1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
|
/* $OpenBSD: locore.S,v 1.17 1998/03/25 11:42:08 pefo Exp $ */
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Digital Equipment Corporation and Ralph Campbell.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Copyright (C) 1989 Digital Equipment Corporation.
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby granted,
* provided that the above copyright notice appears in all copies.
* Digital Equipment Corporation makes no representations about the
* suitability of this software for any purpose. It is provided "as is"
* without express or implied warranty.
*
* from: Header: /sprite/src/kernel/mach/ds3100.md/RCS/loMem.s,
* v 1.1 89/07/11 17:55:04 nelson Exp SPRITE (DECWRL)
* from: Header: /sprite/src/kernel/mach/ds3100.md/RCS/machAsm.s,
* v 9.2 90/01/29 18:00:39 shirriff Exp SPRITE (DECWRL)
* from: Header: /sprite/src/kernel/vm/ds3100.md/vmPmaxAsm.s,
* v 1.1 89/07/10 14:27:41 nelson Exp SPRITE (DECWRL)
*
* from: @(#)locore.s 8.5 (Berkeley) 1/4/94
* $Id: locore.S,v 1.17 1998/03/25 11:42:08 pefo Exp $
*/
/*
* Contains code that is the first executed at boot time plus
* assembly language support routines.
*/
#include <sys/errno.h>
#include <sys/syscall.h>
#include <machine/param.h>
#include <machine/psl.h>
#include <machine/asm.h>
#include <machine/cpu.h>
#include <machine/regnum.h>
#include <machine/pte.h>
#include "assym.h"
.set noreorder
/*
* Amount to take off of the stack for the benefit of the debugger.
*/
#define START_FRAME ((4 * 4) + 4 + 4)
.globl start
.globl kernel_text
kernel_text = start
start:
mtc0 zero, COP_0_STATUS_REG # Disable interrupts
mtc0 zero, COP_0_CAUSE_REG # Clear soft interrupts
/*
* Initialize stack and call machine startup.
*/
la sp, start - START_FRAME
la gp, _gp
sw zero, START_FRAME - 4(sp) # Zero out old ra for debugger
jal mips_init # mips_init(argc, argv, envp)
sw zero, START_FRAME - 8(sp) # Zero out old fp for debugger
li t0, SR_COP_1_BIT # Disable interrupts and
mtc0 t0, COP_0_STATUS_REG # enable the fp coprocessor
li sp, KERNELSTACK - START_FRAME # switch to standard stack
nop
nop # wait for new status to
nop # wait for new status to
nop # to be effective
nop
cfc1 t1, FPC_ID # read FPU ID register
sw t1, fpu_id # save FPU ID register
jal main # main(regs)
move a0, zero
/*
* proc[1] == /etc/init now running here.
* Restore user registers and return.
*/
.set noat
li v0, SR_EXL
mtc0 v0, COP_0_STATUS_REG # set exeption level bit.
lw a0, UADDR+U_PCB_REGS+(SR * 4)
lw t0, UADDR+U_PCB_REGS+(MULLO * 4)
lw t1, UADDR+U_PCB_REGS+(MULHI * 4)
mtlo t0
mthi t1
lw a0, UADDR+U_PCB_REGS+(PC * 4)
lw AT, UADDR+U_PCB_REGS+(AST * 4)
lw v0, UADDR+U_PCB_REGS+(V0 * 4)
dmtc0 a0, COP_0_EXC_PC # set return address
li a0, PSL_USERSET
mtc0 a0, COP_0_STATUS_REG # switch to user mode (when eret...)
lw v1, UADDR+U_PCB_REGS+(V1 * 4)
lw a0, UADDR+U_PCB_REGS+(A0 * 4)
lw a1, UADDR+U_PCB_REGS+(A1 * 4)
lw a2, UADDR+U_PCB_REGS+(A2 * 4)
lw a3, UADDR+U_PCB_REGS+(A3 * 4)
lw t0, UADDR+U_PCB_REGS+(T0 * 4)
lw t1, UADDR+U_PCB_REGS+(T1 * 4)
lw t2, UADDR+U_PCB_REGS+(T2 * 4)
lw t3, UADDR+U_PCB_REGS+(T3 * 4)
lw t4, UADDR+U_PCB_REGS+(T4 * 4)
lw t5, UADDR+U_PCB_REGS+(T5 * 4)
lw t6, UADDR+U_PCB_REGS+(T6 * 4)
lw t7, UADDR+U_PCB_REGS+(T7 * 4)
lw s0, UADDR+U_PCB_REGS+(S0 * 4)
lw s1, UADDR+U_PCB_REGS+(S1 * 4)
lw s2, UADDR+U_PCB_REGS+(S2 * 4)
lw s3, UADDR+U_PCB_REGS+(S3 * 4)
lw s4, UADDR+U_PCB_REGS+(S4 * 4)
lw s5, UADDR+U_PCB_REGS+(S5 * 4)
lw s6, UADDR+U_PCB_REGS+(S6 * 4)
lw s7, UADDR+U_PCB_REGS+(S7 * 4)
lw t8, UADDR+U_PCB_REGS+(T8 * 4)
lw gp, UADDR+U_PCB_REGS+(GP * 4)
lw sp, UADDR+U_PCB_REGS+(SP * 4)
lw s8, UADDR+U_PCB_REGS+(S8 * 4)
lw ra, UADDR+U_PCB_REGS+(RA * 4)
lw t9, UADDR+U_PCB_REGS+(T9 * 4)
eret
.set at
/*
* Primitives
*/
/*
* This table is indexed by u.u_pcb.pcb_onfault in trap().
* The reason for using this table rather than storing an address in
* u.u_pcb.pcb_onfault is simply to make the code faster.
*/
.globl onfault_table
.data
.align 3
onfault_table:
.word 0 # invalid index number
#define BADERR 1
.word baderr
#define COPYERR 2
.word copyerr
#define FSWBERR 3
.word fswberr
#define FSWINTRBERR 4
.word fswintrberr
#if defined(DDB) || defined(DEBUG)
#define DDBERR 5
.word ddberr
#else
.word 0
#endif
.text
/*
* See if access to addr with a len type instruction causes a machine check.
* len is length of access (1=byte, 2=short, 4=long)
*
* badaddr(addr, len)
* char *addr;
* int len;
*/
LEAF(badaddr)
li v0, BADERR
bne a1, 1, 2f
sw v0, UADDR+U_PCB_ONFAULT
b 5f
lbu v0, (a0)
2:
bne a1, 2, 4f
nop
b 5f
lhu v0, (a0)
4:
lw v0, (a0)
5:
sw zero, UADDR+U_PCB_ONFAULT
j ra
move v0, zero # made it w/o errors
baderr:
j ra
li v0, 1 # trap sends us here
END(badaddr)
/*
* This code is copied the user's stack for returning from signal handlers
* (see sendsig() and sigreturn()). We have to compute the address
* of the sigcontext struct for the sigreturn call.
*/
.globl sigcode
sigcode:
addu a0, sp, 16 # address of sigcontext
li v0, SYS_sigreturn # sigreturn(scp)
syscall
break 0 # just in case sigreturn fails
.globl esigcode
esigcode:
/*
* Copy a null terminated string within the kernel address space.
* Maxlength may be null if count not wanted.
* copystr(fromaddr, toaddr, maxlength, &lencopied)
* caddr_t fromaddr;
* caddr_t toaddr;
* u_int maxlength;
* u_int *lencopied;
*/
LEAF(copystr)
move t2, a2 # Save the number of bytes
1:
lbu t0, 0(a0)
subu a2, a2, 1
beq t0, zero, 2f
sb t0, 0(a1)
addu a0, a0, 1
bne a2, zero, 1b
addu a1, a1, 1
2:
beq a3, zero, 3f
subu a2, t2, a2 # compute length copied
sw a2, 0(a3)
3:
j ra
move v0, zero
END(copystr)
/*
* fillw(pat, addr, count)
*/
LEAF(fillw)
1:
addiu a2, a2, -1
sh a0, 0(a1)
bne a2,zero, 1b
addiu a1, a1, 2
jr ra
nop
END(fillw)
/*
* Optimized memory zero code.
* mem_zero_page(addr);
*/
LEAF(mem_zero_page)
li v0, NBPG
1:
subu v0, 8
sd zero, 0(a0)
bne zero, v0, 1b
addu a0, 8
jr ra
nop
END(mem_zero_page)
/*
* Block I/O routines mainly used by I/O drivers.
*
* Args as: a0 = port
* a1 = memory address
* a2 = count
*/
LEAF(insb)
beq a2, zero, 2f
addu a2, a1
1:
lbu v0, 0(a0)
addiu a1, 1
bne a1, a2, 1b
sb v0, -1(a1)
2:
jr ra
nop
END(insb)
LEAF(insw)
beq a2, zero, 2f
addu a2, a2
addu a2, a1
1:
lhu v0, 0(a0)
addiu a1, 2
bne a1, a2, 1b
sh v0, -2(a1)
2:
jr ra
nop
END(insw)
LEAF(insl)
beq a2, zero, 2f
sll a2, 2
addu a2, a1
1:
lw v0, 0(a0)
addiu a1, 4
bne a1, a2, 1b
sw v0, -4(a1)
2:
jr ra
nop
END(insl)
LEAF(outsb)
beq a2, zero, 2f
addu a2, a1
1:
lbu v0, 0(a1)
addiu a1, 1
bne a1, a2, 1b
sb v0, 0(a0)
2:
jr ra
nop
END(outsb)
LEAF(outsw)
beq a2, zero, 2f
addu a2, a2
li v0, 1
and v0, a1
bne v0, zero, 3f # arghh, unaligned.
addu a2, a1
1:
lhu v0, 0(a1)
addiu a1, 2
bne a1, a2, 1b
sh v0, 0(a0)
2:
jr ra
nop
3:
LWHI v0, 0(a1)
LWLO v0, 3(a1)
addiu a1, 2
bne a1, a2, 3b
sh v0, 0(a0)
jr ra
nop
END(outsw)
LEAF(outsl)
beq a2, zero, 2f
sll a2, 2
li v0, 3
and v0, a1
bne v0, zero, 3f # arghh, unaligned.
addu a2, a1
1:
lw v0, 0(a1)
addiu a1, 4
bne a1, a2, 1b
sw v0, 0(a0)
2:
jr ra
nop
3:
LWHI v0, 0(a1)
LWLO v0, 3(a1)
addiu a1, 4
bne a1, a2, 3b
sw v0, 0(a0)
jr ra
nop
END(outsl)
/*
* Copy a null terminated string from the user address space into
* the kernel address space.
*
* copyinstr(fromaddr, toaddr, maxlength, &lencopied)
* caddr_t fromaddr;
* caddr_t toaddr;
* u_int maxlength;
* u_int *lencopied;
*/
NON_LEAF(copyinstr, STAND_FRAME_SIZE, ra)
subu sp, sp, STAND_FRAME_SIZE
.mask 0x80000000, (STAND_RA_OFFSET - STAND_FRAME_SIZE)
sw ra, STAND_RA_OFFSET(sp)
blt a0, zero, copyerr # make sure address is in user space
li v0, COPYERR
jal copystr
sw v0, UADDR+U_PCB_ONFAULT
lw ra, STAND_RA_OFFSET(sp)
sw zero, UADDR+U_PCB_ONFAULT
addu sp, sp, STAND_FRAME_SIZE
j ra
move v0, zero
END(copyinstr)
/*
* Copy a null terminated string from the kernel address space into
* the user address space.
*
* copyoutstr(fromaddr, toaddr, maxlength, &lencopied)
* caddr_t fromaddr;
* caddr_t toaddr;
* u_int maxlength;
* u_int *lencopied;
*/
NON_LEAF(copyoutstr, STAND_FRAME_SIZE, ra)
subu sp, sp, STAND_FRAME_SIZE
.mask 0x80000000, (STAND_RA_OFFSET - STAND_FRAME_SIZE)
sw ra, STAND_RA_OFFSET(sp)
blt a1, zero, copyerr # make sure address is in user space
li v0, COPYERR
jal copystr
sw v0, UADDR+U_PCB_ONFAULT
lw ra, STAND_RA_OFFSET(sp)
sw zero, UADDR+U_PCB_ONFAULT
addu sp, sp, STAND_FRAME_SIZE
j ra
move v0, zero
END(copyoutstr)
/*
* Copy specified amount of data from user space into the kernel
* copyin(from, to, len)
* caddr_t *from; (user source address)
* caddr_t *to; (kernel destination address)
* unsigned len;
*/
NON_LEAF(copyin, STAND_FRAME_SIZE, ra)
subu sp, sp, STAND_FRAME_SIZE
.mask 0x80000000, (STAND_RA_OFFSET - STAND_FRAME_SIZE)
sw ra, STAND_RA_OFFSET(sp)
blt a0, zero, copyerr # make sure address is in user space
li v0, COPYERR
jal bcopy
sw v0, UADDR+U_PCB_ONFAULT
lw ra, STAND_RA_OFFSET(sp)
sw zero, UADDR+U_PCB_ONFAULT
addu sp, sp, STAND_FRAME_SIZE
j ra
move v0, zero
END(copyin)
/*
* Copy specified amount of data from kernel to the user space
* copyout(from, to, len)
* caddr_t *from; (kernel source address)
* caddr_t *to; (user destination address)
* unsigned len;
*/
NON_LEAF(copyout, STAND_FRAME_SIZE, ra)
subu sp, sp, STAND_FRAME_SIZE
.mask 0x80000000, (STAND_RA_OFFSET - STAND_FRAME_SIZE)
sw ra, STAND_RA_OFFSET(sp)
blt a1, zero, copyerr # make sure address is in user space
li v0, COPYERR
jal bcopy
sw v0, UADDR+U_PCB_ONFAULT
lw ra, STAND_RA_OFFSET(sp)
sw zero, UADDR+U_PCB_ONFAULT
addu sp, sp, STAND_FRAME_SIZE
j ra
move v0, zero
END(copyout)
LEAF(copyerr)
lw ra, STAND_RA_OFFSET(sp)
sw zero, UADDR+U_PCB_ONFAULT
addu sp, sp, STAND_FRAME_SIZE
j ra
li v0, EFAULT # return error
END(copyerr)
/*
* Copy the kernel stack to the new process and save the current context so
* the new process will return nonzero when it is resumed by cpu_switch().
