1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
|
.\" $OpenBSD: termios.4,v 1.32 2010/03/01 07:54:07 jmc Exp $
.\" $NetBSD: termios.4,v 1.5 1994/11/30 16:22:36 jtc Exp $
.\"
.\" Copyright (c) 1991, 1992, 1993
.\" The Regents of the University of California. All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\" notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\" notice, this list of conditions and the following disclaimer in the
.\" documentation and/or other materials provided with the distribution.
.\" 3. Neither the name of the University nor the names of its contributors
.\" may be used to endorse or promote products derived from this software
.\" without specific prior written permission.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
.\" SUCH DAMAGE.
.\"
.\" @(#)termios.4 8.4 (Berkeley) 4/19/94
.\"
.Dd $Mdocdate: March 1 2010 $
.Dt TERMIOS 4
.Os
.Sh NAME
.Nm termios
.Nd general terminal line discipline
.Sh SYNOPSIS
.Fd #include <termios.h>
.Sh DESCRIPTION
This describes a general terminal line discipline that is
supported on tty asynchronous communication ports.
.Ss Opening a Terminal Device File
When a terminal file is opened, it normally causes the process to wait
until a connection is established.
For most hardware, the presence of a connection is indicated by the assertion
of the hardware
.Dv CARRIER line .
If the termios structure associated with the terminal file has the
.Dv CLOCAL
flag set in the cflag, or if the
.Dv O_NONBLOCK
flag is set
in the
.Xr open 2
call, then the open will succeed even without
a connection being present.
In practice, applications
seldom open these files; they are opened by special programs, such
as
.Xr getty 8
or
.Xr sshd 8 ,
and become
an application's standard input, output, and error files.
.Ss Job Control in a Nutshell
Every process is associated with a particular process group and session.
The grouping is hierarchical: every member of a particular process group is a
member of the same session.
This structuring is used in managing groups of related processes for purposes
of
.\" .Gw "job control" ;
.Em "job control" ;
that is, the
ability from the keyboard (or from program control) to simultaneously
stop or restart
a complex command (a command composed of one or more related
processes).
The grouping into process groups allows delivering of signals that stop or
start the group as a whole, along with arbitrating which process group has
access to the single controlling terminal.
The grouping at a higher layer into sessions is to restrict
the job control related signals and system calls to within processes
resulting from a particular instance of a "login".
Typically, a session is created when a user logs in, and the login terminal
is set up to be the controlling terminal; all processes spawned from that
login shell are in the same session, and inherit the controlling
terminal.
A job control shell
operating interactively (that is, reading commands from a terminal)
normally groups related processes together by placing them into the
same process group.
A set of processes in the same process group is collectively referred to as
a "job".
When the foreground process group of the terminal is the same as the process
group of a particular job, that job is said to be in the "foreground".
When the process group of the terminal is different than the process group of
a job (but is still the controlling terminal), that job is said
to be in the "background".
Normally the shell reads a command and starts the job that implements that
command.
If the command is to be started in the foreground (typical), it sets the
process group of the terminal to the process group of the started job, waits
for the job to complete, and then sets the process group of the terminal
back to its own process group (it puts itself into the foreground).
If the job is to be started in the background (as denoted by the shell
operator "&"), it never changes the process group of the terminal and doesn't
wait for the job to complete (that is, it immediately attempts to read the next
command).
If the job is started in the foreground, the user may type a key (usually
.Ql \&^Z )
which generates the terminal stop signal
.Pq Dv SIGTSTP
and has the effect of stopping the entire job.
The shell will notice that the job stopped, and will resume running after
placing itself in the foreground.
The shell also has commands for placing stopped jobs in the background,
and for placing stopped or background jobs into the foreground.
.Ss Orphaned Process Groups
An orphaned process group is a process group that has no process
whose parent is in a different process group, yet is in the same
session.
Conceptually it means a process group that doesn't have
a parent that could do anything if it were to be stopped.
For example, the initial login shell is typically in an orphaned
process group.
Orphaned process groups are immune to keyboard generated stop
signals and job control signals resulting from reads or writes to the
controlling terminal.
.Ss The Controlling Terminal
A terminal may belong to a process as its controlling terminal.
Each process of a session that has a controlling terminal has the same
controlling terminal.
A terminal may be the controlling terminal for at most one session.
The controlling terminal for a session is allocated by the session leader
by issuing the
.Dv TIOCSCTTY
ioctl.
A controlling terminal is never acquired by merely opening a terminal device
file.
When a controlling terminal becomes
associated with a session, its foreground process group is set to
the process group of the session leader.
.Pp
The controlling terminal is inherited by a child process during a
.Xr fork 2
function call.
A process relinquishes its controlling terminal when it creates a new session
with the
.Xr setsid 2
function; other processes remaining in the old session that had this terminal
as their controlling terminal continue to have it.
A process does not relinquish its
controlling terminal simply by closing all of its file descriptors
associated with the controlling terminal if other processes continue to
have it open.
