nwid mynwid wpakey mywpakey
dhcp
.Ed
.Pp
The following
.Xr hostname.if 5
example creates a host-based access point on boot:
.Bd -literal -offset indent
mediaopt hostap
nwid mynwid wpakey mywpakey
inet 192.168.1.1 255.255.255.0
.Ed
.Sh SEE ALSO
.Xr arp 4 ,
.Xr cardbus 4 ,
.Xr ifmedia 4 ,
.Xr intro 4 ,
.Xr netintro 4 ,
.Xr pci 4 ,
.Xr hostname.if 5 ,
.Xr hostapd 8 ,
.Xr ifconfig 8
.Sh HISTORY
The
.Nm
driver first appeared in
.Ox 3.7 .
Support for the RT2501 and RT2600 chipsets was added in
.Ox 3.9 .
Support for the RT2800 chipset was added in
.Ox 4.3 .
Support for the RT2700 chipset was added in
.Ox 4.4 .
Support for the RT3090 chipset was added in
.Ox 4.9 .
.Sh AUTHORS
The
.Nm
driver was written by
.An Damien Bergamini Aq Mt damien.bergamini@free.fr .
.Sh CAVEATS
The
.Nm
driver does not make use of the hardware cryptographic engine present on
the RT2500, RT2501 and RT2600 chipsets.
.Pp
The
.Nm
driver does not support any of the 802.11n capabilities offered by
the RT2700, RT2800 and RT3090 chipsets.
Additional work is required in
.Xr ieee80211 9
before those features can be supported.
.Pp
On the RT2500, RT2501 and RT2600 chipsets, host AP mode doesn't
support power saving.
Clients attempting to use power saving mode may experience significant
packet loss.
.Pp
Some PCI
.Nm
adapters seem to strictly require a system supporting PCI 2.2 or greater and
will likely not work in systems based on older revisions of the PCI
specification.
Check the board's PCI version before purchasing the card.
|