*
* copykstack(up)
* struct user *up;
*/
LEAF(copykstack)
subu v0, sp, UADDR # compute offset into stack
addu v0, v0, a0 # v0 = new stack address
move v1, sp # v1 = old stack address
li t1, KERNELSTACK
1:
lw t0, 0(v1) # copy stack data
addu v1, v1, 4
sw t0, 0(v0)
bne v1, t1, 1b
addu v0, v0, 4
/* FALLTHROUGH */
/*
* Save registers and state so we can do a longjmp later.
* Note: this only works if p != curproc since
* cpu_switch() will copy over pcb_context.
*
* savectx(up)
* struct user *up;
*/
ALEAF(savectx)
sw s0, U_PCB_CONTEXT+0(a0)
sw s1, U_PCB_CONTEXT+4(a0)
sw s2, U_PCB_CONTEXT+8(a0)
sw s3, U_PCB_CONTEXT+12(a0)
mfc0 v0, COP_0_STATUS_REG
sw s4, U_PCB_CONTEXT+16(a0)
sw s5, U_PCB_CONTEXT+20(a0)
sw s6, U_PCB_CONTEXT+24(a0)
sw s7, U_PCB_CONTEXT+28(a0)
sw sp, U_PCB_CONTEXT+32(a0)
sw s8, U_PCB_CONTEXT+36(a0)
sw ra, U_PCB_CONTEXT+40(a0)
sw v0, U_PCB_CONTEXT+44(a0)
j ra
move v0, zero
END(copykstack)
/*
* The following primitives manipulate the run queues. _whichqs tells which
* of the 32 queues _qs have processes in them. Setrunqueue puts processes
* into queues, Remrq removes them from queues. The running process is on
* no queue, other processes are on a queue related to p->p_priority, divided
* by 4 actually to shrink the 0-127 range of priorities into the 32 available
* queues.
*/
/*
* setrunqueue(p)
* proc *p;
*
* Call should be made at splclock(), and p->p_stat should be SRUN.
*/
NON_LEAF(setrunqueue, STAND_FRAME_SIZE, ra)
subu sp, sp, STAND_FRAME_SIZE
.mask 0x80000000, (STAND_RA_OFFSET - STAND_FRAME_SIZE)
lw t0, P_BACK(a0) ## firewall: p->p_back must be 0
sw ra, STAND_RA_OFFSET(sp) ##
beq t0, zero, 1f ##
lbu t0, P_PRIORITY(a0) # put on p->p_priority / 4 queue
PANIC("setrunqueue") ##
1:
li t1, 1 # compute corresponding bit
srl t0, t0, 2 # compute index into 'whichqs'
sll t1, t1, t0
lw t2, whichqs # set corresponding bit
nop
or t2, t2, t1
sw t2, whichqs
sll t0, t0, 3 # compute index into 'qs'
la t1, qs
addu t0, t0, t1 # t0 = qp = &qs[pri >> 2]
lw t1, P_BACK(t0) # t1 = qp->ph_rlink
sw t0, P_FORW(a0) # p->p_forw = qp
sw t1, P_BACK(a0) # p->p_back = qp->ph_rlink
sw a0, P_FORW(t1) # p->p_back->p_forw = p;
sw a0, P_BACK(t0) # qp->ph_rlink = p
j ra
addu sp, sp, STAND_FRAME_SIZE
END(setrunqueue)
/*
* Remrq(p)
*
* Call should be made at splclock().
*/
NON_LEAF(remrunqueue, STAND_FRAME_SIZE, ra)
subu sp, sp, STAND_FRAME_SIZE
.mask 0x80000000, (STAND_RA_OFFSET - STAND_FRAME_SIZE)
lbu t0, P_PRIORITY(a0) # get from p->p_priority / 4 queue
li t1, 1 # compute corresponding bit
srl t0, t0, 2 # compute index into 'whichqs'
lw t2, whichqs # check corresponding bit
sll t1, t1, t0
and v0, t2, t1
sw ra, STAND_RA_OFFSET(sp) ##
bne v0, zero, 1f ##
lw v0, P_BACK(a0) # v0 = p->p_back
PANIC("remrunqueue") ## it wasnt recorded to be on its q
1:
lw v1, P_FORW(a0) # v1 = p->p_forw
nop
sw v1, P_FORW(v0) # p->p_back->p_forw = p->p_forw;
sw v0, P_BACK(v1) # p->p_forw->p_back = p->r_rlink
sll t0, t0, 3 # compute index into 'qs'
la v0, qs
addu t0, t0, v0 # t0 = qp = &qs[pri >> 2]
lw v0, P_FORW(t0) # check if queue empty
nop
bne v0, t0, 2f # No. qp->ph_link != qp
nop
xor t2, t2, t1 # clear corresponding bit in 'whichqs'
sw t2, whichqs
2:
sw zero, P_BACK(a0) ## for firewall checking
j ra
addu sp, sp, STAND_FRAME_SIZE
END(remrunqueue)
/*
* switch_exit()
*
* At exit of a process, do a cpu_switch for the last time.
* The mapping of the pcb at p->p_addr has already been deleted,
* and the memory for the pcb+stack has been freed.
* All interrupts should be blocked at this point.
*/
LEAF(switch_exit)
la v1, nullproc # save state into garbage proc
lw t0, P_UPTE+0(v1) # t0 = first u. pte
lw t1, P_UPTE+4(v1) # t1 = 2nd u. pte
li v0, UADDR # v0 = first HI entry
mtc0 zero, COP_0_TLB_INDEX # set the index register
dmtc0 v0, COP_0_TLB_HI # init high entry
dmtc0 t0, COP_0_TLB_LO0 # init low entry0
dmtc0 t1, COP_0_TLB_LO1 # init low entry1
nop
tlbwi # Write the TLB entry.
nop
nop
sw zero, curproc
b cpu_switch
li sp, KERNELSTACK - START_FRAME # switch to standard stack
END(switch_exit)
/*
* When no processes are on the runq, cpu_switch branches to idle
* to wait for something to come ready.
* Note: this is really a part of cpu_switch() but defined here for kernel
* profiling.
*/
LEAF(idle)
li t0, (INT_MASK | SR_INT_ENAB)
mtc0 t0, COP_0_STATUS_REG # enable all interrupts
sw zero, curproc # set curproc NULL for stats
li t1,1
1:
beq t1, zero, 2f
addu t1, t1, 1
lw t0, whichqs # look for non-empty queue
nop
beq t0, zero, 1b
nop
b sw1
mtc0 zero, COP_0_STATUS_REG # Disable all interrupts
2:
break BREAK_SOVER_VAL
b 1b
nop
END(idle)
/*
* cpu_switch()
* Find the highest priority process and resume it.
*/
NON_LEAF(cpu_switch, STAND_FRAME_SIZE, ra)
sw sp, UADDR+U_PCB_CONTEXT+32 # save old sp
subu sp, sp, STAND_FRAME_SIZE
sw ra, STAND_RA_OFFSET(sp)
.mask 0x80000000, (STAND_RA_OFFSET - STAND_FRAME_SIZE)
lw t2, cnt+V_SWTCH # for statistics
lw t1, whichqs # look for non-empty queue
sw s0, UADDR+U_PCB_CONTEXT+0 # do a 'savectx()'
sw s1, UADDR+U_PCB_CONTEXT+4
sw s2, UADDR+U_PCB_CONTEXT+8
sw s3, UADDR+U_PCB_CONTEXT+12
mfc0 t0, COP_0_STATUS_REG # t0 = saved status register
sw s4, UADDR+U_PCB_CONTEXT+16
sw s5, UADDR+U_PCB_CONTEXT+20
sw s6, UADDR+U_PCB_CONTEXT+24
sw s7, UADDR+U_PCB_CONTEXT+28
sw s8, UADDR+U_PCB_CONTEXT+36
sw ra, UADDR+U_PCB_CONTEXT+40 # save return address
sw t0, UADDR+U_PCB_CONTEXT+44 # save status register
addu t2, t2, 1
sw t2, cnt+V_SWTCH
beq t1, zero, idle # if none, idle
mtc0 zero, COP_0_STATUS_REG # Disable all interrupts
sw1:
nop # wait for intrs disabled
nop
nop
nop
lw t0, whichqs # look for non-empty queue
li t2, -1 # t2 = lowest bit set
beq t0, zero, idle # if none, idle
move t3, t0 # t3 = saved whichqs
1:
addu t2, t2, 1
and t1, t0, 1 # bit set?
beq t1, zero, 1b
srl t0, t0, 1 # try next bit
/*
* Remove process from queue.
*/
sll t0, t2, 3
la t1, qs
addu t0, t0, t1 # t0 = qp = &qs[highbit]
lw a0, P_FORW(t0) # a0 = p = highest pri process
nop
lw v0, P_FORW(a0) # v0 = p->p_forw
bne t0, a0, 2f # make sure something in queue
sw v0, P_FORW(t0) # qp->ph_link = p->p_forw;
PANIC("cpu_switch") # nothing in queue
2:
sw t0, P_BACK(v0) # p->p_forw->p_back = qp
bne v0, t0, 3f # queue still not empty
sw zero, P_BACK(a0) ## for firewall checking
li v1, 1 # compute bit in 'whichqs'
sll v1, v1, t2
xor t3, t3, v1 # clear bit in 'whichqs'
sw t3, whichqs
3:
/*
* Switch to new context.
*/
sw zero, want_resched
jal pmap_alloc_tlbpid # v0 = TLB PID
move s0, a0 # BDSLOT: save p
sw s0, curproc # set curproc
lw t0, P_UPTE+0(s0) # t0 = first u. pte
lw t1, P_UPTE+4(s0) # t1 = 2nd u. pte
or v0, v0, UADDR # v0 = first HI entry
/*
* Resume process indicated by the pte's for its u struct
* NOTE: This is hard coded to UPAGES == 2.
* Also, there should be no TLB faults at this point.
*/
mtc0 zero, COP_0_TLB_INDEX # set the index register
dmtc0 v0, COP_0_TLB_HI # init high entry
dmtc0 t0, COP_0_TLB_LO0 # init low entry0
dmtc0 t1, COP_0_TLB_LO1 # init low entry1
nop
tlbwi # Write the TLB entry.
nop # Delay for effect
nop # Delay for effect
nop
nop
/*
* Now running on new u struct.
* Restore registers and return.
*/
lw v0, UADDR+U_PCB_CONTEXT+44 # restore kernel context
lw ra, UADDR+U_PCB_CONTEXT+40
lw s0, UADDR+U_PCB_CONTEXT+0
lw s1, UADDR+U_PCB_CONTEXT+4
lw s2, UADDR+U_PCB_CONTEXT+8
lw s3, UADDR+U_PCB_CONTEXT+12
lw s4, UADDR+U_PCB_CONTEXT+16
lw s5, UADDR+U_PCB_CONTEXT+20
lw s6, UADDR+U_PCB_CONTEXT+24
lw s7, UADDR+U_PCB_CONTEXT+28
lw sp, UADDR+U_PCB_CONTEXT+32
lw s8, UADDR+U_PCB_CONTEXT+36
mtc0 v0, COP_0_STATUS_REG
j ra
li v0, 1 # possible return to 'savectx()'
END(cpu_switch)
/*
* {fu,su},{ibyte,isword,iword}, fetch or store a byte, short or word to
* user text space.
* {fu,su},{byte,sword,word}, fetch or store a byte, short or word to
* user data space.