.Pp
When a controlling process terminates, the controlling terminal is
disassociated from the current session, allowing it to be acquired by a
new session leader.
Subsequent access to the terminal by other processes in the earlier session
will be denied, with attempts to access the terminal treated as if modem
disconnect had been sensed.
.Ss Terminal Access Control
If a process is in the foreground process group of its controlling
terminal, read operations are allowed.
Any attempts by a process
in a background process group to read from its controlling terminal
causes a
.Dv SIGTTIN
signal to be sent to
the process's group
unless one of the
following special cases apply: If the reading process is ignoring or
blocking the
.Dv SIGTTIN
signal, or if the process group of the reading process is orphaned, the
.Xr read 2
returns -1 with
.Va errno
set to
.Er EIO
and no
signal is sent.
The default action of the
.Dv SIGTTIN
signal is to stop the
process to which it is sent.
.Pp
If a process is in the foreground process group of its controlling
terminal, write operations are allowed.
Attempts by a process in a background process group to write to its
controlling terminal will cause the process group to be sent a
.Dv SIGTTOU
signal unless one of the following special cases apply:
If
.Dv TOSTOP
is not
set, or if
.Dv TOSTOP
is set and the process is ignoring or blocking the
.Dv SIGTTOU
signal, the process is allowed to write to the terminal and the
.Dv SIGTTOU
signal is not sent.
If
.Dv TOSTOP
is set, and the process group of
the writing process is orphaned, and the writing process is not ignoring
or blocking
.Dv SIGTTOU ,
the
.Xr write 2
returns -1 with
.Va errno
set to
.Er EIO
and no signal is sent.
.Pp
Certain calls that set terminal parameters are treated in the same
fashion as write, except that
.Dv TOSTOP
is ignored; that is, the effect is
identical to that of terminal writes when
.Dv TOSTOP
is set.
.Ss Input Processing and Reading Data
A terminal device associated with a terminal device file may operate in
full-duplex mode, so that data may arrive even while output is occurring.
Each terminal device file has associated with it an input queue, into
which incoming data is stored by the system before being read by a
process.
The system imposes a limit,
.Pf \&{ Dv MAX_INPUT Ns \&} ,
on the number of
bytes that may be stored in the input queue.
The behavior of the system when this limit is exceeded depends on the
setting of the
.Dv IMAXBEL
flag in the termios
.Fa c_iflag .
If this flag is set, the terminal
is sent an
.Tn ASCII
.Dv BEL
character each time a character is received
while the input queue is full.
Otherwise, the input queue is flushed upon receiving the character.
.Pp
Two general kinds of input processing are available, determined by
whether the terminal device file is in canonical mode or noncanonical
mode.
Additionally, input characters are processed according to the
.Fa c_iflag
and
.Fa c_lflag
fields.
Such processing can include echoing, which in general means transmitting
input characters immediately back to the terminal when they are received
from the terminal.
This is useful for terminals that can operate in full-duplex mode.
.Pp
The manner in which data is provided to a process reading from a terminal
device file is dependent on whether the terminal device file is in
canonical or noncanonical mode.
.Pp
Another dependency is whether the
.Dv O_NONBLOCK
flag is set by
.Fn open
or
.Fn fcntl .
If the
.Dv O_NONBLOCK
flag is clear, then the read request is
blocked until data is available or a signal has been received.
If the
.Dv O_NONBLOCK
flag is set, then the read request is completed, without
blocking, in one of three ways:
.Bl -enum -offset indent
.It
If there is enough data available to satisfy the entire request,
and the read completes successfully the number of bytes read is returned.
.It
If there is not enough data available to satisfy the entire
request, and the read completes successfully, having read as
much data as possible, the number of bytes read is returned.
.It
If there is no data available, the read returns -1, with
.Va errno
set to
.Er EAGAIN .
.El
.Pp
When data is available depends on whether the input processing mode is
canonical or noncanonical.
.Ss Canonical Mode Input Processing
In canonical mode input processing, terminal input is processed in units
of lines.
A line is delimited by a newline
.Ql \&\en
character, an end-of-file
.Pq Dv EOF
character, or an end-of-line
.Pq Dv EOL
character.
See the
.Sx "Special Characters"
section for
more information on
.Dv EOF
and
.Dv EOL .
This means that a read request will
not return until an entire line has been typed, or a signal has been
received.
Also, no matter how many bytes are requested in the read call,
at most one line is returned.
It is not, however, necessary to read a whole line at once; any number
of bytes, even one, may be requested in a read without losing information.
.Pp
.Pf \&{ Dv MAX_CANON Ns \&}
is a limit on the
number of bytes in a line.
The behavior of the system when this limit is
exceeded is the same as when the input queue limit
.Pf \&{ Dv MAX_INPUT Ns \&} ,
is exceeded.
.Pp
Erase and kill processing occur when either of two special characters,
the
.Dv ERASE
and
.Dv KILL
characters (see the
.Sx "Special Characters section" ) ,
is received.
This processing affects data in the input queue that has not yet been
delimited by a newline
.Dv NL ,
.Dv EOF ,
or
.Dv EOL
character.
