1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
|
/* $OpenBSD: clock.c,v 1.5 2004/06/28 01:52:26 deraadt Exp $ */
/* $NetBSD: clock.c,v 1.1 2003/04/26 18:39:50 fvdl Exp $ */
/*-
* Copyright (c) 1993, 1994 Charles M. Hannum.
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz and Don Ahn.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)clock.c 7.2 (Berkeley) 5/12/91
*/
/*
* Mach Operating System
* Copyright (c) 1991,1990,1989 Carnegie Mellon University
* All Rights Reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
/*
Copyright 1988, 1989 by Intel Corporation, Santa Clara, California.
All Rights Reserved
Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appears in all
copies and that both the copyright notice and this permission notice
appear in supporting documentation, and that the name of Intel
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
INTEL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS,
IN NO EVENT SHALL INTEL BE LIABLE FOR ANY SPECIAL, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT,
NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Primitive clock interrupt routines.
*/
/* #define CLOCKDEBUG */
/* #define CLOCK_PARANOIA */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/timeout.h>
#include <machine/cpu.h>
#include <machine/intr.h>
#include <machine/pio.h>
#include <machine/cpufunc.h>
#include <dev/isa/isareg.h>
#include <dev/isa/isavar.h>
#include <dev/ic/mc146818reg.h>
#include <dev/ic/i8253reg.h>
#include <i386/isa/nvram.h>
#include <dev/clock_subr.h>
#include <machine/specialreg.h>
#ifndef __x86_64__
#include "mca.h"
#endif
#if NMCA > 0
#include <machine/mca_machdep.h> /* for MCA_system */
#endif
#include "pcppi.h"
#if (NPCPPI > 0)
#include <dev/isa/pcppivar.h>
#ifdef CLOCKDEBUG
int clock_debug = 0;
#define DPRINTF(arg) if (clock_debug) printf arg
#else
#define DPRINTF(arg)
#endif
int sysbeepmatch(struct device *, void *, void *);
void sysbeepattach(struct device *, struct device *, void *);
struct cfattach sysbeep_ca = {
sizeof(struct device), sysbeepmatch, sysbeepattach
};
struct cfdriver sysbeep_cd = {
NULL, "sysbeep", DV_DULL
};
static int ppi_attached;
static pcppi_tag_t ppicookie;
#endif /* PCPPI */
void spinwait(int);
int clockintr(void *);
int rtcintr(void *);
int gettick(void);
void sysbeep(int, int);
void rtcdrain(void *v);
int rtcget(mc_todregs *);
void rtcput(mc_todregs *);
int bcdtobin(int);
int bintobcd(int);
void findcpuspeed(void);
__inline u_int mc146818_read(void *, u_int);
__inline void mc146818_write(void *, u_int, u_int);
__inline u_int
mc146818_read(sc, reg)
void *sc; /* XXX use it? */
u_int reg;
{
outb(IO_RTC, reg);
DELAY(1);
return (inb(IO_RTC+1));
}
__inline void
mc146818_write(sc, reg, datum)
void *sc; /* XXX use it? */
u_int reg, datum;
{
outb(IO_RTC, reg);
DELAY(1);
outb(IO_RTC+1, datum);
DELAY(1);
}
u_long rtclock_tval;
/* minimal initialization, enough for delay() */
void
initrtclock()
{
u_long tval;
/*
* Compute timer_count, the count-down count the timer will be
* set to. Also, correctly round
* this by carrying an extra bit through the division.
*/
tval = (TIMER_FREQ * 2) / (u_long) hz;
tval = (tval / 2) + (tval & 0x1);
/* initialize 8253 clock */
outb(IO_TIMER1+TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
/* Correct rounding will buy us a better precision in timekeeping */
outb(IO_TIMER1+TIMER_CNTR0, tval % 256);
outb(IO_TIMER1+TIMER_CNTR0, tval / 256);
rtclock_tval = tval;
}
/*
* microtime() makes use of the following globals. Note that isa_timer_tick
* may be redundant to the `tick' variable, but is kept here for stability.