*/
LEAF(fuword)
ALEAF(fuiword)
blt a0, zero, fswberr # make sure address is in user space
li v0, FSWBERR
sw v0, UADDR+U_PCB_ONFAULT
lw v0, 0(a0) # fetch word
j ra
sw zero, UADDR+U_PCB_ONFAULT
END(fuword)
LEAF(fusword)
ALEAF(fuisword)
blt a0, zero, fswberr # make sure address is in user space
li v0, FSWBERR
sw v0, UADDR+U_PCB_ONFAULT
lhu v0, 0(a0) # fetch short
j ra
sw zero, UADDR+U_PCB_ONFAULT
END(fusword)
LEAF(fubyte)
ALEAF(fuibyte)
blt a0, zero, fswberr # make sure address is in user space
li v0, FSWBERR
sw v0, UADDR+U_PCB_ONFAULT
lbu v0, 0(a0) # fetch byte
j ra
sw zero, UADDR+U_PCB_ONFAULT
END(fubyte)
LEAF(suword)
blt a0, zero, fswberr # make sure address is in user space
li v0, FSWBERR
sw v0, UADDR+U_PCB_ONFAULT
sw a1, 0(a0) # store word
sw zero, UADDR+U_PCB_ONFAULT
j ra
move v0, zero
END(suword)
/*
* Have to flush instruction cache afterwards.
*/
LEAF(suiword)
blt a0, zero, fswberr # make sure address is in user space
li v0, FSWBERR
sw v0, UADDR+U_PCB_ONFAULT
sw a1, 0(a0) # store word
sw zero, UADDR+U_PCB_ONFAULT
b R4K_FlushICache # FlushICache sets v0 = 0. (Ugly)
li a1, 4 # size of word
END(suiword)
/*
* Will have to flush the instruction cache if byte merging is done in hardware.
*/
LEAF(susword)
ALEAF(suisword)
blt a0, zero, fswberr # make sure address is in user space
li v0, FSWBERR
sw v0, UADDR+U_PCB_ONFAULT
sh a1, 0(a0) # store short
sw zero, UADDR+U_PCB_ONFAULT
j ra
move v0, zero
END(susword)
LEAF(subyte)
ALEAF(suibyte)
blt a0, zero, fswberr # make sure address is in user space
li v0, FSWBERR
sw v0, UADDR+U_PCB_ONFAULT
sb a1, 0(a0) # store byte
sw zero, UADDR+U_PCB_ONFAULT
j ra
move v0, zero
END(subyte)
LEAF(fswberr)
j ra
li v0, -1
END(fswberr)
/*
* fuswintr and suswintr are just like fusword and susword except that if
* the page is not in memory or would cause a trap, then we return an error.
* The important thing is to prevent sleep() and switch().
*/
LEAF(fuswintr)
blt a0, zero, fswintrberr # make sure address is in user space
li v0, FSWINTRBERR
sw v0, UADDR+U_PCB_ONFAULT
lhu v0, 0(a0) # fetch short
j ra
sw zero, UADDR+U_PCB_ONFAULT
END(fuswintr)
LEAF(suswintr)
blt a0, zero, fswintrberr # make sure address is in user space
li v0, FSWINTRBERR
sw v0, UADDR+U_PCB_ONFAULT
sh a1, 0(a0) # store short
sw zero, UADDR+U_PCB_ONFAULT
j ra
move v0, zero
END(suswintr)
LEAF(fswintrberr)
j ra
li v0, -1
END(fswintrberr)
/*
* Insert 'p' after 'q'.
* _insque(p, q)
* caddr_t p, q;
*/
LEAF(_insque)
lw v0, 0(a1) # v0 = q->next
sw a1, 4(a0) # p->prev = q
sw v0, 0(a0) # p->next = q->next
sw a0, 4(v0) # q->next->prev = p
j ra
sw a0, 0(a1) # q->next = p
END(_insque)
/*
* Remove item 'p' from queue.
* _remque(p)
* caddr_t p;
*/
LEAF(_remque)
lw v0, 0(a0) # v0 = p->next
lw v1, 4(a0) # v1 = p->prev
nop
sw v0, 0(v1) # p->prev->next = p->next
j ra
sw v1, 4(v0) # p->next->prev = p->prev
END(_remque)
/*
* This code is copied to the TLB exception vector address to
* handle TLB translation misses.
* NOTE: This code must be relocatable and max 32 instructions!!!
* Don't check for invalid pte's here. We load them as well and
* let the processor trap to load the correct value after service.
*/
.globl MipsTLBMiss
MipsTLBMiss:
.set noat
dmfc0 k0, COP_0_BAD_VADDR # get the virtual address
lw k1, UADDR+U_PCB_SEGTAB # get the current segment table
bltz k0, 1f # kernel address space ->
srl k0, k0, SEGSHIFT - 2 # compute segment table index
andi k0, k0, 0x7fc # PMAP_SEGTABSIZ-1
addu k1, k1, k0
dmfc0 k0, COP_0_BAD_VADDR # get the virtual address
lw k1, 0(k1) # get pointer to segment map
srl k0, k0, PGSHIFT - 2 # compute segment map index
andi k0, k0, ((NPTEPG/2) - 1) << 3
beq k1, zero, 2f # invalid segment map
addu k1, k1, k0 # index into segment map
lw k0, 0(k1) # get page PTE
lw k1, 4(k1)
dsll k0, k0, 34
dsrl k0, k0, 34
dmtc0 k0, COP_0_TLB_LO0
dsll k1, k1, 34
dsrl k1, k1, 34
dmtc0 k1, COP_0_TLB_LO1
nop
tlbwr # update TLB
nop
nop
nop
nop
nop
eret
1:
j MipsTLBMissException
nop
2:
j SlowFault
nop
.globl MipsTLBMissEnd
MipsTLBMissEnd:
.set at
/*
* This code is copied to the general exception vector address to
* handle all execptions except RESET and TLBMiss.
* NOTE: This code must be relocatable!!!
*/
.globl MipsException
MipsException:
/*
* Find out what mode we came from and jump to the proper handler.
*/
.set noat
mfc0 k0, COP_0_STATUS_REG # Get the status register
mfc0 k1, COP_0_CAUSE_REG # Get the cause register value.
and k0, k0, SR_KSU_USER # test for user mode
# sneaky but the bits are
# with us........
sll k0, k0, 3 # shift user bit for cause index
and k1, k1, CR_EXC_CODE # Mask out the cause bits.
or k1, k1, k0 # change index to user table
1:
la k0, machExceptionTable # get base of the jump table
addu k0, k0, k1 # Get the address of the
# function entry. Note that
# the cause is already
# shifted left by 2 bits so
# we dont have to shift.
lw k0, 0(k0) # Get the function address
nop
j k0 # Jump to the function.
nop
.set at
.globl MipsExceptionEnd
MipsExceptionEnd:
/*
* We couldn't find a TLB entry.
* Find out what mode we came from and call the appropriate handler.
*/
SlowFault:
.set noat
mfc0 k0, COP_0_STATUS_REG
nop
and k0, k0, SR_KSU_USER
bne k0, zero, MipsUserGenException
nop
.set at
/*
* Fall though ...
*/
/*----------------------------------------------------------------------------
*
* MipsKernGenException --
*
* Handle an exception from kernel mode.
*
* Results:
* None.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------------
*/
#ifndef MIPS_ISAIII
#define STORE sw /* 32 bit mode regsave instruction */
#define LOAD lw /* 32 bit mode regload instruction */
#define RSIZE 4 /* 32 bit mode register size */
#else
#define STORE sd /* 64 bit mode regsave instruction */
#define STORE ld /* 64 bit mode regload instruction */
#define RSIZE 8 /* 64 bit mode register size */
#endif
#define SAVE_REG(reg, offs, base) \
STORE reg, STAND_ARG_SIZE + (RSIZE * offs) (base)
#define SAVE_CPU \
SAVE_REG(AT, AST, sp) ;\
SAVE_REG(v0, V0, sp) ;\
SAVE_REG(v1, V1, sp) ;\
mflo v0 ;\
mfhi v1 ;\
SAVE_REG(a0, A0, sp) ;\
SAVE_REG(a1, A1, sp) ;\
SAVE_REG(a2, A2, sp) ;\
SAVE_REG(a3, A3, sp) ;\
mfc0 a0, COP_0_STATUS_REG ;\
mfc0 a1, COP_0_CAUSE_REG ;\
mfc0 a2, COP_0_BAD_VADDR ;\
mfc0 a3, COP_0_EXC_PC ;\
SAVE_REG(t0, T0, sp) ;\
SAVE_REG(t1, T1, sp) ;\
SAVE_REG(t2, T2, sp) ;\
SAVE_REG(t3, T3, sp) ;\
SAVE_REG(t4, T4, sp) ;\
SAVE_REG(t5, T5, sp) ;\
SAVE_REG(t6, T6, sp) ;\
SAVE_REG(t7, T7, sp) ;\
SAVE_REG(t8, T8, sp) ;\
SAVE_REG(t9, T9, sp) ;\
SAVE_REG(v0, MULLO, sp) ;\
SAVE_REG(v1, MULHI, sp) ;\
SAVE_REG(a0, SR, sp) ;\
SAVE_REG(a1, CAUSE, sp) ;\
SAVE_REG(ra, RA, sp) ;\
SAVE_REG(a2, BADVADDR, sp) ;\
SAVE_REG(a3, PC, sp) ;\
addu v0, sp, KERN_EXC_FRAME_SIZE ;\
SAVE_REG(v0, SP, sp) ;\
mtc0 zero,COP_0_STATUS_REG
#ifdef DDB
#define SAVE_CPU_DDB \
SAVE_REG(s0, S0, sp) ;\
SAVE_REG(s1, S1, sp) ;\
SAVE_REG(s2, S2, sp) ;\
SAVE_REG(s3, S3, sp) ;\
SAVE_REG(s4, S4, sp) ;\
SAVE_REG(s5, S5, sp) ;\
SAVE_REG(s6, S6, sp) ;\
SAVE_REG(s7, S7, sp) ;\
SAVE_REG(s8, S8, sp)
#else
#define SAVE_CPU_DDB
#endif
#define RESTORE_REG(reg, offs, base) \
LOAD reg, STAND_ARG_SIZE + (RSIZE * offs) (base)
#define RESTORE_CPU \
mtc0 zero,COP_0_STATUS_REG ;\
RESTORE_REG(a0, SR, sp) ;\
RESTORE_REG(t0, MULLO, sp) ;\
RESTORE_REG(t1, MULHI, sp) ;\
mtc0 a0, COP_0_STATUS_REG ;\
mtlo t0 ;\
mthi t1 ;\
dmtc0 v0, COP_0_EXC_PC ;\
RESTORE_REG(AT, AST, sp) ;\
RESTORE_REG(v0, V0, sp) ;\
RESTORE_REG(v1, V1, sp) ;\
RESTORE_REG(a0, A0, sp) ;\
RESTORE_REG(a1, A1, sp) ;\
RESTORE_REG(a2, A2, sp) ;\
RESTORE_REG(a3, A3, sp) ;\
RESTORE_REG(t0, T0, sp) ;\
RESTORE_REG(t1, T1, sp) ;\
RESTORE_REG(t2, T2, sp) ;\
RESTORE_REG(t3, T3, sp) ;\
RESTORE_REG(t4, T4, sp) ;\
RESTORE_REG(t5, T5, sp) ;\
RESTORE_REG(t6, T6, sp) ;\
RESTORE_REG(t7, T7, sp) ;\
RESTORE_REG(t8, T8, sp) ;\
RESTORE_REG(t9, T9, sp) ;\
RESTORE_REG(ra, RA, sp) ;\
addu sp, sp, KERN_EXC_FRAME_SIZE
/*
* The kernel exception stack contains 18 saved general registers,
* the status register and the multiply lo and high registers.
* In addition, we set this up for linkage conventions.
*/
#define KERN_REG_SIZE (NUMSAVEREGS * RSIZE)
#define KERN_EXC_FRAME_SIZE (STAND_FRAME_SIZE + KERN_REG_SIZE + 16)
NNON_LEAF(MipsKernGenException, KERN_EXC_FRAME_SIZE, ra)
.set noat
subu sp, sp, KERN_EXC_FRAME_SIZE
.mask 0x80000000, (STAND_RA_OFFSET - KERN_EXC_FRAME_SIZE)
/*
* Save CPU state, building 'frame'.
*/
SAVE_CPU
SAVE_CPU_DDB
/*
* Call the exception handler.
*/
jal trap
sw a3, STAND_RA_OFFSET + KERN_REG_SIZE(sp) # for debugging
/*
* Restore registers and return from the exception.
* v0 contains the return address.
*/
RESTORE_CPU
eret # exception.
.set at
END(MipsKernGenException)
/*----------------------------------------------------------------------------
*
* MipsUserGenException --
*
* Handle an exception from user mode.
*
* Results:
* None.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------------
*/
NNON_LEAF(MipsUserGenException, STAND_FRAME_SIZE, ra)
.set noat
.mask 0x80000000, (STAND_RA_OFFSET - STAND_FRAME_SIZE)
/*
* Save all of the registers except for the kernel temporaries in u.u_pcb.