This un-delimited data makes up the current line.
The
.Dv ERASE
character deletes the last
character in the current line, if there is any.
The
.Dv KILL
character
deletes all data in the current line, if there is any.
The
.Dv ERASE
and
.Dv KILL
characters have no effect if there is no data in the current line.
The
.Dv ERASE
and
.Dv KILL
characters themselves are not placed in the input
queue.
.Ss Noncanonical Mode Input Processing
In noncanonical mode input processing, input bytes are not assembled into
lines, and erase and kill processing does not occur.
The values of the
.Dv VMIN
and
.Dv VTIME
members of the
.Fa c_cc
array are used to determine how to
process the bytes received.
.Pp
.Dv VMIN
represents the minimum number of bytes that should be received when
the
.Xr read 2
function successfully returns.
.Dv VTIME
is a timer of 0.1 second
granularity that is used to time out bursty and short term data
transmissions.
If
.Dv VMIN
is greater than
.Pf \&{ Dv MAX_INPUT Ns \&} ,
the response to the
request is undefined.
The four possible values for
.Dv VMIN
and
.Dv VTIME
and
their interactions are described below.
.Ss "Case A: VMIN > 0, VTIME > 0"
In this case
.Dv VTIME
serves as an inter-byte timer and is activated after
the first byte is received.
Since it is an inter-byte timer, it is reset after a byte is received.
The interaction between
.Dv VMIN
and
.Dv VTIME
is as
follows: as soon as one byte is received, the inter-byte timer is
started.
If
.Dv VMIN
bytes are received before the inter-byte timer expires
(remember that the timer is reset upon receipt of each byte), the read is
satisfied.
If the timer expires before
.Dv VMIN
bytes are received, the
characters received to that point are returned to the user.
Note that if
.Dv VTIME
expires at least one byte is returned because the timer would
not have been enabled unless a byte was received.
In this case
.Pf \&( Dv VMIN
> 0,
.Dv VTIME
> 0) the read blocks until the
.Dv VMIN
and
.Dv VTIME
mechanisms are
activated by the receipt of the first byte, or a signal is received.
If data is in the buffer at the time of the read(), the result is as
if data had been received immediately after the read().
.Ss "Case B: VMIN > 0, VTIME = 0"
In this case, since the value of
.Dv VTIME
is zero, the timer plays no role
and only
.Dv VMIN
is significant.
A pending read is not satisfied until
.Dv VMIN
bytes are received (i.e., the pending read blocks until
.Dv VMIN
bytes
are received), or a signal is received.
A program that uses this case to read record-based terminal
.Dv I/O
may block indefinitely in the read
operation.
.Ss "Case C: VMIN = 0, VTIME > 0"
In this case, since
.Dv VMIN
= 0,
.Dv VTIME
no longer represents an inter-byte
timer.
It now serves as a read timer that is activated as soon as the
read function is processed.
A read is satisfied as soon as a single byte is received or the read
timer expires.
Note that in this case if the timer expires, no bytes are returned.
If the timer does not expire, the only way the read can be satisfied is
if a byte is received.
In this case the read will not block indefinitely waiting for a byte; if
no byte is received within
.Dv VTIME Ns *0.1
seconds after the read is initiated,
the read returns a value of zero, having read no data.
If data is in the buffer at the time of the read, the timer is started
as if data had been received immediately after the read.
.Ss Case D: VMIN = 0, VTIME = 0
The minimum of either the number of bytes requested or the number of
bytes currently available is returned without waiting for more
bytes to be input.
If no characters are available, read returns a value of zero, having
read no data.
.Ss Writing Data and Output Processing
When a process writes one or more bytes to a terminal device file, they
are processed according to the
.Fa c_oflag
field (see the
.Sx "Output Modes
section).
The
implementation may provide a buffering mechanism; as such, when a call to
write() completes, all of the bytes written have been scheduled for
transmission to the device, but the transmission will not necessarily
have been completed.
.\" See also .Sx "6.4.2" for the effects of
.\" .Dv O_NONBLOCK
.\" on write.
.Ss Special Characters
Certain characters have special functions on input or output or both.
These functions are summarized as follows:
.Bl -tag -width indent
.It Dv INTR
Special character on input and is recognized if the
.Dv ISIG
flag (see the
.Sx "Local Modes"
section) is enabled.
Generates a
.Dv SIGINT
signal which is sent to all processes in the foreground
process group for which the terminal is the controlling
terminal.
If
.Dv ISIG
is set, the
.Dv INTR
character is
discarded when processed.
.It Dv QUIT
Special character on input and is recognized if the
.Dv ISIG
flag is enabled.
Generates a
.Dv SIGQUIT
signal which is
sent to all processes in the foreground process group
for which the terminal is the controlling terminal.
If
.Dv ISIG
is set, the
.Dv QUIT
character is discarded when
processed.
.It Dv ERASE
Special character on input and is recognized if the
.Dv ICANON
flag is set.
Erases the last character in the current line; see
.Sx "Canonical Mode Input Processing" .
