summaryrefslogtreecommitdiff
path: root/share/man/man8/starttls.8
blob: 3e99731d6e56cd36064c0edbac03e3739fbf3c58 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
.\" $OpenBSD: starttls.8,v 1.1 2001/09/19 14:08:37 millert Exp $
.Dd August 20, 2001
.Dt STARTTLS 8
.Sh NAME
.Nm starttls 
.Nd ESMTP over TLS
.Sh DESCRIPTION
STARTTLS is an ESMTP option, defined in RFC 2487, which is used to conduct
ESMTP transactions over TLS circuits.
This is used to increase the security of mail server transactions.
Since version 8.11, 
.Xr sendmail 8
has supported the use of TLS to protect ESMTP communications.
.Pp
STARTTLS allows for the combination of several security solutions for MTA
(mail transport agent) level services through the TLS suite.
These security features include:
.Bl -tag -width Ds
.It Confidentiality
Encryption is used to protect data from passive monitoring.
An attacker would have to recover the encryption key used to
decode the transmitted data.
.It Integrity
Hash algorithms are used to ensure the integrity of the
transmitted data, and alternatively the timestamp, protecting against a
replay attack.
This protects data from modification in transit.
.It Authentication
The use of public key encryption allows for the strong authentication of
either, or both, communicating parties.
This can be used to allow for select features, such as relaying,
to be controlled more securely.
.El
.Pp
A new ESMTP option, STARTTLS, has been added.
This is presented by the server when an ESMTP session is initiated.
The client then begins the TLS portion of the ESMTP session by issuing
the command
.Dq STARTTLS .
The remaining portion of the ESMTP session occurs over a TLS channel.
.Ss Configuring sendmail to utilize TLS
The global sendmail configuration file,
.Pa /etc/mail/sendmail.cf ,
must be modified to support TLS functionality.
An example .mc file which has entries for TLS options, such as certificates,
is available as
.Pa /usr/share/sendmail/cf/knecht.mc .
.Pp
The pertinent options are:
.Bl -bullet -literal
.It
CERT_DIR
.It
confCACERT_PATH
.It
confCACERT
.It
confSERVER_CERT
.It
confSERVER_KEY
.It
confCLIENT_CERT
.It
confCLIENT_KEY
.El
.Pp
By default, the directory 
.Pa /etc/mail/certs ,
defined in CERT_DIR, is used to store certificates, and the server will
use the same certificates both as a client and as a server (when sending
and receiving mail, respectively, to another MTA). 
This can be changed by having different entries for the respective roles.
.Pp
These certificates can be generated using the 
.Xr openssl 1
utility as described in
.Xr ssl 8 .
Make sure to leave the private key files unencrypted, using the
.Fl nodes 
option.
Otherwise,
.Xr sendmail 8
will be unable to initiate TLS server functions.
Also be sure to name the files as they are defined in the above macros
and store them in PEM format.
.Pp
Because the private key files are unencrypted,
.Xr sendmail 8
is picky about using tight permissions on those files.
The certificate directory and the files therein should be
readable and writable only by the owner (root).
A simple way to ensure this is to run the following:
.Bd -literal -offset indent -width Ds
# chmod -R go-rwx /etc/mail/certs
.Ed
.Pp
Having installed this configuration file and the certificates and
restarted the sendmail daemon, a new option should be presented for ESMTP
transactions, STARTTLS.
This can be tested using a mail client which is TLS capable, or by
using a TLS capable server.
.Ss Uses for TLS-Equipped sendmail
The most obvious use of a cryptographically enabled sendmail installation
is for confidentiality of the electronic mail transaction and the
integrity checking provided by the cipher suite.
All traffic between the two mail servers is encrypted, including the
sender and recipient addresses.
TLS also allows for authentication of either or both systems in the transaction.
.Pp
One use of public key cryptography is for strong authentication.
We can use this authentication to selectively relay clients, including
other mail servers and mobile clients like laptops.
However, there have been some problems getting some mail clients to work using
certificate-based authentication. 
Note that your clients will have to generate certificates and have them
signed (for trust validation) by a CA (certificate authority) you also trust,
if you configure your server to do client certificate checking.
.Pp
The use of the access map (usually
.Pa /etc/mail/access ) ,
which is normally used to determine connections and relaying,
can also be extended to give server level control for the use of TLS.
Two new entries are available for TLS options:
.Bl -tag -width Ds -offset indent
.It VERIFY
contains the status of the level of verification (held in the macro {verify})
.It ENCR
the strength of the encryption (in the macro {cipher_bits})
.El
.Pp
VERIFY can also accept the argument for {cipher_bits}.
Here are a few example entries that illustrate these features, and
the role based granularity as well:
.\" XXX - clean this up
.Bl -tag -width Ds
.It "Force strong (112 bit) encryption for communications for this server:"
.sp
.Li server1.example.net             ENCR:112
.It "For a TLS client, force string verification depths to at least 80 bits:"
.sp
.Li TLS_Clt:desktop.example:net     VERIFY:80
.El
.Pp
Much more complicated access maps are possible, and error conditions (such
as permanent or temporary, PERM+ or TEMP+) can be set on the basis of
various criteria.
This allows you fine-grained control over the types of connections you
can allow.
.Pp
Note that it is unwise to force all SMTP clients to use TLS, as it is not
yet widespread.
The RFC document notes that publicly referenced SMTP servers, such as the
MX servers for a domain, must not refuse non-TLS connections.
However, restricted access SMTP servers, such as those for a corporate
intranet, can use TLS as an access control mechanism.
.Sh LIMITATIONS
One often forgotten limitation of using TLS on a mail server is the
payload of the mail message and the resulting security there.
Many virus and worm files are now distributed via electronic mail.
While the mail may be encrypted and the servers authenticated, the payload
can still be malicious.
The use of a good content protection program on the desktop is
therefore still of value even with TLS at the MTA level.
.Pp
Because sendmail with TLS can only authenticate at the server level, true
end-to-end authentication of the mail message cannot be performed with
only the use of STARTLS on the server.
The use of S/MIME or PGP e-mail and trustworthy key hierarchies can guarantee
full confidentiality and integrity of the entire message path.
.Pp
Furthermore, if a mail message traverses more than just the starting and
ending servers, there is no way to control interactions between the intervening
mail servers, which may use non-secure connections.
This introduces a point of vulnerability in the chain.
.Pp
Additionally, SMTP over TLS is not yet widely implemented.
The standard, in fact, doesn't require it, leaving it only as an option, though
specific sites can configure their servers to force it for specific clients.
As such, it is difficult to forsee the widespread use of SMTP using TLS,
despite the fact that the standard is, at the date of this writing,
over two years old.
.Pp
Lastly, interoperability problems can appear between different implementations.
.Sh SEE ALSO
.Xr openssl 1 ,
.Xr afterboot 8 ,
.Xr sendmail 8 ,
.Xr ssl 8
.Pp
.Tn DARPA
Internet Request for Comments 
.Tn RFC2487
.Pp
http://www.sendmail.org/
.Sh HISTORY
TLS features first appeared in sendmail 8.11.