*/
sw AT, UADDR+U_PCB_REGS+(AST * 4)
sw v0, UADDR+U_PCB_REGS+(V0 * 4)
sw v1, UADDR+U_PCB_REGS+(V1 * 4)
sw a0, UADDR+U_PCB_REGS+(A0 * 4)
mflo v0
sw a1, UADDR+U_PCB_REGS+(A1 * 4)
sw a2, UADDR+U_PCB_REGS+(A2 * 4)
sw a3, UADDR+U_PCB_REGS+(A3 * 4)
sw t0, UADDR+U_PCB_REGS+(T0 * 4)
mfhi v1
sw t1, UADDR+U_PCB_REGS+(T1 * 4)
sw t2, UADDR+U_PCB_REGS+(T2 * 4)
sw t3, UADDR+U_PCB_REGS+(T3 * 4)
sw t4, UADDR+U_PCB_REGS+(T4 * 4)
mfc0 a0, COP_0_STATUS_REG # First arg is the status reg.
sw t5, UADDR+U_PCB_REGS+(T5 * 4)
sw t6, UADDR+U_PCB_REGS+(T6 * 4)
sw t7, UADDR+U_PCB_REGS+(T7 * 4)
sw s0, UADDR+U_PCB_REGS+(S0 * 4)
mfc0 a1, COP_0_CAUSE_REG # Second arg is the cause reg.
sw s1, UADDR+U_PCB_REGS+(S1 * 4)
sw s2, UADDR+U_PCB_REGS+(S2 * 4)
sw s3, UADDR+U_PCB_REGS+(S3 * 4)
sw s4, UADDR+U_PCB_REGS+(S4 * 4)
mfc0 a2, COP_0_BAD_VADDR # Third arg is the fault addr
sw s5, UADDR+U_PCB_REGS+(S5 * 4)
sw s6, UADDR+U_PCB_REGS+(S6 * 4)
sw s7, UADDR+U_PCB_REGS+(S7 * 4)
sw t8, UADDR+U_PCB_REGS+(T8 * 4)
mfc0 a3, COP_0_EXC_PC # Fourth arg is the pc.
sw t9, UADDR+U_PCB_REGS+(T9 * 4)
sw gp, UADDR+U_PCB_REGS+(GP * 4)
sw sp, UADDR+U_PCB_REGS+(SP * 4)
sw s8, UADDR+U_PCB_REGS+(S8 * 4)
li sp, KERNELSTACK - STAND_FRAME_SIZE # switch to kernel SP
sw ra, UADDR+U_PCB_REGS+(RA * 4)
sw v0, UADDR+U_PCB_REGS+(MULLO * 4)
sw v1, UADDR+U_PCB_REGS+(MULHI * 4)
sw a0, UADDR+U_PCB_REGS+(SR * 4)
la gp, _gp # switch to kernel GP
sw a3, UADDR+U_PCB_REGS+(PC * 4)
sw a3, STAND_RA_OFFSET(sp) # for debugging
.set at
# Turn off fpu and enter kernel mode
and t0, a0, ~(SR_COP_1_BIT | SR_EXL | SR_KSU_MASK | SR_INT_ENAB)
.set noat
/*
* Call the exception handler.
*/
jal trap
mtc0 t0, COP_0_STATUS_REG
/*
* Restore user registers and return.
* First disable interrupts and set exeption level.
*/
mtc0 zero, COP_0_STATUS_REG # disable int
nop
nop
nop
li v0, SR_EXL
mtc0 v0, COP_0_STATUS_REG # set exeption level
lw a0, UADDR+U_PCB_REGS+(SR * 4)
lw t0, UADDR+U_PCB_REGS+(MULLO * 4)
lw t1, UADDR+U_PCB_REGS+(MULHI * 4)
mtc0 a0, COP_0_STATUS_REG # still exeption level
mtlo t0
mthi t1
lw a0, UADDR+U_PCB_REGS+(PC * 4)
lw AT, UADDR+U_PCB_REGS+(AST * 4)
lw v0, UADDR+U_PCB_REGS+(V0 * 4)
dmtc0 a0, COP_0_EXC_PC # set return address
lw v1, UADDR+U_PCB_REGS+(V1 * 4)
lw a0, UADDR+U_PCB_REGS+(A0 * 4)
lw a1, UADDR+U_PCB_REGS+(A1 * 4)
lw a2, UADDR+U_PCB_REGS+(A2 * 4)
lw a3, UADDR+U_PCB_REGS+(A3 * 4)
lw t0, UADDR+U_PCB_REGS+(T0 * 4)
lw t1, UADDR+U_PCB_REGS+(T1 * 4)
lw t2, UADDR+U_PCB_REGS+(T2 * 4)
lw t3, UADDR+U_PCB_REGS+(T3 * 4)
lw t4, UADDR+U_PCB_REGS+(T4 * 4)
lw t5, UADDR+U_PCB_REGS+(T5 * 4)
lw t6, UADDR+U_PCB_REGS+(T6 * 4)
lw t7, UADDR+U_PCB_REGS+(T7 * 4)
lw s0, UADDR+U_PCB_REGS+(S0 * 4)
lw s1, UADDR+U_PCB_REGS+(S1 * 4)
lw s2, UADDR+U_PCB_REGS+(S2 * 4)
lw s3, UADDR+U_PCB_REGS+(S3 * 4)
lw s4, UADDR+U_PCB_REGS+(S4 * 4)
lw s5, UADDR+U_PCB_REGS+(S5 * 4)
lw s6, UADDR+U_PCB_REGS+(S6 * 4)
lw s7, UADDR+U_PCB_REGS+(S7 * 4)
lw t8, UADDR+U_PCB_REGS+(T8 * 4)
lw t9, UADDR+U_PCB_REGS+(T9 * 4)
lw gp, UADDR+U_PCB_REGS+(GP * 4)
lw sp, UADDR+U_PCB_REGS+(SP * 4)
lw s8, UADDR+U_PCB_REGS+(S8 * 4)
lw ra, UADDR+U_PCB_REGS+(RA * 4)
eret
.set at
END(MipsUserGenException)
/*----------------------------------------------------------------------------
*
* MipsKernIntr --
*
* Handle an interrupt from kernel mode.
* Interrupts use the standard kernel stack.
* switch_exit sets up a kernel stack after exit so interrupts won't fail.
*
* Results:
* None.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------------
*/
NNON_LEAF(MipsKernIntr, KERN_EXC_FRAME_SIZE, ra)
.set noat
subu sp, sp, KERN_EXC_FRAME_SIZE
.mask 0x80000000, (STAND_RA_OFFSET - KERN_EXC_FRAME_SIZE)
/*
* Save the relevant kernel registers onto the stack.
* We don't need to save s0 - s8, sp and gp because
* the compiler does it for us.
*/
SAVE_CPU
/*
* Call the interrupt handler.
*/
jal interrupt
sw a3, STAND_RA_OFFSET + KERN_REG_SIZE(sp)
/*
* Restore registers and return from the interrupt.
*/
lw v0, STAND_RA_OFFSET + KERN_REG_SIZE(sp)
RESTORE_CPU
eret
.set at
END(MipsKernIntr)
/*----------------------------------------------------------------------------
*
* MipsUserIntr --
*
* Handle an interrupt from user mode.
* Note: we save minimal state in the u.u_pcb struct and use the standard
* kernel stack since there has to be a u page if we came from user mode.
* If there is a pending software interrupt, then save the remaining state
* and call softintr(). This is all because if we call switch() inside
* interrupt(), not all the user registers have been saved in u.u_pcb.
*
* Results:
* None.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------------
*/
NNON_LEAF(MipsUserIntr, STAND_FRAME_SIZE, ra)
.set noat
.mask 0x80000000, (STAND_RA_OFFSET - STAND_FRAME_SIZE)
/*
* Save the relevant user registers into the u.u_pcb struct.
* We don't need to save s0 - s8 because the compiler does it for us.
*/
sw AT, UADDR+U_PCB_REGS+(AST * 4)
sw v0, UADDR+U_PCB_REGS+(V0 * 4)
sw v1, UADDR+U_PCB_REGS+(V1 * 4)
sw a0, UADDR+U_PCB_REGS+(A0 * 4)
mflo v0
mfhi v1
sw a1, UADDR+U_PCB_REGS+(A1 * 4)
sw a2, UADDR+U_PCB_REGS+(A2 * 4)
sw a3, UADDR+U_PCB_REGS+(A3 * 4)
sw t0, UADDR+U_PCB_REGS+(T0 * 4)
mfc0 a0, COP_0_STATUS_REG # First arg is the status reg.
sw t1, UADDR+U_PCB_REGS+(T1 * 4)
sw t2, UADDR+U_PCB_REGS+(T2 * 4)
sw t3, UADDR+U_PCB_REGS+(T3 * 4)
sw t4, UADDR+U_PCB_REGS+(T4 * 4)
mfc0 a1, COP_0_CAUSE_REG # Second arg is the cause reg.
sw t5, UADDR+U_PCB_REGS+(T5 * 4)
sw t6, UADDR+U_PCB_REGS+(T6 * 4)
sw t7, UADDR+U_PCB_REGS+(T7 * 4)
sw t8, UADDR+U_PCB_REGS+(T8 * 4)
mfc0 a3, COP_0_EXC_PC # Fourth arg is the pc.
sw t9, UADDR+U_PCB_REGS+(T9 * 4)
sw gp, UADDR+U_PCB_REGS+(GP * 4)
sw sp, UADDR+U_PCB_REGS+(SP * 4)
sw ra, UADDR+U_PCB_REGS+(RA * 4)
li sp, KERNELSTACK - STAND_FRAME_SIZE # switch to kernel SP
sw v0, UADDR+U_PCB_REGS+(MULLO * 4)
sw v1, UADDR+U_PCB_REGS+(MULHI * 4)
sw a0, UADDR+U_PCB_REGS+(SR * 4)
sw a3, UADDR+U_PCB_REGS+(PC * 4)
la gp, _gp # switch to kernel GP
# Turn off fpu and enter kernel mode
.set at
and t0, a0, ~(SR_COP_1_BIT | SR_EXL | SR_INT_ENAB | SR_KSU_MASK)
.set noat
mtc0 t0, COP_0_STATUS_REG
/*
* Call the interrupt handler.
*/
jal interrupt
sw a3, STAND_RA_OFFSET(sp) # for debugging
/*
* Restore registers and return from the interrupt.
*/
mtc0 zero, COP_0_STATUS_REG
nop
nop
nop
li v0, SR_EXL
mtc0 v0, COP_0_STATUS_REG # set exeption level bit.
lw a0, UADDR+U_PCB_REGS+(SR * 4)
lw v0, astpending # any pending interrupts?
mtc0 a0, COP_0_STATUS_REG # Restore the SR, disable intrs
bne v0, zero, 1f # dont restore, call softintr
lw t0, UADDR+U_PCB_REGS+(MULLO * 4)
lw t1, UADDR+U_PCB_REGS+(MULHI * 4)
lw a0, UADDR+U_PCB_REGS+(PC * 4)
lw AT, UADDR+U_PCB_REGS+(AST * 4)
lw v0, UADDR+U_PCB_REGS+(V0 * 4)
dmtc0 a0, COP_0_EXC_PC # set return address
lw v1, UADDR+U_PCB_REGS+(V1 * 4)
lw a0, UADDR+U_PCB_REGS+(A0 * 4)
lw a1, UADDR+U_PCB_REGS+(A1 * 4)
lw a2, UADDR+U_PCB_REGS+(A2 * 4)
lw a3, UADDR+U_PCB_REGS+(A3 * 4)
mtlo t0
mthi t1
lw t0, UADDR+U_PCB_REGS+(T0 * 4)
lw t1, UADDR+U_PCB_REGS+(T1 * 4)
lw t2, UADDR+U_PCB_REGS+(T2 * 4)
lw t3, UADDR+U_PCB_REGS+(T3 * 4)
lw t4, UADDR+U_PCB_REGS+(T4 * 4)
lw t5, UADDR+U_PCB_REGS+(T5 * 4)
lw t6, UADDR+U_PCB_REGS+(T6 * 4)
lw t7, UADDR+U_PCB_REGS+(T7 * 4)
lw t8, UADDR+U_PCB_REGS+(T8 * 4)
lw t9, UADDR+U_PCB_REGS+(T9 * 4)
lw gp, UADDR+U_PCB_REGS+(GP * 4)
lw sp, UADDR+U_PCB_REGS+(SP * 4)
lw ra, UADDR+U_PCB_REGS+(RA * 4)
eret # interrupt.
1:
/*
* We have pending software interrupts; save remaining user state in u.u_pcb.
*/
sw s0, UADDR+U_PCB_REGS+(S0 * 4)
sw s1, UADDR+U_PCB_REGS+(S1 * 4)
sw s2, UADDR+U_PCB_REGS+(S2 * 4)
sw s3, UADDR+U_PCB_REGS+(S3 * 4)
sw s4, UADDR+U_PCB_REGS+(S4 * 4)
sw s5, UADDR+U_PCB_REGS+(S5 * 4)
sw s6, UADDR+U_PCB_REGS+(S6 * 4)
sw s7, UADDR+U_PCB_REGS+(S7 * 4)
sw s8, UADDR+U_PCB_REGS+(S8 * 4)
li t0, HARD_INT_MASK | SR_INT_ENAB
/*
* Call the software interrupt handler.