It does not erase beyond the start of a line, as delimited by a
.Dv NL ,
.Dv EOF ,
or
.Dv EOL
character.
If
.Dv ICANON
is set, the
.Dv ERASE
character is
discarded when processed.
.It Dv KILL
Special character on input and is recognized if the
.Dv ICANON
flag is set.
Deletes the entire line, as delimited by a
.Dv NL ,
.Dv EOF ,
or
.Dv EOL
character.
If
.Dv ICANON
is set, the
.Dv KILL
character is discarded when processed.
.It Dv EOF
Special character on input and is recognized if the
.Dv ICANON
flag is set.
When received, all the bytes waiting to be read are immediately passed to the
process, without waiting for a newline, and the
.Dv EOF
is discarded.
Thus, if there are no bytes waiting (that
is, the
.Dv EOF
occurred at the beginning of a line), a byte
count of zero is returned from the read(),
representing an end-of-file indication.
If
.Dv ICANON
is
set, the
.Dv EOF
character is discarded when processed.
.It Dv NL
Special character on input and is recognized if the
.Dv ICANON
flag is set.
It is the line delimiter
.Ql \&\en .
.It Dv EOL
Special character on input and is recognized if the
.Dv ICANON
flag is set.
Is an additional line delimiter,
like
.Dv NL .
.It Dv SUSP
If the
.Dv ISIG
flag is enabled, receipt of the
.Dv SUSP
character causes a
.Dv SIGTSTP
signal to be sent to all processes in the
foreground process group for which the terminal is the
controlling terminal, and the
.Dv SUSP
character is
discarded when processed.
.It Dv STOP
Special character on both input and output and is
recognized if the
.Dv IXON
(output control) or
.Dv IXOFF
(input
control) flag is set.
Can be used to temporarily suspend output.
It is useful with fast terminals to prevent output from disappearing
before it can be read.
If
.Dv IXON
is set, the
.Dv STOP
character is discarded when
processed.
.It Dv START
Special character on both input and output and is
recognized if the
.Dv IXON
(output control) or
.Dv IXOFF
(input
control) flag is set.
Can be used to resume output that has been suspended by a
.Dv STOP
character.
If
.Dv IXON
is set, the
.Dv START
character is discarded when processed.
.It Dv CR
Special character on input and is recognized if the
.Dv ICANON
flag is set; it is the
.Ql \&\er ,
as denoted in the
.Tn \&C
Standard {2}.
When
.Dv ICANON
and
.Dv ICRNL
are set and
.Dv IGNCR
is not set, this character is translated into a
.Dv NL ,
and
has the same effect as a
.Dv NL
character.
.El
.Pp
The following special characters are extensions defined by this
system and are not a part of 1003.1 termios.
.Bl -tag -width indent
.It Dv EOL2
Secondary
.Dv EOL
character.
Same function as
.Dv EOL .
.It Dv WERASE
Special character on input and is recognized if the
.Dv ICANON
flag is set.
Erases the last word in the current
line according to one of two algorithms.
If the
.Dv ALTWERASE
flag is not set, first any preceding whitespace is
erased, and then the maximal sequence of non-whitespace
characters.
If
.Dv ALTWERASE
is set, first any preceding
whitespace is erased, and then the maximal sequence
of alphabetic/underscores or non alphabetic/underscores.
As a special case in this second algorithm, the first previous
non-whitespace character is skipped in determining
whether the preceding word is a sequence of
alphabetic/underscores.
This sounds confusing but turns out to be quite practical.
.It Dv REPRINT
Special character on input and is recognized if the
.Dv ICANON
flag is set.
Causes the current input edit line
to be retyped.
.It Dv DSUSP
Has similar actions to the
.Dv SUSP
character, except that
the
.Dv SIGTSTP
signal is delivered when one of the processes
in the foreground process group issues a read() to the
controlling terminal.
.It Dv LNEXT
Special character on input and is recognized if the
.Dv IEXTEN
flag is set.
Receipt of this character causes the next character to be taken literally.
.It Dv DISCARD
Special character on input and is recognized if the
.Dv IEXTEN
flag is set.
Receipt of this character toggles the flushing of terminal output.
.It Dv STATUS
Special character on input and is recognized if the
.Dv ICANON
flag is set.
Receipt of this character causes a
.Dv SIGINFO
signal to be sent to the foreground process group of the
terminal.
Also, if the
.Dv NOKERNINFO
flag is not set, it
causes the kernel to write a status message to the terminal
that displays the current load average, the name of the
command in the foreground, its process ID, the symbolic
wait channel, the number of user and system seconds used,
the percentage of CPU the process is getting, and the resident
set size of the process.
.El
.Pp
The
.Dv NL
and
.Dv CR
characters cannot be changed.
The values for all the remaining characters can be set and are
described later in the document under
.Sx Special Control Characters .
.Pp
Special
character functions associated with changeable special control characters
can be disabled individually by setting their value to
.Dv {_POSIX_VDISABLE} ;
see
.Sx "Special Control Characters" .
