1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
.\" $OpenBSD: st.4,v 1.11 2005/09/11 23:25:59 krw Exp $
.\" $NetBSD: st.4,v 1.2 1996/10/20 23:15:24 explorer Exp $
.\"
.\" Copyright (c) 1996
.\" Julian Elischer <julian@freebsd.org>. All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\" notice, this list of conditions and the following disclaimer.
.\"
.\" 2. Redistributions in binary form must reproduce the above copyright
.\" notice, this list of conditions and the following disclaimer in the
.\" documentation and/or other materials provided with the distribution.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
.\" SUCH DAMAGE.
.\"
.Dd August 23, 1996
.Dt ST 4
.Os
.Sh NAME
.Nm st
.Nd SCSI tape driver
.Sh SYNOPSIS
.Cd "st* at scsibus?"
.Cd "#st0 at scsibus0 target 4 lun 0" Pq fixed-configuration example
.Sh DESCRIPTION
The
.Nm
driver provides support for
.Tn SCSI
tape drives.
It allows a tape drive to be run in several different modes depending
on minor numbers and supports several different
.Dq sub-modes .
The device can have both a
.Em raw
interface and a
.Em block
interface; however, only the raw interface is usually used (or recommended).
.Pp
.Tn SCSI
devices have a relatively high level interface and talk to the system via a
.Tn SCSI
adapter and a
.Tn SCSI
adapter driver
(e.g.,
.Xr ahc 4 ) .
A
.Tn SCSI
adapter must also be separately configured into the system before a
.Tn SCSI
tape can be configured.
.Pp
As the
.Tn SCSI
adapter is probed during boot, the
.Tn SCSI
bus is scanned for devices.
Any devices found which answer as
.Sq Em Sequential
type devices will be attached to the
.Nm
driver.
.Sh MOUNT SESSIONS
The
.Nm
driver is based around the concept of a
.Dq Em mount session ,
which is defined as the period between the time that a tape is
mounted, and the time when it is unmounted.
Any parameters set during a mount session remain in effect for the remainder
of the session or until replaced.
The tape can be unmounted, bringing the session to a close in several ways.
These include:
.Bl -enum
.It
Closing an
.Dq unmount device ,
referred to as sub-mode 00 below.
An example is
.Pa /dev/rst0 .
.It
Using the
.Dv MTOFFL
.Xr ioctl 2
command, reachable through the
.Sq Cm offline
command of
.Xr mt 1 .
.It
Opening a different mode will implicitly unmount the tape, thereby
closing off the mode that was previously mounted.
All parameters will be loaded freshly from the new mode.
(See below for more on modes.)
.El
.Sh MODES AND SUB-MODES
There are several different
.Sq operation
modes.
These are controlled by bits 2 and 3 of the minor number
and are designed to allow users to easily read and write different
formats of tape on devices that allow multiple formats.
The parameters for each mode can be set individually by hand with the
.Xr mt 1
command.
When a device corresponding to a particular mode is first
mounted, the operating parameters for that mount session are copied
from that mode.
Further changes to the parameters during the session will change those in
effect for the session but not those set in the operation mode.
To change the parameters for an operation mode, one must compile them into the
.Dq Em quirk
table in the driver's source code.
.Pp
In addition to the operating modes mentioned above, bits 0 and 1
of the minor number are interpreted as
.Sq sub-modes .
The sub-modes differ in the action taken when the device is closed:
.Bl -tag -width XXXX
.It 00
A close will rewind the device; if the tape has been written, then
a file mark will be written before the rewind is requested.
The device is unmounted.
.It 01
A close will leave the tape mounted.
If the tape was written to, a file mark will be written.
No other head positioning takes place.
Any further reads or writes will occur directly after the last
read, or the written file mark.
.It 10
A close will rewind the device.
If the tape has been written, then a file mark will be written before the
rewind is requested.
On completion of the rewind an unload command will be issued.
The device is unmounted.
.It 11
Reserved.
Currently unused.
.El
.Sh BLOCKING MODES
.Tn SCSI
tapes may run in either
.Sq Em variable
or
.Sq Em fixed
block-size modes.
Most
.Tn QIC Ns -type
devices run in fixed block-size mode, whereas most nine-track tapes
and many new cartridge formats allow variable block-size.
The difference between the two is as follows:
.Bl -inset
.It Variable block-size:
Each write made to the device results in a single logical record
written to the tape.
One can never read or write
.Em part
of a record from tape (though you may request a larger block and
read a smaller record); nor can one read multiple blocks.
Data from a single write is therefore read by a single read.
The block size used may be any value supported by the device, the
.Tn SCSI
adapter and the system (usually between 1 byte and 64 Kbytes,
sometimes more).
.Pp
When reading a variable record/block from the tape, the head is
logically considered to be immediately after the last item read,
and before the next item after that.
If the next item is a file mark, but it was never read, then the next
process to read will immediately hit the file mark and receive an
end-of-file notification.
.It Fixed block-size
data written by the user is passed to the tape as a succession of
fixed size blocks.