*/
jal softintr
mtc0 t0, COP_0_STATUS_REG # enable interrupts (spl0)
/*
* Restore user registers and return. NOTE: interrupts are enabled.
*/
mtc0 zero, COP_0_STATUS_REG
nop
nop
nop
li v0, SR_EXL
mtc0 v0, COP_0_STATUS_REG # set exeption level bit.
lw a0, UADDR+U_PCB_REGS+(SR * 4)
lw t0, UADDR+U_PCB_REGS+(MULLO * 4)
lw t1, UADDR+U_PCB_REGS+(MULHI * 4)
mtc0 a0, COP_0_STATUS_REG # this should disable interrupts
mtlo t0
mthi t1
lw a0, UADDR+U_PCB_REGS+(PC * 4)
lw AT, UADDR+U_PCB_REGS+(AST * 4)
lw v0, UADDR+U_PCB_REGS+(V0 * 4)
dmtc0 a0, COP_0_EXC_PC # set return address
lw v1, UADDR+U_PCB_REGS+(V1 * 4)
lw a0, UADDR+U_PCB_REGS+(A0 * 4)
lw a1, UADDR+U_PCB_REGS+(A1 * 4)
lw a2, UADDR+U_PCB_REGS+(A2 * 4)
lw a3, UADDR+U_PCB_REGS+(A3 * 4)
lw t0, UADDR+U_PCB_REGS+(T0 * 4)
lw t1, UADDR+U_PCB_REGS+(T1 * 4)
lw t2, UADDR+U_PCB_REGS+(T2 * 4)
lw t3, UADDR+U_PCB_REGS+(T3 * 4)
lw t4, UADDR+U_PCB_REGS+(T4 * 4)
lw t5, UADDR+U_PCB_REGS+(T5 * 4)
lw t6, UADDR+U_PCB_REGS+(T6 * 4)
lw t7, UADDR+U_PCB_REGS+(T7 * 4)
lw s0, UADDR+U_PCB_REGS+(S0 * 4)
lw s1, UADDR+U_PCB_REGS+(S1 * 4)
lw s2, UADDR+U_PCB_REGS+(S2 * 4)
lw s3, UADDR+U_PCB_REGS+(S3 * 4)
lw s4, UADDR+U_PCB_REGS+(S4 * 4)
lw s5, UADDR+U_PCB_REGS+(S5 * 4)
lw s6, UADDR+U_PCB_REGS+(S6 * 4)
lw s7, UADDR+U_PCB_REGS+(S7 * 4)
lw t8, UADDR+U_PCB_REGS+(T8 * 4)
lw t9, UADDR+U_PCB_REGS+(T9 * 4)
lw gp, UADDR+U_PCB_REGS+(GP * 4)
lw sp, UADDR+U_PCB_REGS+(SP * 4)
lw s8, UADDR+U_PCB_REGS+(S8 * 4)
lw ra, UADDR+U_PCB_REGS+(RA * 4)
eret
.set at
END(MipsUserIntr)
/*----------------------------------------------------------------------------
*
* MipsTLBInvalidException --
*
* Handle a TLB invalid exception from kernel mode in kernel space.
* The BaddVAddr, Context, and EntryHi registers contain the failed
* virtual address.
*
* Results:
* None.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------------
*/
NLEAF(MipsTLBInvalidException)
.set noat
dmfc0 k0, COP_0_BAD_VADDR # get the fault address
li k1, (VM_MIN_KERNEL_ADDRESS) # compute index
subu k0, k0, k1
lw k1, Sysmapsize # index within range?
srl k0, k0, PGSHIFT
sltu k1, k0, k1
beq k1, zero, sys_stk_chk # No. check for valid stack
lw k1, Sysmap
sll k0, k0, 2 # compute offset from index
tlbp # Probe the invalid entry
addu k1, k1, k0
and k0, k0, 4 # check even/odd page
bne k0, zero, KernTLBIOdd
nop
mfc0 k0, COP_0_TLB_INDEX
nop
bltz k0, sys_stk_chk
sltiu k0, k0, 8
bne k0, zero, sys_stk_chk
lw k0, 0(k1) # get PTE entry
dsll k0, k0, 34 # get rid of "wired" bit
dsrl k0, k0, 34
dmtc0 k0, COP_0_TLB_LO0 # load PTE entry
and k0, k0, PG_V # check for valid entry
beq k0, zero, MipsKernGenException # PTE invalid
lw k0, 4(k1) # get odd PTE entry
dsll k0, k0, 34
dsrl k0, k0, 34
dmtc0 k0, COP_0_TLB_LO1 # load PTE entry
nop
tlbwi # write TLB
nop
nop
nop
nop
nop
eret
KernTLBIOdd:
mfc0 k0, COP_0_TLB_INDEX
nop
bltz k0, sys_stk_chk
sltiu k0, k0, 8
bne k0, zero, sys_stk_chk
lw k0, 0(k1) # get PTE entry
dsll k0, k0, 34 # get rid of wired bit
dsrl k0, k0, 34
dmtc0 k0, COP_0_TLB_LO1 # save PTE entry
and k0, k0, PG_V # check for valid entry
beq k0, zero, MipsKernGenException # PTE invalid
lw k0, -4(k1) # get even PTE entry
dsll k0, k0, 34
dsrl k0, k0, 34
dmtc0 k0, COP_0_TLB_LO0 # save PTE entry
nop
tlbwi # update TLB
nop
nop
nop
nop
nop
eret
END(MipsTLBInvalidException)
/*----------------------------------------------------------------------------
*
* MipsTLBMissException --
*
* Handle a TLB miss exception from kernel mode in kernel space.
* The BaddVAddr, Context, and EntryHi registers contain the failed
* virtual address.
*
* Results:
* None.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------------
*/
NLEAF(MipsTLBMissException)
.set noat
dmfc0 k0, COP_0_BAD_VADDR # get the fault address
li k1, (VM_MIN_KERNEL_ADDRESS) # compute index
subu k0, k0, k1
lw k1, Sysmapsize # index within range?
srl k0, k0, PGSHIFT
sltu k1, k0, k1
beq k1, zero, sys_stk_chk # No. check for valid stack
lw k1, Sysmap
srl k0, k0, 1
sll k0, k0, 3 # compute offset from index
addu k1, k1, k0
lw k0, 0(k1) # get PTE entry
lw k1, 4(k1) # get odd PTE entry
dsll k0, k0, 34 # get rid of "wired" bit
dsrl k0, k0, 34
dmtc0 k0, COP_0_TLB_LO0 # load PTE entry
dsll k1, k1, 34
dsrl k1, k1, 34
dmtc0 k1, COP_0_TLB_LO1 # load PTE entry
nop
tlbwr # write TLB
nop
nop
nop
nop
nop
eret
sys_stk_chk:
subu k0, sp, UADDR + 0x200 # check to see if we have a
sltiu k0, UPAGES*NBPG - 0x200 # valid kernel stack
bne k0, zero, MipsKernGenException # Go panic
nop
la a0, start - START_FRAME - 8 # set sp to a valid place
sw sp, 24(a0)
move sp, a0
la a0, 1f
mfc0 a2, COP_0_STATUS_REG
mfc0 a3, COP_0_CAUSE_REG
dmfc0 a1, COP_0_EXC_PC
sw a2, 16(sp)
sw a3, 20(sp)
move a2, ra
jal printf
dmfc0 a3, COP_0_BAD_VADDR
.data
1:
.asciiz "ktlbmiss: PC %x RA %x ADR %x\nSR %x CR %x SP %x\n"
.text
la sp, start - START_FRAME # set sp to a valid place
PANIC("kernel stack overflow")
.set at
END(MipsTLBMissException)
/*
* Set/clear software interrupt routines.
*/
LEAF(setsoftclock)
mfc0 v0, COP_0_CAUSE_REG # read cause register
nop
or v0, v0, SOFT_INT_MASK_0 # set soft clock interrupt
mtc0 v0, COP_0_CAUSE_REG # save it
j ra
nop
END(setsoftclock)
LEAF(clearsoftclock)
mfc0 v0, COP_0_CAUSE_REG # read cause register
nop
and v0, v0, ~SOFT_INT_MASK_0 # clear soft clock interrupt
mtc0 v0, COP_0_CAUSE_REG # save it
j ra
nop
END(clearsoftclock)
LEAF(setsoftnet)
mfc0 v0, COP_0_CAUSE_REG # read cause register
nop
or v0, v0, SOFT_INT_MASK_1 # set soft net interrupt
mtc0 v0, COP_0_CAUSE_REG # save it
j ra
nop
END(setsoftnet)
LEAF(clearsoftnet)
mfc0 v0, COP_0_CAUSE_REG # read cause register
nop
and v0, v0, ~SOFT_INT_MASK_1 # clear soft net interrupt
mtc0 v0, COP_0_CAUSE_REG # save it
j ra
nop
END(clearsoftnet)
/*
* Set/change interrupt priority routines.
*/
LEAF(MipsEnableIntr)
mfc0 v0, COP_0_STATUS_REG # read status register
nop
or v0, v0, SR_INT_ENAB
mtc0 v0, COP_0_STATUS_REG # enable all interrupts
j ra
nop
END(MipsEnableIntr)
LEAF(spl0)
mfc0 v0, COP_0_STATUS_REG # read status register
nop
or t0, v0, (INT_MASK | SR_INT_ENAB)
mtc0 t0, COP_0_STATUS_REG # enable all interrupts
j ra
and v0, v0, (INT_MASK | SR_INT_ENAB)
END(spl0)
LEAF(splsoftclock)
mfc0 v0, COP_0_STATUS_REG # read status register
li t0, ~SOFT_INT_MASK_0 # disable soft clock
and t0, t0, v0
mtc0 t0, COP_0_STATUS_REG # save it
nop # 3 ins to disable
j ra
and v0, v0, (INT_MASK | SR_INT_ENAB)
END(splsoftclock)
LEAF(splsoftnet)
mfc0 v0, COP_0_STATUS_REG # read status register
li t0, ~(SOFT_INT_MASK_1|SOFT_INT_MASK_0)
and t0, t0, v0
mtc0 t0, COP_0_STATUS_REG # save it
j ra
and v0, v0, (INT_MASK | SR_INT_ENAB)
END(splsoftnet)
LEAF(Mips_spl0)
mfc0 v0, COP_0_STATUS_REG # read status register
li t0, ~(INT_MASK_0|SOFT_INT_MASK_1|SOFT_INT_MASK_0)
and t0, t0, v0
mtc0 t0, COP_0_STATUS_REG # save it
nop # 3 ins to disable
j ra
and v0, v0, (INT_MASK | SR_INT_ENAB)
END(Mips_spl0)
LEAF(Mips_spl1)
mfc0 v0, COP_0_STATUS_REG # read status register
li t0, ~(INT_MASK_1|SOFT_INT_MASK_0|SOFT_INT_MASK_1)
and t0, t0, v0
mtc0 t0, COP_0_STATUS_REG # save it
nop # 3 ins to disable
j ra
and v0, v0, (INT_MASK | SR_INT_ENAB)
END(Mips_spl1)
LEAF(Mips_spl2)
mfc0 v0, COP_0_STATUS_REG # read status register
li t0, ~(INT_MASK_2|SOFT_INT_MASK_1|SOFT_INT_MASK_0)
and t0, t0, v0
mtc0 t0, COP_0_STATUS_REG # save it
nop # 3 ins to disable
j ra
and v0, v0, (INT_MASK | SR_INT_ENAB)
END(Mips_spl2)
LEAF(Mips_spl3)
mfc0 v0, COP_0_STATUS_REG # read status register
li t0, ~(INT_MASK_3|SOFT_INT_MASK_1|SOFT_INT_MASK_0)
and t0, t0, v0
mtc0 t0, COP_0_STATUS_REG # save it
nop # 3 ins to disable
j ra
and v0, v0, (INT_MASK | SR_INT_ENAB)
END(Mips_spl3)
LEAF(Mips_spl4)
mfc0 v0, COP_0_STATUS_REG # read status register
li t0, ~(INT_MASK_4|SOFT_INT_MASK_1|SOFT_INT_MASK_0)
and t0, t0, v0
mtc0 t0, COP_0_STATUS_REG # save it
nop # 3 ins to disable
j ra
and v0, v0, (INT_MASK | SR_INT_ENAB)
END(Mips_spl4)
LEAF(Mips_spl5)
mfc0 v0, COP_0_STATUS_REG # read status register
li t0, ~(INT_MASK_5|SOFT_INT_MASK_1|SOFT_INT_MASK_0)
and t0, t0, v0
mtc0 t0, COP_0_STATUS_REG # save it
nop # 3 ins to disable
j ra
and v0, v0, (INT_MASK | SR_INT_ENAB)
END(Mips_spl5)
/*
* We define an alternate entry point after mcount is called so it
* can be used in mcount without causeing a recursive loop.