.Pp
If two or more special characters have the same value, the function
performed when that character is received is undefined.
.Ss Modem Disconnect
If a modem disconnect is detected by the terminal interface for a
controlling terminal, and if
.Dv CLOCAL
is not set in the
.Fa c_cflag
field for
the terminal, the
.Dv SIGHUP
signal is sent to the controlling
process associated with the terminal.
Unless other arrangements have been made, this causes the controlling
process to terminate.
Any subsequent call to the read() function returns the value zero,
indicating end of file.
Thus, processes that read a terminal file and test for end-of-file can
terminate appropriately after a disconnect.
.\" If the
.\" .Er EIO
.\" condition specified in 6.1.1.4 that applies
.\" when the implementation supports job control also exists, it is
.\" unspecified whether the
.\" .Dv EOF
.\" condition or the
.\" .Pf [ Dv EIO
.\" ] is returned.
Any
subsequent write() to the terminal device returns -1, with
.Va errno
set to
.Er EIO ,
until the device is closed.
.Sh General Terminal Interface
.Ss Closing a Terminal Device File
The last process to close a terminal device file causes any output
to be sent to the device and any input to be discarded.
Then, if
.Dv HUPCL
is set in the control modes, and the communications port supports a
disconnect function, the terminal device performs a disconnect.
.Ss Parameters That Can Be Set
Routines that need to control certain terminal
.Tn I/O
characteristics
do so by using the termios structure as defined in the header
.Aq Pa termios.h .
This structure contains minimally four scalar elements of bit flags
and one array of special characters.
The scalar flag elements are
named:
.Fa c_iflag ,
.Fa c_oflag ,
.Fa c_cflag ,
and
.Fa c_lflag .
The character array is named
.Fa c_cc ,
and its maximum index is
.Dv NCCS .
.Ss Input Modes
Values of the
.Fa c_iflag
field describe the basic
terminal input control, and are composed of
following masks:
.Pp
.Bl -tag -width IMAXBEL -offset indent -compact
.It Dv IGNBRK
/* ignore BREAK condition */
.It Dv BRKINT
/* map BREAK to SIGINT */
.It Dv IGNPAR
/* ignore (discard) parity errors */
.It Dv PARMRK
/* mark parity and framing errors */
.It Dv INPCK
/* enable checking of parity errors */
.It Dv ISTRIP
/* strip 8th bit off chars */
.It Dv INLCR
/* map NL into CR */
.It Dv IGNCR
/* ignore CR */
.It Dv ICRNL
/* map CR to NL (ala CRMOD) */
.It Dv IXON
/* enable output flow control */
.It Dv IXOFF
/* enable input flow control */
.It Dv IXANY
/* any char will restart after stop */
.It Dv IMAXBEL
/* ring bell on input queue full */
.It Dv IUCLC
/* translate upper case to lower case */
.El
.Pp
In the context of asynchronous serial data transmission, a break
condition is defined as a sequence of zero-valued bits that continues for
more than the time to send one byte.
The entire sequence of zero-valued bits is interpreted as a single break
condition, even if it continues for a time equivalent to more than one byte.
In contexts other than asynchronous serial data transmission the definition
of a break condition is implementation defined.
.Pp
If
.Dv IGNBRK
is set, a break condition detected on input is ignored, that
is, not put on the input queue and therefore not read by any process.
If
.Dv IGNBRK
is not set and
.Dv BRKINT
is set, the break condition flushes the
input and output queues and if the terminal is the controlling terminal
of a foreground process group, the break condition generates a
single
.Dv SIGINT
signal to that foreground process group.
If neither
.Dv IGNBRK
nor
.Dv BRKINT
is set, a break condition is read as a single
.Ql \&\e0 ,
or if
.Dv PARMRK
is set, as
.Ql \&\e377 ,
.Ql \&\e0 ,
.Ql \&\e0 .
.Pp
If
.Dv IGNPAR
is set, a byte with a framing or parity error (other than
break) is ignored.
.Pp
If
.Dv PARMRK
is set, and
.Dv IGNPAR
is not set, a byte with a framing or parity
error (other than break) is given to the application as the
three-character sequence
.Ql \&\e377 ,
.Ql \&\e0 ,
X, where
.Ql \&\e377 ,
.Ql \&\e0
is a two-character
flag preceding each sequence and X is the data of the character received
in error.
To avoid ambiguity in this case, if
.Dv ISTRIP
is not set, a valid
character of
.Ql \&\e377
is given to the application as
.Ql \&\e377 ,
.Ql \&\e377 .
If
neither
.Dv PARMRK
nor
.Dv IGNPAR
is set, a framing or parity error (other than
break) is given to the application as a single character
.Ql \&\e0 .
.Pp
If
.Dv INPCK
is set, input parity checking is enabled.
If
.Dv INPCK
is not set,
input parity checking is disabled, allowing output parity generation
without input parity errors.
Note that whether input parity checking is enabled or disabled is independent
of whether parity detection is enabled or disabled (see
.Sx "Control Modes" ) .
