1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
|
/* $OpenBSD: amptimer.c,v 1.5 2015/12/12 19:57:00 mmcc Exp $ */
/*
* Copyright (c) 2011 Dale Rahn <drahn@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/queue.h>
#include <sys/malloc.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/timetc.h>
#include <sys/evcount.h>
#include <arm/cpufunc.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <arm/cortex/cortex.h>
/* offset from periphbase */
#define GTIMER_ADDR 0x200
#define GTIMER_SIZE 0x100
/* registers */
#define GTIMER_CNT_LOW 0x00
#define GTIMER_CNT_HIGH 0x04
#define GTIMER_CTRL 0x08
#define GTIMER_CTRL_AA (1 << 3)
#define GTIMER_CTRL_IRQ (1 << 2)
#define GTIMER_CTRL_COMP (1 << 1)
#define GTIMER_CTRL_TIMER (1 << 0)
#define GTIMER_STATUS 0x0c
#define GTIMER_STATUS_EVENT (1 << 0)
#define GTIMER_CMP_LOW 0x10
#define GTIMER_CMP_HIGH 0x14
#define GTIMER_AUTOINC 0x18
/* offset from periphbase */
#define PTIMER_ADDR 0x600
#define PTIMER_SIZE 0x100
/* registers */
#define PTIMER_LOAD 0x0
#define PTIMER_CNT 0x4
#define PTIMER_CTRL 0x8
#define PTIMER_CTRL_ENABLE (1<<0)
#define PTIMER_CTRL_AUTORELOAD (1<<1)
#define PTIMER_CTRL_IRQEN (1<<2)
#define PTIMER_STATUS 0xC
#define PTIMER_STATUS_EVENT (1<<0)
#define TIMER_FREQUENCY 396 * 1000 * 1000 /* ARM core clock */
int32_t amptimer_frequency = TIMER_FREQUENCY;
u_int amptimer_get_timecount(struct timecounter *);
static struct timecounter amptimer_timecounter = {
amptimer_get_timecount, NULL, 0x7fffffff, 0, "amptimer", 0, NULL
};
#define MAX_ARM_CPUS 8
struct amptimer_pcpu_softc {
uint64_t pc_nexttickevent;
uint64_t pc_nextstatevent;
u_int32_t pc_ticks_err_sum;
};
struct amptimer_softc {
struct device sc_dev;
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh;
bus_space_handle_t sc_pioh;
struct amptimer_pcpu_softc sc_pstat[MAX_ARM_CPUS];
u_int32_t sc_ticks_err_cnt;
u_int32_t sc_ticks_per_second;
u_int32_t sc_ticks_per_intr;
u_int32_t sc_statvar;
u_int32_t sc_statmin;
#ifdef AMPTIMER_DEBUG
struct evcount sc_clk_count;
struct evcount sc_stat_count;
#endif
};
int amptimer_match(struct device *, void *, void *);
void amptimer_attach(struct device *, struct device *, void *);
uint64_t amptimer_readcnt64(struct amptimer_softc *sc);
int amptimer_intr(void *);
void amptimer_cpu_initclocks(void);
void amptimer_delay(u_int);
void amptimer_setstatclockrate(int stathz);
void amptimer_set_clockrate(int32_t new_frequency);
void amptimer_startclock(void);
/* hack - XXXX
* gptimer connects directly to ampintc, not thru the generic
* interface because it uses an 'internal' interrupt
* not a peripheral interrupt.