*/
LEAF(splhigh)
ALEAF(_splhigh)
mfc0 v0, COP_0_STATUS_REG # read status register
li t0, ~SR_INT_ENAB # disable all interrupts
and t0, t0, v0
mtc0 t0, COP_0_STATUS_REG # save it
nop # 3 ins to disable
j ra
and v0, v0, (INT_MASK | SR_INT_ENAB)
END(splhigh)
/*
* Restore saved interrupt mask.
*/
LEAF(splx)
ALEAF(_splx)
mfc0 v0, COP_0_STATUS_REG
li t0, ~(INT_MASK | SR_INT_ENAB)
and t0, t0, v0
or t0, t0, a0
mtc0 t0, COP_0_STATUS_REG
nop # 3 ins to disable
j ra
nop
END(splx)
/*----------------------------------------------------------------------------
*
* wbflush --
*
* Return when the write buffer is empty.
*
* wbflush()
*
* Results:
* None.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------------
*/
LEAF(wbflush)
nop
sync
j ra
nop
END(wbflush)
/*--------------------------------------------------------------------------
*
* R4K_TLBWriteIndexed --
*
* Write the given entry into the TLB at the given index.
*
* R4K_TLBWriteIndexed(index, tlb)
* unsigned index;
* tlb *tlb;
*
* Results:
* None.
*
* Side effects:
* TLB entry set.
*
*--------------------------------------------------------------------------
*/
LEAF(R4K_TLBWriteIndexed)
mfc0 v1, COP_0_STATUS_REG # Save the status register.
mtc0 zero, COP_0_STATUS_REG # Disable interrupts
nop
lw a2, 8(a1)
lw a3, 12(a1)
dmfc0 t0, COP_0_TLB_HI # Save the current PID.
dmtc0 a2, COP_0_TLB_LO0 # Set up entry low0.
dmtc0 a3, COP_0_TLB_LO1 # Set up entry low1.
lw a2, 0(a1)
lw a3, 4(a1)
mtc0 a0, COP_0_TLB_INDEX # Set the index.
dmtc0 a2, COP_0_TLB_PG_MASK # Set up entry mask.
dmtc0 a3, COP_0_TLB_HI # Set up entry high.
nop
tlbwi # Write the TLB
nop
nop
nop # Delay for effect
nop
dmtc0 t0, COP_0_TLB_HI # Restore the PID.
nop
dmtc0 zero, COP_0_TLB_PG_MASK # Default mask value.
j ra
mtc0 v1, COP_0_STATUS_REG # Restore the status register
END(R4K_TLBWriteIndexed)
/*--------------------------------------------------------------------------
*
* R4K_SetPID --
*
* Write the given pid into the TLB pid reg.
*
* R4K_SetPID(pid)
* int pid;
*
* Results:
* None.
*
* Side effects:
* PID set in the entry hi register.
*
*--------------------------------------------------------------------------
*/
LEAF(R4K_SetPID)
dmtc0 a0, COP_0_TLB_HI # Write the hi reg value
j ra
nop
END(R4K_SetPID)
/*--------------------------------------------------------------------------
*
* R4K_SetWIRED --
*
* Write the given value into the TLB wired reg.
*
* R4K_SetPID(wired)
* int wired;
*
* Results:
* None.
*
* Side effects:
* WIRED set in the wired register.
*
*--------------------------------------------------------------------------
*/
LEAF(R4K_SetWIRED)
mtc0 a0, COP_0_TLB_WIRED
j ra
nop
END(R4K_SetWIRED)
/*--------------------------------------------------------------------------
*
* R4K_GetWIRED --
*
* Get the value from the TLB wired reg.
*
* R4K_GetWIRED(void)
*
* Results:
* Value of wired reg.
*
* Side effects:
* None.
*
*--------------------------------------------------------------------------
*/
LEAF(R4K_GetWIRED)
mfc0 v0, COP_0_TLB_WIRED
j ra
nop
END(R4K_GetWIRED)
/*--------------------------------------------------------------------------
*
* R4K_TLBFlush --
*
* Flush the "random" entries from the TLB.
* Uses "wired" register to determine what register to start with.
* Arg "tlbsize" is the number of entries to flush.
*
* R4K_TLBFlush(tlbsize)
*
* Results:
* None.
*
* Side effects:
* The TLB is flushed.
*
*--------------------------------------------------------------------------
*/
LEAF(R4K_TLBFlush)
mfc0 v1, COP_0_STATUS_REG # Save the status register.
mtc0 zero, COP_0_STATUS_REG # Disable interrupts
mfc0 t1, COP_0_TLB_WIRED
li v0, CACHED_MEMORY_ADDR # invalid address
dmfc0 t0, COP_0_TLB_HI # Save the PID
dmtc0 v0, COP_0_TLB_HI # Mark entry high as invalid
dmtc0 zero, COP_0_TLB_LO0 # Zero out low entry0.
dmtc0 zero, COP_0_TLB_LO1 # Zero out low entry1.
mtc0 zero, COP_0_TLB_PG_MASK # Zero out mask entry.
/*
* Align the starting value (t1) and the upper bound (a0).
*/
1:
mtc0 t1, COP_0_TLB_INDEX # Set the index register.
addu t1, t1, 1 # Increment index.
tlbwi # Write the TLB entry.
nop
nop
bne t1, a0, 1b
nop
dmtc0 t0, COP_0_TLB_HI # Restore the PID
j ra
mtc0 v1, COP_0_STATUS_REG # Restore the status register
END(R4K_TLBFlush)
/*--------------------------------------------------------------------------
*
* R4K_TLBFlushAddr --
*
* Flush any TLB entries for the given address and TLB PID.
*
* R4K_TLBFlushAddr(TLBhi)
* unsigned TLBhi;
*
* Results:
* None.
*
* Side effects:
* The process's page is flushed from the TLB.
*
*--------------------------------------------------------------------------
*/
LEAF(R4K_TLBFlushAddr)
mfc0 v1, COP_0_STATUS_REG # Save the status register.
mtc0 zero, COP_0_STATUS_REG # Disable interrupts
nop
li v0, (PG_HVPN | PG_ASID)
and a0, a0, v0 # Make shure valid hi value.
dmfc0 t0, COP_0_TLB_HI # Get current PID
dmtc0 a0, COP_0_TLB_HI # look for addr & PID
nop
nop
nop
tlbp # Probe for the entry.
nop
nop # Delay for effect
nop
mfc0 v0, COP_0_TLB_INDEX # See what we got
li t1, CACHED_MEMORY_ADDR # Load invalid entry.
bltz v0, 1f # index < 0 => !found
nop
dmtc0 t1, COP_0_TLB_HI # Mark entry high as invalid
dmtc0 zero, COP_0_TLB_LO0 # Zero out low entry.
dmtc0 zero, COP_0_TLB_LO1 # Zero out low entry.
nop
tlbwi
nop
nop
nop
nop
1:
dmtc0 t0, COP_0_TLB_HI # restore PID
j ra
mtc0 v1, COP_0_STATUS_REG # Restore the status register
END(R4K_TLBFlushAddr)
/*--------------------------------------------------------------------------
*
* R4K_TLBUpdate --
*
* Update the TLB if highreg is found; otherwise, enter the data.
*
* R4K_TLBUpdate(virpageadr, lowregx)
* unsigned virpageadr, lowregx;
*
* Results:
* < 0 if loaded >= 0 if updated.
*
* Side effects:
* None.
*
*--------------------------------------------------------------------------
*/
LEAF(R4K_TLBUpdate)
mfc0 v1, COP_0_STATUS_REG # Save the status register.
mtc0 zero, COP_0_STATUS_REG # Disable interrupts
and t1, a0, 0x1000 # t1 = Even/Odd flag
li v0, (PG_HVPN | PG_ASID)
and a0, a0, v0
dmfc0 t0, COP_0_TLB_HI # Save current PID
dmtc0 a0, COP_0_TLB_HI # Init high reg
and a2, a1, PG_G # Copy global bit
nop
nop
tlbp # Probe for the entry.
dsll a1, a1, 34
dsrl a1, a1, 34
bne t1, zero, 2f # Decide even odd
mfc0 v0, COP_0_TLB_INDEX # See what we got
# EVEN
nop
bltz v0, 1f # index < 0 => !found
nop
tlbr # update, read entry first
nop
nop
nop
dmtc0 a1, COP_0_TLB_LO0 # init low reg0.
nop
tlbwi # update slot found
b 4f
nop
1:
mtc0 zero, COP_0_TLB_PG_MASK # init mask.
dmtc0 a0, COP_0_TLB_HI # init high reg.
dmtc0 a1, COP_0_TLB_LO0 # init low reg0.
dmtc0 a2, COP_0_TLB_LO1 # init low reg1.
nop
tlbwr # enter into a random slot
b 4f
nop
# ODD
2:
nop
bltz v0, 3f # index < 0 => !found
nop
tlbr # read the entry first
nop
nop
nop
dmtc0 a1, COP_0_TLB_LO1 # init low reg1.
nop
tlbwi # update slot found
b 4f
nop
3:
mtc0 zero, COP_0_TLB_PG_MASK # init mask.
dmtc0 a0, COP_0_TLB_HI # init high reg.
dmtc0 a2, COP_0_TLB_LO0 # init low reg0.
dmtc0 a1, COP_0_TLB_LO1 # init low reg1.
nop
tlbwr # enter into a random slot
4: # Make shure pipeline
nop # advances before we
nop # uses the tlb.
nop
nop
dmtc0 t0, COP_0_TLB_HI # restore PID
j ra
mtc0 v1, COP_0_STATUS_REG # Restore the status register
END(R4K_TLBUpdate)
/*--------------------------------------------------------------------------
*
* R4K_TLBRead --
*
* Read the TLB entry.
*
* R4K_TLBRead(entry, tlb)
* unsigned entry;
* struct tlb *tlb;
*
* Results:
* None.
*
* Side effects:
* tlb will contain the TLB entry found.
*
*--------------------------------------------------------------------------
*/
LEAF(R4K_TLBRead)
mfc0 v1, COP_0_STATUS_REG # Save the status register.
mtc0 zero, COP_0_STATUS_REG # Disable interrupts
nop
nop
nop
dmfc0 t0, COP_0_TLB_HI # Get current PID
mtc0 a0, COP_0_TLB_INDEX # Set the index register
nop
tlbr # Read from the TLB
nop
nop
nop
mfc0 t2, COP_0_TLB_PG_MASK # fetch the hi entry
dmfc0 t3, COP_0_TLB_HI # fetch the hi entry
dmfc0 t4, COP_0_TLB_LO0 # See what we got
dmfc0 t5, COP_0_TLB_LO1 # See what we got
dmtc0 t0, COP_0_TLB_HI # restore PID
nop
nop
nop # wait for PID active
mtc0 v1, COP_0_STATUS_REG # Restore the status register
sw t2, 0(a1)
sw t3, 4(a1)
sw t4, 8(a1)
j ra
sw t5, 12(a1)
END(R4K_TLBRead)
/*--------------------------------------------------------------------------
*
* R4K_TLBGetPID --
*
* R4K_TLBGetPID()
*
* Results:
* Returns the current TLB pid reg.
*
* Side effects:
* None.
*
*--------------------------------------------------------------------------
*/
LEAF(R4K_TLBGetPID)
dmfc0 v0, COP_0_TLB_HI # get PID
j ra
and v0, v0, VMTLB_PID # mask off PID
END(R4K_TLBGetPID)
/*--------------------------------------------------------------------------
*
* R4K_GetCOUNT --
*
* R4K_GetCOUNT()
*
* Results:
* Returns the current COUNT reg.
*
* Side effects:
* None.
*
*--------------------------------------------------------------------------
*/
LEAF(R4K_GetCOUNT)
mfc0 v0, COP_0_COUNT
nop #???
nop #???
j ra
nop
END(R4K_GetCOUNT)
/*--------------------------------------------------------------------------
*
* R4K_SetCOMPARE --
*
* R4K_SetCOMPARE()
*
* Results:
* Sets a new value to the COMPARE register.
*
* Side effects:
* The COMPARE equal interrupt is acknowledged.
*
*--------------------------------------------------------------------------
*/
LEAF(R4K_SetCOMPARE)
j ra
mtc0 a0, COP_0_COMPARE
END(R4K_SetCOMPARE)
/*----------------------------------------------------------------------------
*
* MipsSwitchFPState --
*
* Save the current state into 'from' and restore it from 'to'.
*
* MipsSwitchFPState(from, to)
* struct proc *from;
* struct user *to;
*
* Results:
* None.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------------
*/
LEAF(MipsSwitchFPState)
mfc0 t1, COP_0_STATUS_REG # Save old SR
li t0, SR_COP_1_BIT # enable the coprocessor
mtc0 t0, COP_0_STATUS_REG
beq a0, zero, 1f # skip save if NULL pointer
nop
/*
* First read out the status register to make sure that all FP operations
* have completed.