If parity detection is enabled but input
parity checking is disabled, the hardware to which the terminal is
connected recognizes the parity bit, but the terminal special file
does not check whether this bit is set correctly or not.
.Pp
If
.Dv ISTRIP
is set, valid input bytes are first stripped to seven bits,
otherwise all eight bits are processed.
.Pp
If
.Dv INLCR
is set, a received
.Dv NL
character is translated into a
.Dv CR
character.
If
.Dv IGNCR
is set, a received
.Dv CR
character is ignored (not
read).
If
.Dv IGNCR
is not set and
.Dv ICRNL
is set, a received
.Dv CR
character is
translated into a
.Dv NL
character.
.Pp
If
.Dv IXON
is set, start/stop output control is enabled.
A received
.Dv STOP
character suspends output and a received
.Dv START
character
restarts output.
If
.Dv IXANY
is also set, then any character may
restart output.
When
.Dv IXON
is set,
.Dv START
and
.Dv STOP
characters are not
read, but merely perform flow control functions.
When
.Dv IXON
is not set,
the
.Dv START
and
.Dv STOP
characters are read.
.Pp
If
.Dv IXOFF
is set, start/stop input control is enabled.
The system shall transmit one or more
.Dv STOP
characters, which are intended to cause the
terminal device to stop transmitting data, as needed to prevent the input
queue from overflowing and causing the undefined behavior described in
.Sx "Input Processing and Reading Data" ,
and shall transmit one or more
.Dv START
characters, which are
intended to cause the terminal device to resume transmitting data, as
soon as the device can continue transmitting data without risk of
overflowing the input queue.
The precise conditions under which
.Dv STOP
and
START
characters are transmitted are implementation defined.
.Pp
If
.Dv IMAXBEL
is set and the input queue is full, subsequent input shall cause an
.Tn ASCII
.Dv BEL
character to be transmitted to
the output queue.
.Pp
If
.Dv IUCLC
is set, characters will be translated from upper to lower case on
input.
.Pp
The initial input control value after open() is implementation defined.
.Ss Output Modes
Values of the
.Fa c_oflag
field describe the basic terminal output control,
and are composed of the following masks:
.Pp
.Bl -tag -width OXTABS -offset indent -compact
.It Dv OPOST
/* enable following output processing */
.It Dv ONLCR
/* map NL to CR-NL (ala
.Dv CRMOD )
*/
.It Dv OXTABS
/* expand tabs to spaces */
.It Dv ONOEOT
/* discard
.Dv EOT Ns 's
.Pq ^D
on output */
.It Dv OCRNL
/* map CR to NL */
.It Dv OLCUC
/* translate lower case to upper case */
.It Dv ONOCR
/* No CR output at column 0 */
.It Dv ONLRET
/* NL performs the CR function */
.El
.Pp
If
.Dv OPOST
is set, the remaining flag masks are interpreted as follows;
otherwise characters are transmitted without change.
.Pp
If
.Dv ONLCR
is set, newlines are translated to carriage return, linefeeds.
.Pp
If
.Dv OXTABS
is set, tabs are expanded to the appropriate number of
spaces (assuming 8 column tab stops).
.Pp
If
.Dv ONOEOT
is set,
.Tn ASCII
.Dv EOT Ns 's
are discarded on output.
.Pp
If
.Dv OCRNL
is set, carriage returns are translated to newlines.
.Pp
If
.Dv OLCUC
is set, lower case is translated to upper case on output.
.Pp
If
.Dv ONOCR
is set, no CR character is output when at column 0.
.Pp
If
.Dv ONLRET
is set, NL also performs CR on output, and reset current
column to 0.
.Ss Control Modes
Values of the
.Fa c_cflag
field describe the basic
terminal hardware control, and are composed of the
following masks.
Not all values
specified are supported by all hardware.
.Pp
.Bl -tag -width CRTSXIFLOW -offset indent -compact
.It Dv CSIZE
/* character size mask */
.It Dv CS5
/* 5 bits (pseudo) */
.It Dv CS6
/* 6 bits */
.It Dv CS7
/* 7 bits */
.It Dv CS8
/* 8 bits */
.It Dv CSTOPB
/* send 2 stop bits */
.It Dv CREAD
/* enable receiver */
.It Dv PARENB
/* parity enable */
.It Dv PARODD
/* odd parity, else even */
.It Dv HUPCL
/* hang up on last close */
.It Dv CLOCAL
/* ignore modem status lines */
.It Dv CCTS_OFLOW
/*
.Dv CTS
flow control of output */
.It Dv CRTSCTS
/* same as
.Dv CCTS_OFLOW
*/
.It Dv CRTS_IFLOW
/* RTS flow control of input */
.It Dv MDMBUF
/* flow control output via Carrier */
.El
.Pp
The
.Dv CSIZE
bits specify the byte size in bits for both transmission and
reception.
The
.Fa c_cflag
is masked with
.Dv CSIZE
and compared with the
values
.Dv CS5 ,
.Dv CS6 ,
.Dv CS7 ,
or
.Dv CS8 .