*/
void *ampintc_intr_establish(int, int, int (*)(void *), void *, char *);
struct cfattach amptimer_ca = {
sizeof (struct amptimer_softc), amptimer_match, amptimer_attach
};
struct cfdriver amptimer_cd = {
NULL, "amptimer", DV_DULL
};
uint64_t
amptimer_readcnt64(struct amptimer_softc *sc)
{
uint32_t high0, high1, low;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
do {
high0 = bus_space_read_4(iot, ioh, GTIMER_CNT_HIGH);
low = bus_space_read_4(iot, ioh, GTIMER_CNT_LOW);
high1 = bus_space_read_4(iot, ioh, GTIMER_CNT_HIGH);
} while (high0 != high1);
return ((((uint64_t)high1) << 32) | low);
}
int
amptimer_match(struct device *parent, void *cfdata, void *aux)
{
if ((cpufunc_id() & CPU_ID_CORTEX_A9_MASK) == CPU_ID_CORTEX_A9)
return (1);
return 0;
}
void
amptimer_attach(struct device *parent, struct device *self, void *args)
{
struct amptimer_softc *sc = (struct amptimer_softc *)self;
struct cortex_attach_args *ia = args;
bus_space_handle_t ioh, pioh;
sc->sc_iot = ia->ca_iot;
if (bus_space_map(sc->sc_iot, ia->ca_periphbase + GTIMER_ADDR,
GTIMER_SIZE, 0, &ioh))
panic("amptimer_attach: bus_space_map global timer failed!");
if (bus_space_map(sc->sc_iot, ia->ca_periphbase + PTIMER_ADDR,
PTIMER_SIZE, 0, &pioh))
panic("amptimer_attach: bus_space_map priv timer failed!");
sc->sc_ticks_per_second = amptimer_frequency;
printf(": tick rate %d KHz\n", sc->sc_ticks_per_second /1000);
sc->sc_ioh = ioh;
sc->sc_pioh = pioh;
/* disable global timer */
bus_space_write_4(sc->sc_iot, ioh, GTIMER_CTRL, 0);
/* XXX ??? reset counters to 0 - gives us uptime in the counter */
bus_space_write_4(sc->sc_iot, ioh, GTIMER_CNT_LOW, 0);
bus_space_write_4(sc->sc_iot, ioh, GTIMER_CNT_HIGH, 0);
/* enable global timer */
bus_space_write_4(sc->sc_iot, ioh, GTIMER_CTRL, GTIMER_CTRL_TIMER);
#if defined(USE_GTIMER_CMP)
/* clear event */
bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_STATUS, 1);
#else
bus_space_write_4(sc->sc_iot, sc->sc_pioh, PTIMER_CTRL, 0);
bus_space_write_4(sc->sc_iot, sc->sc_pioh, PTIMER_STATUS,
PTIMER_STATUS_EVENT);
#endif
#ifdef AMPTIMER_DEBUG
evcount_attach(&sc->sc_clk_count, "clock", NULL);
evcount_attach(&sc->sc_stat_count, "stat", NULL);
#endif
/*
* private timer and interrupts not enabled until
* timer configures
*/
arm_clock_register(amptimer_cpu_initclocks, amptimer_delay,
amptimer_setstatclockrate, amptimer_startclock);
amptimer_timecounter.tc_frequency = sc->sc_ticks_per_second;
amptimer_timecounter.tc_priv = sc;
tc_init(&timer_timecounter);
}
u_int
amptimer_get_timecount(struct timecounter *tc)
{
struct amptimer_softc *sc = amptimer_timecounter.tc_priv;
return bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIMER_CNT_LOW);
}
int
amptimer_intr(void *frame)
{
struct amptimer_softc *sc = amptimer_cd.cd_devs[0];
struct amptimer_pcpu_softc *pc = &sc->sc_pstat[CPU_INFO_UNIT(curcpu())];
uint64_t now;
uint64_t nextevent;
uint32_t r, reg;
#if defined(USE_GTIMER_CMP)
int skip = 1;
#else
int64_t delay;
#endif
int rc = 0;
/*
* DSR - I know that the tick timer is 64 bits, but the following
* code deals with rollover, so there is no point in dealing
* with the 64 bit math, just let the 32 bit rollover
* do the right thing
*/
now = amptimer_readcnt64(sc);
while (pc->pc_nexttickevent <= now) {
pc->pc_nexttickevent += sc->sc_ticks_per_intr;
pc->pc_ticks_err_sum += sc->sc_ticks_err_cnt;
/* looping a few times is faster than divide */
while (pc->pc_ticks_err_sum > hz) {
pc->pc_nexttickevent += 1;