*/
lw a0, P_ADDR(a0) # get pointer to pcb for proc
cfc1 t0, FPC_CSR # stall til FP done
cfc1 t0, FPC_CSR # now get status
li t3, ~SR_COP_1_BIT
lw t2, U_PCB_REGS+(PS * 4)(a0) # get CPU status register
sw t0, U_PCB_FPREGS+(32 * 4)(a0) # save FP status
and t2, t2, t3 # clear COP_1 enable bit
sw t2, U_PCB_REGS+(PS * 4)(a0) # save new status register
/*
* Save the floating point registers.
*/
swc1 $f0, U_PCB_FPREGS+(0 * 4)(a0)
swc1 $f1, U_PCB_FPREGS+(1 * 4)(a0)
swc1 $f2, U_PCB_FPREGS+(2 * 4)(a0)
swc1 $f3, U_PCB_FPREGS+(3 * 4)(a0)
swc1 $f4, U_PCB_FPREGS+(4 * 4)(a0)
swc1 $f5, U_PCB_FPREGS+(5 * 4)(a0)
swc1 $f6, U_PCB_FPREGS+(6 * 4)(a0)
swc1 $f7, U_PCB_FPREGS+(7 * 4)(a0)
swc1 $f8, U_PCB_FPREGS+(8 * 4)(a0)
swc1 $f9, U_PCB_FPREGS+(9 * 4)(a0)
swc1 $f10, U_PCB_FPREGS+(10 * 4)(a0)
swc1 $f11, U_PCB_FPREGS+(11 * 4)(a0)
swc1 $f12, U_PCB_FPREGS+(12 * 4)(a0)
swc1 $f13, U_PCB_FPREGS+(13 * 4)(a0)
swc1 $f14, U_PCB_FPREGS+(14 * 4)(a0)
swc1 $f15, U_PCB_FPREGS+(15 * 4)(a0)
swc1 $f16, U_PCB_FPREGS+(16 * 4)(a0)
swc1 $f17, U_PCB_FPREGS+(17 * 4)(a0)
swc1 $f18, U_PCB_FPREGS+(18 * 4)(a0)
swc1 $f19, U_PCB_FPREGS+(19 * 4)(a0)
swc1 $f20, U_PCB_FPREGS+(20 * 4)(a0)
swc1 $f21, U_PCB_FPREGS+(21 * 4)(a0)
swc1 $f22, U_PCB_FPREGS+(22 * 4)(a0)
swc1 $f23, U_PCB_FPREGS+(23 * 4)(a0)
swc1 $f24, U_PCB_FPREGS+(24 * 4)(a0)
swc1 $f25, U_PCB_FPREGS+(25 * 4)(a0)
swc1 $f26, U_PCB_FPREGS+(26 * 4)(a0)
swc1 $f27, U_PCB_FPREGS+(27 * 4)(a0)
swc1 $f28, U_PCB_FPREGS+(28 * 4)(a0)
swc1 $f29, U_PCB_FPREGS+(29 * 4)(a0)
swc1 $f30, U_PCB_FPREGS+(30 * 4)(a0)
swc1 $f31, U_PCB_FPREGS+(31 * 4)(a0)
1:
/*
* Restore the floating point registers.
*/
lw t0, U_PCB_FPREGS+(32 * 4)(a1) # get status register
lwc1 $f0, U_PCB_FPREGS+(0 * 4)(a1)
lwc1 $f1, U_PCB_FPREGS+(1 * 4)(a1)
lwc1 $f2, U_PCB_FPREGS+(2 * 4)(a1)
lwc1 $f3, U_PCB_FPREGS+(3 * 4)(a1)
lwc1 $f4, U_PCB_FPREGS+(4 * 4)(a1)
lwc1 $f5, U_PCB_FPREGS+(5 * 4)(a1)
lwc1 $f6, U_PCB_FPREGS+(6 * 4)(a1)
lwc1 $f7, U_PCB_FPREGS+(7 * 4)(a1)
lwc1 $f8, U_PCB_FPREGS+(8 * 4)(a1)
lwc1 $f9, U_PCB_FPREGS+(9 * 4)(a1)
lwc1 $f10, U_PCB_FPREGS+(10 * 4)(a1)
lwc1 $f11, U_PCB_FPREGS+(11 * 4)(a1)
lwc1 $f12, U_PCB_FPREGS+(12 * 4)(a1)
lwc1 $f13, U_PCB_FPREGS+(13 * 4)(a1)
lwc1 $f14, U_PCB_FPREGS+(14 * 4)(a1)
lwc1 $f15, U_PCB_FPREGS+(15 * 4)(a1)
lwc1 $f16, U_PCB_FPREGS+(16 * 4)(a1)
lwc1 $f17, U_PCB_FPREGS+(17 * 4)(a1)
lwc1 $f18, U_PCB_FPREGS+(18 * 4)(a1)
lwc1 $f19, U_PCB_FPREGS+(19 * 4)(a1)
lwc1 $f20, U_PCB_FPREGS+(20 * 4)(a1)
lwc1 $f21, U_PCB_FPREGS+(21 * 4)(a1)
lwc1 $f22, U_PCB_FPREGS+(22 * 4)(a1)
lwc1 $f23, U_PCB_FPREGS+(23 * 4)(a1)
lwc1 $f24, U_PCB_FPREGS+(24 * 4)(a1)
lwc1 $f25, U_PCB_FPREGS+(25 * 4)(a1)
lwc1 $f26, U_PCB_FPREGS+(26 * 4)(a1)
lwc1 $f27, U_PCB_FPREGS+(27 * 4)(a1)
lwc1 $f28, U_PCB_FPREGS+(28 * 4)(a1)
lwc1 $f29, U_PCB_FPREGS+(29 * 4)(a1)
lwc1 $f30, U_PCB_FPREGS+(30 * 4)(a1)
lwc1 $f31, U_PCB_FPREGS+(31 * 4)(a1)
and t0, t0, ~FPC_EXCEPTION_BITS
ctc1 t0, FPC_CSR
nop
mtc0 t1, COP_0_STATUS_REG # Restore the status register.
j ra
nop
END(MipsSwitchFPState)
/*----------------------------------------------------------------------------
*
* MipsSaveCurFPState --
*
* Save the current floating point coprocessor state.
*
* MipsSaveCurFPState(p)
* struct proc *p;
*
* Results:
* None.
*
* Side effects:
* machFPCurProcPtr is cleared.
*
*----------------------------------------------------------------------------
*/
LEAF(MipsSaveCurFPState)
lw a0, P_ADDR(a0) # get pointer to pcb for proc
mfc0 t1, COP_0_STATUS_REG # Disable interrupts and
li t0, SR_COP_1_BIT # enable the coprocessor
mtc0 t0, COP_0_STATUS_REG
sw zero, machFPCurProcPtr # indicate state has been saved
/*
* First read out the status register to make sure that all FP operations
* have completed.
*/
lw t2, U_PCB_REGS+(PS * 4)(a0) # get CPU status register
li t3, ~SR_COP_1_BIT
and t2, t2, t3 # clear COP_1 enable bit
cfc1 t0, FPC_CSR # stall til FP done
cfc1 t0, FPC_CSR # now get status
sw t2, U_PCB_REGS+(PS * 4)(a0) # save new status register
sw t0, U_PCB_FPREGS+(32 * 4)(a0) # save FP status
/*
* Save the floating point registers.
*/
swc1 $f0, U_PCB_FPREGS+(0 * 4)(a0)
swc1 $f1, U_PCB_FPREGS+(1 * 4)(a0)
swc1 $f2, U_PCB_FPREGS+(2 * 4)(a0)
swc1 $f3, U_PCB_FPREGS+(3 * 4)(a0)
swc1 $f4, U_PCB_FPREGS+(4 * 4)(a0)
swc1 $f5, U_PCB_FPREGS+(5 * 4)(a0)
swc1 $f6, U_PCB_FPREGS+(6 * 4)(a0)
swc1 $f7, U_PCB_FPREGS+(7 * 4)(a0)
swc1 $f8, U_PCB_FPREGS+(8 * 4)(a0)
swc1 $f9, U_PCB_FPREGS+(9 * 4)(a0)
swc1 $f10, U_PCB_FPREGS+(10 * 4)(a0)
swc1 $f11, U_PCB_FPREGS+(11 * 4)(a0)
swc1 $f12, U_PCB_FPREGS+(12 * 4)(a0)
swc1 $f13, U_PCB_FPREGS+(13 * 4)(a0)
swc1 $f14, U_PCB_FPREGS+(14 * 4)(a0)
swc1 $f15, U_PCB_FPREGS+(15 * 4)(a0)
swc1 $f16, U_PCB_FPREGS+(16 * 4)(a0)
swc1 $f17, U_PCB_FPREGS+(17 * 4)(a0)
swc1 $f18, U_PCB_FPREGS+(18 * 4)(a0)
swc1 $f19, U_PCB_FPREGS+(19 * 4)(a0)
swc1 $f20, U_PCB_FPREGS+(20 * 4)(a0)
swc1 $f21, U_PCB_FPREGS+(21 * 4)(a0)
swc1 $f22, U_PCB_FPREGS+(22 * 4)(a0)
swc1 $f23, U_PCB_FPREGS+(23 * 4)(a0)
swc1 $f24, U_PCB_FPREGS+(24 * 4)(a0)
swc1 $f25, U_PCB_FPREGS+(25 * 4)(a0)
swc1 $f26, U_PCB_FPREGS+(26 * 4)(a0)
swc1 $f27, U_PCB_FPREGS+(27 * 4)(a0)
swc1 $f28, U_PCB_FPREGS+(28 * 4)(a0)
swc1 $f29, U_PCB_FPREGS+(29 * 4)(a0)
swc1 $f30, U_PCB_FPREGS+(30 * 4)(a0)
swc1 $f31, U_PCB_FPREGS+(31 * 4)(a0)
mtc0 t1, COP_0_STATUS_REG # Restore the status register.
j ra
nop
END(MipsSaveCurFPState)
/*----------------------------------------------------------------------------
*
* MipsFPTrap --
*
* Handle a floating point Trap.
*
* MipsFPTrap(statusReg, causeReg, pc)
* unsigned statusReg;
* unsigned causeReg;
* unsigned pc;
*
* Results:
* None.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------------
*/
NON_LEAF(MipsFPTrap, STAND_FRAME_SIZE, ra)
subu sp, sp, STAND_FRAME_SIZE
mfc0 t0, COP_0_STATUS_REG
sw ra, STAND_RA_OFFSET(sp)
.mask 0x80000000, (STAND_RA_OFFSET - STAND_FRAME_SIZE)
or t1, t0, SR_COP_1_BIT
mtc0 t1, COP_0_STATUS_REG
nop
nop
nop
nop
cfc1 t1, FPC_CSR # stall til FP done
cfc1 t1, FPC_CSR # now get status
nop
sll t2, t1, (31 - 17) # unimplemented operation?
bgez t2, 3f # no, normal trap
nop
/*
* We got an unimplemented operation trap so
* fetch the instruction, compute the next PC and emulate the instruction.
*/
bgez a1, 1f # Check the branch delay bit.
nop
/*
* The instruction is in the branch delay slot so the branch will have to
* be emulated to get the resulting PC.
*/
sw a2, STAND_FRAME_SIZE + 8(sp)
li a0, UADDR+U_PCB_REGS # first arg is ptr to CPU registers
move a1, a2 # second arg is instruction PC
move a2, t1 # third arg is floating point CSR
jal MipsEmulateBranch # compute PC after branch
move a3, zero # fourth arg is FALSE
/*
* Now load the floating-point instruction in the branch delay slot
* to be emulated.
*/
lw a2, STAND_FRAME_SIZE + 8(sp) # restore EXC pc
b 2f
lw a0, 4(a2) # a0 = coproc instruction
/*
* This is not in the branch delay slot so calculate the resulting
* PC (epc + 4) into v0 and continue to MipsEmulateFP().
*/
1:
lw a0, 0(a2) # a0 = coproc instruction
addu v0, a2, 4 # v0 = next pc
2:
sw v0, UADDR+U_PCB_REGS+(PC * 4) # save new pc
/*
* Check to see if the instruction to be emulated is a floating-point
* instruction.
*/
srl a3, a0, OPCODE_SHIFT
beq a3, OPCODE_C1, 4f # this should never fail
nop
/*
* Send a floating point exception signal to the current process.
*/
3:
lw a0, curproc # get current process
cfc1 a2, FPC_CSR # code = FP execptions
ctc1 zero, FPC_CSR # Clear exceptions
jal trapsignal
li a1, SIGFPE
b FPReturn
nop
/*
* Finally, we can call MipsEmulateFP() where a0 is the instruction to emulate.
*/
4:
jal MipsEmulateFP
nop
/*
* Turn off the floating point coprocessor and return.