This size does not include the parity bit, if any.
If
.Dv CSTOPB
is set, two stop bits are used, otherwise one stop bit.
For example, at 110 baud, two stop bits are normally used.
.Pp
If
.Dv CREAD
is set, the receiver is enabled.
Otherwise, no character is received.
Not all hardware supports this bit.
In fact, this flag is pretty silly and if it were not part of the
.Nm
specification it would be omitted.
.Pp
If
.Dv PARENB
is set, parity generation and detection are enabled and a parity
bit is added to each character.
If parity is enabled,
.Dv PARODD
specifies
odd parity if set, otherwise even parity is used.
.Pp
If
.Dv HUPCL
is set, the modem control lines for the port are lowered
when the last process with the port open closes the port or the process
terminates.
The modem connection is broken.
.Pp
If
.Dv CLOCAL
is set, a connection does not depend on the state of the modem
status lines.
If
.Dv CLOCAL
is clear, the modem status lines are
monitored.
.Pp
Under normal circumstances, a call to the open() function waits for
the modem connection to complete.
However, if the
.Dv O_NONBLOCK
flag is set
or if
.Dv CLOCAL
has been set, the open() function returns
immediately without waiting for the connection.
.Pp
If
.Dv CCTS_OFLOW
.Pf ( Dv CRTSCTS )
is set,
transmission is stopped when
.Dv CTS
is lowered and resumed when
.Dv CTS
is raised.
.Pp
If
.Dv MDMBUF
is set then output flow control is controlled by the state
of Carrier Detect.
.Pp
If the object for which the control modes are set is not an asynchronous
serial connection, some of the modes may be ignored; for example, if an
attempt is made to set the baud rate on a network connection to a
terminal on another host, the baud rate may or may not be set on the
connection between that terminal and the machine it is directly connected
to.
.Ss Local Modes
Values of the
.Fa c_lflag
field describe the control of
various functions, and are composed of the following
masks.
.Pp
.Bl -tag -width NOKERNINFO -offset indent -compact
.It Dv ECHOKE
/* visual erase for line kill */
.It Dv ECHOE
/* visually erase chars */
.It Dv ECHOK
/* echo NL after line kill */
.It Dv ECHO
/* enable echoing */
.It Dv ECHONL
/* echo
.Dv NL
even if
.Dv ECHO
is off */
.It Dv ECHOPRT
/* visual erase mode for hardcopy */
.It Dv ECHOCTL
/* echo control chars as ^(Char) */
.It Dv ISIG
/* enable signals
.Dv INTR ,
.Dv QUIT ,
.Dv [D]SUSP
*/
.It Dv ICANON
/* canonicalize input lines */
.It Dv ALTWERASE
/* use alternate
.Dv WERASE
algorithm */
.It Dv IEXTEN
/* enable
.Dv DISCARD
and
.Dv LNEXT
*/
.It Dv EXTPROC
/* external processing */
.It Dv TOSTOP
/* stop background jobs from output */
.It Dv FLUSHO
/* output being flushed (state) */
.It Dv NOKERNINFO
/* no kernel output from
.Dv VSTATUS
*/
.It Dv PENDIN
/* XXX retype pending input (state) */
.It Dv NOFLSH
/* don't flush after interrupt */
.It Dv XCASE
/* canonical upper/lower case */
.El
.Pp
If
.Dv ECHO
is set, input characters are echoed back to the terminal.
If
.Dv ECHO
is not set, input characters are not echoed.
.Pp
If
.Dv ECHOE
and
.Dv ICANON
are set, the
.Dv ERASE
character causes the terminal
to erase the last character in the current line from the display, if
possible.
If there is no character to erase, an implementation may echo
an indication that this was the case or do nothing.
.Pp
If
.Dv ECHOK
and
.Dv ICANON
are set, the
.Dv KILL
character causes
the current line to be discarded and the system echoes the
.Ql \&\en
character after the
.Dv KILL
character.
.Pp
If
.Dv ECHOKE
and
.Dv ICANON
are set, the
.Dv KILL
character causes the current line to be discarded and the system causes
the terminal to erase the line from the display.
.Pp
If
.Dv ECHOPRT
and
.Dv ICANON
are set, the system assumes that the display is a printing device and prints a
backslash and the erased characters when processing
.Dv ERASE
characters, followed by a forward slash.
.Pp
If
.Dv ECHOCTL
is set, the system echoes control characters
in a visible fashion using a caret followed by the control character.
.Pp
If
.Dv ALTWERASE
is set, the system uses an alternative algorithm
for determining what constitutes a word when processing
.Dv WERASE
characters (see
.Dv WERASE ) .
.Pp
If
.Dv ECHONL
and
.Dv ICANON
are set, the
.Ql \&\en
character echoes even if
.Dv ECHO
is not set.
.Pp
If
.Dv ICANON
is set, canonical processing is enabled.