It may be contiguous in memory, but it is considered to be a series of
independent blocks.
One may never write an amount of data that is not an exact multiple of the
blocksize.
One may read and write the same data as a different set of records.
In other words, blocks that were written together may be read separately,
and vice-versa.
.Pp
If one requests more blocks than remain in the file, the drive will
encounter the file mark.
Because there is some data to return (unless there were no records before
the file mark), the read will succeed, returning that data.
The next read will return immediately with an
.Dv EOF .
(As above, if the file mark is never read, it remains for the next process
to read if in no-rewind mode.)
.El
.Sh FILE MARK HANDLING
The handling of file marks on write is automatic.
If the user has written to the tape, and has not done a read since the last
write, then a file mark will be written to the tape when the device is closed.
If a rewind is requested after a write, then the driver
assumes that the last file on the tape has been written, and ensures
that there are two file marks written to the tape.
The exception to this is that there seems to be a standard (which we follow,
but don't understand why) that certain types of tape do not actually
write two file marks to tape, but when read, report a
.Dq phantom
file mark when the last file is read.
These devices include the QIC family of devices.
(It might be that this set of devices is the same set as that of fixed.
This has not yet been determined, and they are treated as separate
behaviors by the driver at this time.)
.Sh KERNEL CONFIGURATION
Because different tape drives behave differently, there is a
mechanism within the source to
.Nm
to quickly and conveniently recognize and deal with brands and
models of drive that have special requirements.
.Pp
There is a table (called the
.Dq Em quirk table )
in which the identification strings of known errant drives can be stored.
Alongside each is a set of flags that allows the setting
of densities and blocksizes for each of the modes, along with a
set of
.Dq QUIRK
flags that can be used to enable or disable sections
of code within the driver if a particular drive is recognized.
.Sh IOCTLS
The following
.Xr ioctl 2
calls apply to
.Tn SCSI
tapes.
Some also apply to other tapes.
They are defined in the header file
.Aq Pa sys/mtio.h .
.\"
.\" Almost all of this discussion belongs in a separate mt(4)
.\" manual page, since it is common to all magnetic tapes.
.\"
.Bl -tag -width MTIOCEEOT
.It Dv MTIOCGET
.Pq Li "struct mtget"
Retrieve the status and parameters of the tape.
.It Dv MTIOCTOP
.Pq Li "struct mtop"
Perform a multiplexed operation.
The argument structure is as follows:
.Bd -literal -offset indent
struct mtop {
short mt_op;
daddr_t mt_count;
};
.Ed
.Pp
The following operation values are defined for
.Va mt_op :
.Bl -tag -width MTSELDNSTY
.It Dv MTWEOF
Write
.Va mt_count
end of file marks at the present head position.
.It Dv MTFSF
Skip over
.Va mt_count
file marks.
Leave the head on the EOM side of the last skipped file mark.
.It Dv MTBSF
Skip
.Em backwards
over
.Va mt_count
file marks.
Leave the head on the BOM (beginning of media) side of the last skipped
file mark.
.It Dv MTFSR
Skip forwards over
.Va mt_count
records.
.It Dv MTBSR
Skip backwards over
.Va mt_count
records.
.It Dv MTREW
Rewind the device to the beginning of the media.
.It Dv MTOFFL
Rewind the media (and, if possible, eject).
Even if the device cannot eject the media it will often no longer respond
to normal requests.
.It Dv MTNOP
No-op; set status only.
.It Dv MTCACHE
Enable controller buffering.
.It Dv MTNOCACHE
Disable controller buffering.
.It Dv MTSETBSIZ
Set the blocksize to use for the device/mode.
If the device is capable of variable blocksize operation, and the blocksize
is set to 0, then the drive will be driven in variable mode.
This parameter is in effect for the present mount session only.
.It Dv MTSETDNSTY
Set the density value (see
.Xr mt 1 )
to use when running in the mode opened (minor bits 2 and 3).
This parameter is in effect for the present
mount session only.
.El
.It Dv MTIOCIEOT
Set end-of-tape processing (not presently supported for
.Nm
devices).
.It Dv MTIOCEEOT
Set end-of-tape processing (not presently supported for
.Nm
devices).
.El
.Sh FILES
.Bl -tag -width /dev/[e][n][r]st[0-9] -compact
.It Pa /dev/[e][n][r]st[0-9]
general form
.It Pa /dev/rst0
Mode 0, rewind on close
.It Pa /dev/nrst0
Mode 2, No rewind on close
.It Pa /dev/erst0
Mode 3, Eject on close (if capable)
.El
.Sh SEE ALSO
.Xr mt 1 ,
.Xr intro 4 ,
.Xr mtio 4 ,
.Xr scsi 4 ,
.Xr wt 4
.Sh HISTORY
This
.Nm
driver was originally written for
.Tn Mach
2.5 by Julian Elischer, and was ported to
.Nx
by Charles Hannum.
This man page was edited for
.Nx
by Jon Buller.
|