* isa_timer_count is the countdown count for the timer. timer_msb_table[]
* and timer_lsb_table[] are used to compute the microsecond increment
* for time.tv_usec in the follow fashion:
*
* time.tv_usec += isa_timer_msb_table[cnt_msb] - isa_timer_lsb_table[cnt_lsb];
*/
#define ISA_TIMER_MSB_TABLE_SIZE 128
u_long isa_timer_tick; /* the number of microseconds in a tick */
u_short isa_timer_count; /* the countdown count for the timer */
u_short isa_timer_msb_table[ISA_TIMER_MSB_TABLE_SIZE]; /* timer->usec MSB */
u_short isa_timer_lsb_table[256]; /* timer->usec conversion for LSB */
void
startrtclock()
{
int s;
u_long tval;
u_long t, msb, lsb, quotient, remainder;
findcpuspeed(); /* use the clock (while it's free)
to find the cpu speed */
initrtclock();
/* Check diagnostic status */
if ((s = mc146818_read(NULL, NVRAM_DIAG)) != 0) /* XXX softc */
printf("RTC BIOS diagnostic error %b\n", s, NVRAM_DIAG_BITS);
/*
* Compute timer_tick from hz. We truncate this value (i.e.
* round down) to minimize the possibility of a backward clock
* step if hz is not a nice number.
*/
isa_timer_tick = 1000000 / (u_long) hz;
/*
* We can't stand any number with an MSB larger than
* TIMER_MSB_TABLE_SIZE will accomodate.
*/
tval = rtclock_tval;
if ((tval / 256) >= ISA_TIMER_MSB_TABLE_SIZE
|| TIMER_FREQ > (8*1024*1024)) {
panic("startrtclock: TIMER_FREQ/HZ unsupportable");
}
isa_timer_count = (u_short) tval;
/*
* Now compute the translation tables from timer ticks to
* microseconds. We go to some length to ensure all values
* are rounded-to-nearest (i.e. +-0.5 of the exact values)
* as this will ensure the computation
*
* isa_timer_msb_table[msb] - isa_timer_lsb_table[lsb]
*
* will produce a result which is +-1 usec away from the
* correctly rounded conversion (in fact, it'll be exact about
* 75% of the time, 1 too large 12.5% of the time, and 1 too
* small 12.5% of the time).
*/
for (s = 0; s < 256; s++) {
/* LSB table is easy, just divide and round */
t = ((u_long) s * 1000000 * 2) / TIMER_FREQ;
isa_timer_lsb_table[s] = (u_short) ((t / 2) + (t & 0x1));
/* MSB table is zero unless the MSB is <= isa_timer_count */
if (s < ISA_TIMER_MSB_TABLE_SIZE) {
msb = ((u_long) s) * 256;
if (msb > tval) {
isa_timer_msb_table[s] = 0;
} else {
/*
* Harder computation here, since multiplying
* the value by 1000000 can overflow a long.
* To avoid 64-bit computations we divide
* the high order byte and the low order
* byte of the numerator separately, adding
* the remainder of the first computation
* into the second. The constraint on
* TIMER_FREQ above should prevent overflow
* here.
*/
msb = tval - msb;
lsb = msb % 256;
msb = (msb / 256) * 1000000;
quotient = msb / TIMER_FREQ;
remainder = msb % TIMER_FREQ;
t = ((remainder * 256 * 2)
+ (lsb * 1000000 * 2)) / TIMER_FREQ;
isa_timer_msb_table[s] = (u_short)((t / 2)
+ (t & 0x1) + (quotient * 256));
}
}
}
}
int
clockintr(void *arg)
{
struct clockframe *frame = arg;
hardclock(frame);
return 1;
}
int
rtcintr(void *arg)
{
struct clockframe *frame = arg;
u_int stat = 0;
/*
* If rtcintr is 'late', next intr may happen immediately.
* Get them all. (Also, see comment in cpu_initclocks().)
*/
while (mc146818_read(NULL, MC_REGC) & MC_REGC_PF) {
statclock(frame);
stat = 1;
}
return (stat);
}
int
gettick()
{
u_long ef;
u_char lo, hi;
/* Don't want someone screwing with the counter while we're here. */
ef = read_rflags();
disable_intr();
/* Select counter 0 and latch it. */
outb(IO_TIMER1+TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
lo = inb(IO_TIMER1+TIMER_CNTR0);
hi = inb(IO_TIMER1+TIMER_CNTR0);
write_rflags(ef);
return ((hi << 8) | lo);
}
/*
* Wait "n" microseconds.
* Relies on timer 1 counting down from (TIMER_FREQ / hz) at TIMER_FREQ Hz.
* Note: timer had better have been programmed before this is first used!
* (Note that we use `rate generator' mode, which counts at 1:1; `square
* wave' mode counts at 2:1).