*/
FPReturn:
mfc0 t0, COP_0_STATUS_REG
lw ra, STAND_RA_OFFSET(sp)
and t0, t0, ~SR_COP_1_BIT
mtc0 t0, COP_0_STATUS_REG
j ra
addu sp, sp, STAND_FRAME_SIZE
END(MipsFPTrap)
/*----------------------------------------------------------------------------
*
* R4K_ConfigCache --
*
* Size the caches.
* NOTE: should only be called from mips_init().
*
* Results:
* None.
*
* Side effects:
* The size of the data cache is stored into CpuPrimaryDataCacheSize.
* The size of instruction cache is stored into CpuPrimaryInstCacheSize.
* Alignment mask for cache aliasing test is stored in CpuCacheAliasMask.
* cpu_id is set for later decision testing.
XXX Needs support for Cpu controlled L2 caches (SC cpus). XXX
*
*----------------------------------------------------------------------------
*/
LEAF(R4K_ConfigCache)
.set noreorder
mfc0 t0, COP_0_PRID # read processor ID register
nop
sw t0, cpu_id # save PRID register
mfc0 v0, COP_0_CONFIG # Get configuration register
mfc0 v1, COP_0_PRID
srl t1, v0, 9 # Get I cache size.
and t1, 3
li t2, 4096
sllv t2, t2, t1
sw t2, CpuPrimaryInstCacheSize
addiu t2, -1
and t2, ~(NBPG - 1)
sw t2, CpuCacheAliasMask
and t2, v0, 0x20
srl t2, t2, 1
addu t2, t2, 16
sw t2, CpuPrimaryInstCacheLSize
srl t1, v0, 6 # Get D cache size.
and t1, 3
li t2, 4096
sllv t2, t2, t1
sw t2, CpuPrimaryDataCacheSize
and t2, v0, 0x10
addu t2, t2, 16
sw t2, CpuPrimaryDataCacheLSize
and v1, 0xff00
li t2, 1 # Recognize CPU's with
li t1, (MIPS_R4600 << 8) # two way associative caches.
beq v1, t1, 1f
li t1, (MIPS_R4700 << 8)
beq v1, t1, 1f
li t1, (MIPS_R5000 << 8)
beq v1, t1, 1f
li t1, (MIPS_RM52X0 << 8)
beq v1, t1, 1f
li t2, 1
li t2, 0
1:
sw t2, CpuTwoWayCache
j ra
nop
END(R4K_ConfigCache)
/*----------------------------------------------------------------------------
*
* R4K_FlushCache --
*
* Flush the caches. Assumes a line size of 16 bytes for speed.
*
* Results:
* None.
*
* Side effects:
* The contents of the caches is flushed.
*
*----------------------------------------------------------------------------
*/
LEAF(R4K_FlushCache)
.set noreorder
/*XXX 4600 Bug */
mfc0 v1, COP_0_STATUS_REG # Save the status register.
mtc0 zero, COP_0_STATUS_REG # Disable interrupts
/*XXX*/
lw v0, CpuTwoWayCache
lw t1, CpuPrimaryInstCacheSize
lw t2, CpuPrimaryDataCacheSize
# lw t3, CpuPrimaryInstCacheLSize
# lw t4, CpuPrimaryDataCacheLSize
/*
* Flush the instruction cache.
*/
li t0, CACHED_MEMORY_ADDR
addu t1, t0, t1 # End address
subu t1, t1, 128
1:
bne v0, zero, 2f
cache 0, 0(t0)
cache 0, 16(t0)
cache 0, 48(t0)
cache 0, 80(t0)
b 3f
cache 0, 112(t0)
2:
cache 0, 8192+0(t0)
cache 0, 8192+32(t0)
cache 0, 8192+64(t0)
cache 0, 8192+96(t0)
3:
cache 0, 32(t0)
cache 0, 64(t0)
cache 0, 96(t0)
bne t0, t1, 1b
addu t0, t0, 128
/*
* Flush the data cache.
*/
li t0, CACHED_MEMORY_ADDR
addu t1, t0, t2 # End address
subu t1, t1, 128
1:
bne v0, zero, 2f
cache 1, 0(t0)
cache 1, 16(t0)
cache 1, 48(t0)
cache 1, 80(t0)
b 3f
cache 1, 112(t0)
2:
cache 1, 8192+0(t0)
cache 1, 8192+32(t0)
cache 1, 8192+64(t0)
cache 1, 8192+96(t0)
3:
cache 1, 32(t0)
cache 1, 64(t0)
cache 1, 96(t0)
bne t0, t1, 1b
addu t0, t0, 128
/*XXX 4600 Bug */
mtc0 v1, COP_0_STATUS_REG # Restore the status register.
/*XXX*/
j ra
nop
END(R4K_FlushCache)
/*----------------------------------------------------------------------------
*
* R4K_FlushICache --
*
* void R4K_FlushICache(addr, len)
* vm_offset_t addr, len;
*
* Flush instruction cache for range of addr to addr + len - 1.
* The address can be any valid address so long as no TLB misses occur.
* Assumes a cache line size of 16 bytes for speed.
*
* Results:
* None.
*
* Side effects:
* The contents of the cache is flushed.
* Must not touch v0.
*
*----------------------------------------------------------------------------
*/
LEAF(R4K_FlushICache)
/*XXX 4600 Bug */
mfc0 v1, COP_0_STATUS_REG # Save the status register.
mtc0 zero, COP_0_STATUS_REG # Disable interrupts
/*XXX*/
lw v0, CpuTwoWayCache
addu a1, 127 # Align
srl a1, a1, 7 # Number of unrolled loops
1:
bne v0, zero, 2f
addu a1, -1
cache 0, 16(a0)
cache 0, 48(a0)
cache 0, 80(a0)
b 3f
cache 0, 112(a0)
2:
cache 0, 8192+0(a0)
cache 0, 8192+32(a0)
cache 0, 8192+64(a0)
cache 0, 8192+96(a0)
3:
cache 0, 0(a0)
cache 0, 32(a0)
cache 0, 64(a0)
cache 0, 96(a0)
bne a1, zero, 1b
addu a0, 128
/*XXX 4600 Bug */
mtc0 v1, COP_0_STATUS_REG # Restore the status register.
/*XXX*/
j ra
move v0, zero # suiword depends on this!!
END(R4K_FlushICache)
/*----------------------------------------------------------------------------
*
* R4K_FlushDCache --
*
* void R4K_FlushDCache(addr, len)
* vm_offset_t addr, len;
*
* Flush data cache for index range of addr to addr + len - 1.
* The address is reduced to a kseg0 index.
*
* Results:
* None.
*
* Side effects:
* The contents of the cache is written back to primary memory.
* The cache line is invalidated.
*
*----------------------------------------------------------------------------
*/
LEAF(R4K_FlushDCache)
/*XXX 4600 Bug */
mfc0 v1, COP_0_STATUS_REG # Save the status register.
mtc0 zero, COP_0_STATUS_REG # Disable interrupts
/*XXX*/
lw v0, CpuTwoWayCache
lw a2, CpuPrimaryDataCacheSize
addiu a2, -1
and a0, a0, a2
addu a1, 127 # Align
li a2, 0x80000000
addu a0, a0, a2
addu a1, a1, a0
and a0, a0, -128
subu a1, a1, a0
srl a1, a1, 7 # Compute number of cache lines
1:
bne v0, zero, 2f
addu a1, -1
cache 1, 16(a0)
cache 1, 48(a0)
cache 1, 80(a0)
b 3f
cache 1, 112(a0)
2:
cache 1, 8192+0(a0)
cache 1, 8192+32(a0)
cache 1, 8192+64(a0)
cache 1, 8192+96(a0)
3:
cache 1, 0(a0)
cache 1, 32(a0)
cache 1, 64(a0)
cache 1, 96(a0)
bne a1, zero, 1b
addu a0, 128
/*XXX 4600 Bug */
mtc0 v1, COP_0_STATUS_REG # Restore the status register.
/*XXX*/
j ra
nop
END(R4K_FlushDCache)
/*----------------------------------------------------------------------------
*
* R4K_HitFlushDCache --
*
* void R4K_HitFlushDCache(addr, len)
* vm_offset_t addr, len;
*
* Flush data cache for range of addr to addr + len - 1.
* The address can be any valid viritual address as long
* as no TLB invalid traps occur. Only lines with matching
* addr is flushed.
*
* Results:
* None.
*
* Side effects:
* The contents of the cache is written back to primary memory.
* The cache line is invalidated.
*
*----------------------------------------------------------------------------
*/
LEAF(R4K_HitFlushDCache)
lw v0, CpuTwoWayCache
beq a1, zero, 3f
addu a1, 127 # Align
addu a1, a1, a0
and a0, a0, -128
subu a1, a1, a0
srl a1, a1, 7 # Compute number of cache lines
1:
bne v0, zero, 2f
addu a1, -1
cache 0x15, 16(a0)
cache 0x15, 48(a0)
cache 0x15, 80(a0)
cache 0x15, 112(a0)
2:
cache 0x15, 0(a0)
cache 0x15, 32(a0)
cache 0x15, 64(a0)
cache 0x15, 96(a0)
bne a1, zero, 1b
addu a0, 128
3:
j ra
nop
END(R4K_HitFlushDCache)
/*----------------------------------------------------------------------------
*
* R4K_InvalidateDCache --
*
* void R4K_FlushDCache(addr, len)
* vm_offset_t addr, len;
*
* Flush data cache for range of addr to addr + len - 1.
* The address can be any valid address as long as no TLB misses occur.
* (Be sure to use cached K0SEG kernel addresses or mapped addresses)
* Results:
* None.
*
* Side effects:
* The cache line is invalidated.
*
*----------------------------------------------------------------------------
*/
LEAF(R4K_InvalidateDCache)
addu a1, a1, a0 # compute ending address
1:
cache 0x11, 8194(a0)
addu a0, a0, 4
bne a0, a1, 1b
cache 0x11, -4(a0)
j ra
nop
END(R4K_InvalidateDCache)
#if defined(DDB) || defined(DEBUG)
LEAF(kdbpeek)
li v0, DDBERR
and v0, a0, 3 # unaligned ?
bne v0, zero, 1f
sw v0, UADDR+U_PCB_ONFAULT
lw v0, (a0)
jr ra
sw zero, UADDR+U_PCB_ONFAULT
1:
LWHI v0, 0(a0)
LWLO v0, 3(a0)
jr ra
sw zero, UADDR+U_PCB_ONFAULT
END(kdbpeek)
ddberr:
jr ra
nop
#if defined(DDB)
LEAF(kdbpoke)
li v0, DDBERR
and v0, a0, 3 # unaligned ?
bne v0, zero, 1f
sw v0, UADDR+U_PCB_ONFAULT
sw a1, (a0)
jr ra
sw zero, UADDR+U_PCB_ONFAULT
1:
SWHI a1, 0(a0)
SWLO a1, 3(a0)
jr ra
sw zero, UADDR+U_PCB_ONFAULT
END(kdbpoke)
LEAF(Debugger)
break BREAK_SOVER_VAL
jr ra
nop
END(Debugger)
LEAF(setjmp)
mfc0 v0, COP_0_STATUS_REG # Later the "real" spl value!
STORE s0, RSIZE * 0(a0)
STORE s1, RSIZE * 1(a0)
STORE s2, RSIZE * 2(a0)
STORE s3, RSIZE * 3(a0)
STORE s4, RSIZE * 4(a0)
STORE s5, RSIZE * 5(a0)
STORE s6, RSIZE * 6(a0)
STORE s7, RSIZE * 7(a0)
STORE s8, RSIZE * 8(a0)
STORE sp, RSIZE * 9(a0)
STORE ra, RSIZE * 10(a0)
STORE v0, RSIZE * 11(a0)
jr ra
li v0, 0 # setjmp return
END(setjmp)
LEAF(longjmp)
LOAD v0, RSIZE * 11(a0)
LOAD ra, RSIZE * 10(a0)
LOAD s0, RSIZE * 0(a0)
LOAD s1, RSIZE * 1(a0)
LOAD s2, RSIZE * 2(a0)
LOAD s3, RSIZE * 3(a0)
LOAD s4, RSIZE * 4(a0)
LOAD s5, RSIZE * 5(a0)
LOAD s6, RSIZE * 6(a0)
LOAD s7, RSIZE * 7(a0)
LOAD s8, RSIZE * 8(a0)
LOAD sp, RSIZE * 9(a0)
mtc0 v0, COP_0_STATUS_REG # Later the "real" spl value!
jr ra
li v0, 1 # longjmp return
END(longjmp)
.data
.globl esym
esym: .word 0
#endif /* DDB */
#endif /* DDB || DEBUGGER */
/*
* Interrupt counters for vmstat.
*/
.data
.globl intrcnt
.globl eintrcnt
.globl intrnames
.globl eintrnames
intrnames:
.asciiz "softclock"
.asciiz "softnet"
.asciiz "local_dma"
.asciiz "local_dev"
.asciiz "isa_dev"
.asciiz "isa_nmi"
.asciiz "clock"
.asciiz "statclock"
eintrnames:
.align 3
intrcnt:
.word 0,0,0,0,0,0,0,0
eintrcnt:
|