This enables the erase and kill edit functions, and the assembly of input
characters into lines delimited by
.Dv NL ,
.Dv EOF ,
and
.Dv EOL ,
as described in
.Sx "Canonical Mode Input Processing" .
.Pp
If
.Dv ICANON
is not set, read requests are satisfied directly from the input
queue.
A read is not satisfied until at least
.Dv VMIN
bytes have been received or the timeout value
.Dv VTIME
expired between bytes.
The time value represents tenths of seconds.
See
.Sx "Noncanonical Mode Input Processing"
for more details.
.Pp
If
.Dv ISIG
is set, each input character is checked against the special
control characters
.Dv INTR ,
.Dv QUIT ,
and
.Dv SUSP
(job control only).
If an input character matches one of these control characters, the function
associated with that character is performed.
If
.Dv ISIG
is not set, no
checking is done.
Thus these special input functions are possible only
if
.Dv ISIG
is set.
.Pp
If
.Dv IEXTEN
is set, implementation-defined functions are recognized
from the input data.
How
.Dv IEXTEN
being set
interacts with
.Dv ICANON ,
.Dv ISIG ,
.Dv IXON ,
or
.Dv IXOFF
is implementation defined.
If
.Dv IEXTEN
is not set, then
implementation-defined functions are not recognized, and the
corresponding input characters are not processed as described for
.Dv ICANON ,
.Dv ISIG ,
.Dv IXON ,
and
.Dv IXOFF .
.Pp
If
.Dv NOFLSH
is set, the normal flush of the input and output queues
associated with the
.Dv INTR ,
.Dv QUIT ,
and
.Dv SUSP
characters
is not done.
.Pp
If
.Dv XCASE
and
.Dv ICANON
is set, an upper case character is preserved on input if prefixed by
a \\ character.
In addition, this prefix is added to upper case characters on output.
.Pp
In addition, the following special character translations are in effect:
.Pp
.Bl -column "for:" "use:" -offset indent -compact
.It Em "for: use:"
.It Dv ` Ta \&\e'
.It Dv | Ta \&\e!
.It Dv ~ Ta \&\e^
.It Dv { Ta \&\e(
.It Dv } Ta \&\e)
.It Dv \&\e Ta \&\e\e
.El
.Pp
If
.Dv TOSTOP
is set, the signal
.Dv SIGTTOU
is sent to the process group of a process that tries to write to
its controlling terminal if it is not in the foreground process group for
that terminal.
This signal, by default, stops the members of the process group.
Otherwise, the output generated by that process is output to the
current output stream.
Processes that are blocking or ignoring
.Dv SIGTTOU
signals are excepted and allowed to produce output and the
.Dv SIGTTOU
signal
is not sent.
.Pp
If
.Dv NOKERNINFO
is set, the kernel does not produce a status message
when processing
.Dv STATUS
characters (see
.Dv STATUS ) .
.Ss Special Control Characters
The special control characters values are defined by the array
.Fa c_cc .
This table lists the array index, the corresponding special character,
and the system default value.
For an accurate list of the system defaults, consult the header file
.Aq Pa sys/ttydefaults.h .
.Pp
.Bl -column "Index Name" "Special Character" -offset indent -compact
.It Em "Index Name Special Character Default Value"
.It Dv VEOF Ta EOF Ta \&^D
.It Dv VEOL Ta EOL Ta _POSIX_VDISABLE
.It Dv VEOL2 Ta EOL2 Ta _POSIX_VDISABLE
.It Dv VERASE Ta ERASE Ta \&^? Ql \&\e177
.It Dv VWERASE Ta WERASE Ta \&^W
.It Dv VKILL Ta KILL Ta \&^U
.It Dv VREPRINT Ta REPRINT Ta \&^R
.It Dv VINTR Ta INTR Ta \&^C
.It Dv VQUIT Ta QUIT Ta \&^\e\e Ql \&\e34
.It Dv VSUSP Ta SUSP Ta \&^Z
.It Dv VDSUSP Ta DSUSP Ta \&^Y
.It Dv VSTART Ta START Ta \&^Q
.It Dv VSTOP Ta STOP Ta \&^S
.It Dv VLNEXT Ta LNEXT Ta \&^V
.It Dv VDISCARD Ta DISCARD Ta \&^O
.It Dv VMIN Ta --- Ta \&1
.It Dv VTIME Ta --- Ta \&0
.It Dv VSTATUS Ta STATUS Ta \&^T
.El
.Pp
If the
value of one of the changeable special control characters (see
.Sx "Special Characters" )
is
.Dv {_POSIX_VDISABLE} ,
that function is disabled; that is, no input
data is recognized as the disabled special character.
If
.Dv ICANON
is
not set, the value of
.Dv {_POSIX_VDISABLE}
has no special meaning for the
.Dv VMIN
and
.Dv VTIME
entries of the
.Fa c_cc
array.
.Pp
The initial values of the flags and control characters
after open() is set according to the values in the header
.Aq Pa sys/ttydefaults.h .
.Sh SEE ALSO
.Xr tcgetattr 3 ,
.Xr tcsetattr 3
|