*/
void
i8254_delay(int n)
{
int limit, tick, otick;
static const int delaytab[26] = {
0, 2, 3, 4, 5, 6, 7, 9, 10, 11,
12, 13, 15, 16, 17, 18, 19, 21, 22, 23,
24, 25, 27, 28, 29, 30,
};
/* allow DELAY() to be used before startrtclock() */
if (!rtclock_tval)
initrtclock();
/*
* Read the counter first, so that the rest of the setup overhead is
* counted.
*/
otick = gettick();
if (n <= 25)
n = delaytab[n];
else {
#ifdef __GNUC__
/*
* Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler
* code so we can take advantage of the intermediate 64-bit
* quantity to prevent loss of significance.
*/
int m;
__asm __volatile("mul %3"
: "=a" (n), "=d" (m)
: "0" (n), "r" (TIMER_FREQ));
__asm __volatile("div %4"
: "=a" (n), "=d" (m)
: "0" (n), "1" (m), "r" (1000000));
#else
/*
* Calculate ((n * TIMER_FREQ) / 1e6) without using floating
* point and without any avoidable overflows.
*/
int sec = n / 1000000,
usec = n % 1000000;
n = sec * TIMER_FREQ +
usec * (TIMER_FREQ / 1000000) +
usec * ((TIMER_FREQ % 1000000) / 1000) / 1000 +
usec * (TIMER_FREQ % 1000) / 1000000;
#endif
}
limit = TIMER_FREQ / hz;
while (n > 0) {
tick = gettick();
if (tick > otick)
n -= limit - (tick - otick);
else
n -= otick - tick;
otick = tick;
}
}
#if (NPCPPI > 0)
int
sysbeepmatch(parent, match, aux)
struct device *parent;
void *match;
void *aux;
{
return (!ppi_attached);
}
void
sysbeepattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
printf("\n");
ppicookie = ((struct pcppi_attach_args *)aux)->pa_cookie;
ppi_attached = 1;
}
#endif
void
sysbeep(pitch, period)
int pitch, period;
{
#if (NPCPPI > 0)
if (ppi_attached)
pcppi_bell(ppicookie, pitch, period, 0);
#endif
}
unsigned int delaycount; /* calibrated loop variable (1 millisecond) */
#define FIRST_GUESS 0x2000
void
findcpuspeed()
{
int i;
int remainder;
/* Put counter in count down mode */
outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
outb(TIMER_CNTR0, 0xff);
outb(TIMER_CNTR0, 0xff);
for (i = FIRST_GUESS; i; i--)
;
/* Read the value left in the counter */
remainder = gettick();
/*
* Formula for delaycount is:
* (loopcount * timer clock speed) / (counter ticks * 1000)
*/
delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff-remainder);
}
void
rtcdrain(void *v)
{
struct timeout *to = (struct timeout *)v;
if (to != NULL)
timeout_del(to);
/*
* Drain any un-acknowledged RTC interrupts.
* See comment in cpu_initclocks().
*/
while (mc146818_read(NULL, MC_REGC) & MC_REGC_PF)
; /* Nothing. */
}
void
i8254_initclocks()
{
static struct timeout rtcdrain_timeout;
stathz = 128;
profhz = 1024;
/*
* XXX If you're doing strange things with multiple clocks, you might
* want to keep track of clock handlers.
*/
isa_intr_establish(NULL, 0, IST_PULSE, IPL_CLOCK, clockintr,
0, "clock");
isa_intr_establish(NULL, 8, IST_PULSE, IPL_CLOCK, rtcintr, 0, "rtc");
mc146818_write(NULL, MC_REGA, MC_BASE_32_KHz | MC_RATE_128_Hz);
mc146818_write(NULL, MC_REGB, MC_REGB_24HR | MC_REGB_PIE);
/*
* On a number of i386 systems, the rtc will fail to start when booting
* the system. This is due to us missing to acknowledge an interrupt
* during early stages of the boot process. If we do not acknowledge
* the interrupt, the rtc clock will not generate further interrupts.
* To solve this, once interrupts are enabled, use a timeout (once)
* to drain any un-acknowledged rtc interrupt(s).
*/
timeout_set(&rtcdrain_timeout, rtcdrain, (void *)&rtcdrain_timeout);
timeout_add(&rtcdrain_timeout, 1);
}
int
rtcget(regs)
mc_todregs *regs;
{
if ((mc146818_read(NULL, MC_REGD) & MC_REGD_VRT) == 0) /* XXX softc */
return (-1);
MC146818_GETTOD(NULL, regs); /* XXX softc */
return (0);
}
void
rtcput(regs)
mc_todregs *regs;
{
MC146818_PUTTOD(NULL, regs); /* XXX softc */
}
int
bcdtobin(n)
int n;
{
return (((n >> 4) & 0x0f) * 10 + (n & 0x0f));
}
int
bintobcd(n)
int n;
{
return ((u_char)(((n / 10) << 4) & 0xf0) | ((n % 10) & 0x0f));
}
static int timeset;
/*
* check whether the CMOS layout is "standard"-like (ie, not PS/2-like),
* to be called at splclock()
*/
static int cmoscheck(void);
static int
cmoscheck()
{
int i;
unsigned short cksum = 0;
for (i = 0x10; i <= 0x2d; i++)
cksum += mc146818_read(NULL, i); /* XXX softc */
return (cksum == (mc146818_read(NULL, 0x2e) << 8)
+ mc146818_read(NULL, 0x2f));
}
#if NMCA > 0
/*
* Check whether the CMOS layout is PS/2 like, to be called at splclock().
*/
static int cmoscheckps2(void);
static int
cmoscheckps2()
{
#if 0
/* Disabled until I find out the CRC checksum algorithm IBM uses */
int i;
unsigned short cksum = 0;
for (i = 0x10; i <= 0x31; i++)
cksum += mc146818_read(NULL, i); /* XXX softc */
return (cksum == (mc146818_read(NULL, 0x32) << 8)
+ mc146818_read(NULL, 0x33));
#else
/* Check 'incorrect checksum' bit of IBM PS/2 Diagnostic Status Byte */
return ((mc146818_read(NULL, NVRAM_DIAG) & (1<<6)) == 0);
#endif
}
#endif /* NMCA > 0 */
/*
* patchable to control century byte handling:
* 1: always update
* -1: never touch
* 0: try to figure out itself
*/
int rtc_update_century = 0;
/*
* Expand a two-digit year as read from the clock chip
* into full width.
* Being here, deal with the CMOS century byte.
*/
static int centb = NVRAM_CENTURY;
static int clock_expandyear(int);
static int
clock_expandyear(clockyear)
int clockyear;
{
int s, clockcentury, cmoscentury;
clockcentury = (clockyear < 70) ? 20 : 19;
clockyear += 100 * clockcentury;
if (rtc_update_century < 0)
return (clockyear);
s = splclock();
if (cmoscheck())
cmoscentury = mc146818_read(NULL, NVRAM_CENTURY);
#if NMCA > 0
else if (MCA_system && cmoscheckps2())
cmoscentury = mc146818_read(NULL, (centb = 0x37));
#endif
else
cmoscentury = 0;
splx(s);
if (!cmoscentury) {
#ifdef DIAGNOSTIC
printf("clock: unknown CMOS layout\n");
#endif
return (clockyear);
}
cmoscentury = bcdtobin(cmoscentury);
if (cmoscentury != clockcentury) {
/* XXX note: saying "century is 20" might confuse the naive. */
printf("WARNING: NVRAM century is %d but RTC year is %d\n",
cmoscentury, clockyear);
/* Kludge to roll over century. */
if ((rtc_update_century > 0) ||
((cmoscentury == 19) && (clockcentury == 20) &&
(clockyear == 2000))) {
printf("WARNING: Setting NVRAM century to %d\n",
clockcentury);
s = splclock();
mc146818_write(NULL, centb, bintobcd(clockcentury));
splx(s);
}
} else if (cmoscentury == 19 && rtc_update_century == 0)
rtc_update_century = 1; /* will update later in resettodr() */
return (clockyear);
}
/*
* Initialize the time of day register, based on the time base which is, e.g.
* from a filesystem.
*/
void
inittodr(base)
time_t base;
{
mc_todregs rtclk;
struct clock_ymdhms dt;
int s;
#if defined(I586_CPU) || defined(I686_CPU)
struct cpu_info *ci = curcpu();
#endif
/*
* We mostly ignore the suggested time (which comes from the
* file system) and go for the RTC clock time stored in the
* CMOS RAM. If the time can't be obtained from the CMOS, or
* if the time obtained from the CMOS is 5 or more years less
* than the suggested time, we used the suggested time. (In
* the latter case, it's likely that the CMOS battery has
* died.)
*/
/*
* if the file system time is more than a year older than the
* kernel, warn and then set the base time to the CONFIG_TIME.
*/
if (base < 30*SECYR) { /* if before 2000, something's odd... */
printf("WARNING: preposterous time in file system\n");
base = 30*SECYR;
}
s = splclock();
if (rtcget(&rtclk)) {
splx(s);
printf("WARNING: invalid time in clock chip\n");
goto fstime;
}
splx(s);
#ifdef DEBUG_CLOCK
printf("readclock: %x/%x/%x %x:%x:%x\n", rtclk[MC_YEAR],
rtclk[MC_MONTH], rtclk[MC_DOM], rtclk[MC_HOUR], rtclk[MC_MIN],
rtclk[MC_SEC]);
#endif
dt.dt_sec = bcdtobin(rtclk[MC_SEC]);
dt.dt_min = bcdtobin(rtclk[MC_MIN]);
dt.dt_hour = bcdtobin(rtclk[MC_HOUR]);
dt.dt_day = bcdtobin(rtclk[MC_DOM]);
dt.dt_mon = bcdtobin(rtclk[MC_MONTH]);
dt.dt_year = clock_expandyear(bcdtobin(rtclk[MC_YEAR]));
/*
* If time_t is 32 bits, then the "End of Time" is
* Mon Jan 18 22:14:07 2038 (US/Eastern)
* This code copes with RTC's past the end of time if time_t
* is an int32 or less. Needed because sometimes RTCs screw
* up or are badly set, and that would cause the time to go
* negative in the calculation below, which causes Very Bad
* Mojo. This at least lets the user boot and fix the problem.
* Note the code is self eliminating once time_t goes to 64 bits.
*/
if (sizeof(time_t) <= sizeof(int32_t)) {
if (dt.dt_year >= 2038) {
printf("WARNING: RTC time at or beyond 2038.\n");
dt.dt_year = 2037;
printf("WARNING: year set back to 2037.\n");
printf("WARNING: CHECK AND RESET THE DATE!\n");
}
}
time.tv_sec = clock_ymdhms_to_secs(&dt);
#ifdef DEBUG_CLOCK
printf("readclock: %ld (%ld)\n", time.tv_sec, base);
#endif
#if defined(I586_CPU) || defined(I686_CPU)
if (ci->ci_feature_flags & CPUID_TSC) {
cc_microset_time = time;
cc_microset(ci);
}
#endif
if (base != 0 && base < time.tv_sec - 5*SECYR)
printf("WARNING: file system time much less than clock time\n");
else if (base > time.tv_sec + 5*SECYR) {
printf("WARNING: clock time much less than file system time\n");
printf("WARNING: using file system time\n");
goto fstime;
}
timeset = 1;
return;
fstime:
timeset = 1;
time.tv_sec = base;
printf("WARNING: CHECK AND RESET THE DATE!\n");
}
/*
* Reset the clock.
*/
void
resettodr()
{
mc_todregs rtclk;
struct clock_ymdhms dt;
int century;
int s;
/*
* We might have been called by boot() due to a crash early
* on. Don't reset the clock chip in this case.
*/
if (!timeset)
return;
s = splclock();
if (rtcget(&rtclk))
memset(&rtclk, 0, sizeof(rtclk));
splx(s);
clock_secs_to_ymdhms(time.tv_sec, &dt);
rtclk[MC_SEC] = bintobcd(dt.dt_sec);
rtclk[MC_MIN] = bintobcd(dt.dt_min);
rtclk[MC_HOUR] = bintobcd(dt.dt_hour);
rtclk[MC_DOW] = dt.dt_wday + 1;
rtclk[MC_YEAR] = bintobcd(dt.dt_year % 100);
rtclk[MC_MONTH] = bintobcd(dt.dt_mon);
rtclk[MC_DOM] = bintobcd(dt.dt_day);
#ifdef DEBUG_CLOCK
printf("setclock: %x/%x/%x %x:%x:%x\n", rtclk[MC_YEAR], rtclk[MC_MONTH],
rtclk[MC_DOM], rtclk[MC_HOUR], rtclk[MC_MIN], rtclk[MC_SEC]);
#endif
s = splclock();
rtcput(&rtclk);
if (rtc_update_century > 0) {
century = bintobcd(dt.dt_year / 100);
mc146818_write(NULL, centb, century); /* XXX softc */
}
splx(s);
}
void
setstatclockrate(arg)
int arg;
{
if (arg == stathz)
mc146818_write(NULL, MC_REGA, MC_BASE_32_KHz | MC_RATE_128_Hz);
else
mc146818_write(NULL, MC_REGA, MC_BASE_32_KHz | MC_RATE_1024_Hz);
}
|