pc->pc_ticks_err_sum -= hz;
}
#ifdef AMPTIMER_DEBUG
sc->sc_clk_count.ec_count++;
#endif
rc = 1;
hardclock(frame);
}
while (pc->pc_nextstatevent <= now) {
do {
r = random() & (sc->sc_statvar -1);
} while (r == 0); /* random == 0 not allowed */
pc->pc_nextstatevent += sc->sc_statmin + r;
/* XXX - correct nextstatevent? */
#ifdef AMPTIMER_DEBUG
sc->sc_stat_count.ec_count++;
#endif
rc = 1;
statclock(frame);
}
if (pc->pc_nexttickevent < pc->pc_nextstatevent)
nextevent = pc->pc_nexttickevent;
else
nextevent = pc->pc_nextstatevent;
#if defined(USE_GTIMER_CMP)
again:
reg = bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIMER_CTRL);
reg &= ~GTIMER_CTRL_COMP;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CTRL, reg);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CMP_LOW,
nextevent & 0xffffffff);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CMP_HIGH,
nextevent >> 32);
reg |= GTIMER_CTRL_COMP;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CTRL, reg);
now = amptimer_readcnt64(sc);
if (now >= nextevent) {
nextevent = now + skip;
skip += 1;
goto again;
}
#else
/* clear old status */
bus_space_write_4(sc->sc_iot, sc->sc_pioh, PTIMER_STATUS,
PTIMER_STATUS_EVENT);
delay = nextevent - now;
if (delay < 0)
delay = 1;
reg = bus_space_read_4(sc->sc_iot, sc->sc_pioh, PTIMER_CTRL);
if ((reg & (PTIMER_CTRL_ENABLE | PTIMER_CTRL_IRQEN)) !=
(PTIMER_CTRL_ENABLE | PTIMER_CTRL_IRQEN))
bus_space_write_4(sc->sc_iot, sc->sc_pioh, PTIMER_CTRL,
(PTIMER_CTRL_ENABLE | PTIMER_CTRL_IRQEN));
bus_space_write_4(sc->sc_iot, sc->sc_pioh, PTIMER_LOAD, delay);
#endif
return (rc);
}
void
amptimer_set_clockrate(int32_t new_frequency)
{
struct amptimer_softc *sc = amptimer_cd.cd_devs[0];
amptimer_frequency = new_frequency;
if (sc == NULL)
return;
sc->sc_ticks_per_second = amptimer_frequency;
amptimer_timecounter.tc_frequency = sc->sc_ticks_per_second;
printf("amptimer0: adjusting clock: new tick rate %d KHz\n",
sc->sc_ticks_per_second /1000);
}
void
amptimer_cpu_initclocks()
{
struct amptimer_softc *sc = amptimer_cd.cd_devs[0];
struct amptimer_pcpu_softc *pc = &sc->sc_pstat[CPU_INFO_UNIT(curcpu())];
uint64_t next;
#if defined(USE_GTIMER_CMP)
uint32_t reg;
#endif
stathz = hz;
profhz = hz * 10;
if (sc->sc_ticks_per_second != amptimer_frequency) {
amptimer_set_clockrate(amptimer_frequency);
}
amptimer_setstatclockrate(stathz);
sc->sc_ticks_per_intr = sc->sc_ticks_per_second / hz;
sc->sc_ticks_err_cnt = sc->sc_ticks_per_second % hz;
pc->pc_ticks_err_sum = 0;
/* establish interrupts */
/* XXX - irq */
#if defined(USE_GTIMER_CMP)
ampintc_intr_establish(27, IPL_CLOCK, amptimer_intr,
NULL, "tick");
#else
ampintc_intr_establish(29, IPL_CLOCK, amptimer_intr,
NULL, "tick");
#endif
next = amptimer_readcnt64(sc) + sc->sc_ticks_per_intr;
pc->pc_nexttickevent = pc->pc_nextstatevent = next;
#if defined(USE_GTIMER_CMP)
reg = bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIMER_CTRL);
reg &= ~GTIMER_CTRL_COMP;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CTRL, reg);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CMP_LOW,
next & 0xffffffff);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CMP_HIGH,
next >> 32);
reg |= GTIMER_CTRL_COMP | GTIMER_CTRL_IRQ;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CTRL, reg);
#else
bus_space_write_4(sc->sc_iot, sc->sc_pioh, PTIMER_CTRL,
(PTIMER_CTRL_ENABLE | PTIMER_CTRL_IRQEN));
bus_space_write_4(sc->sc_iot, sc->sc_pioh, PTIMER_LOAD,
sc->sc_ticks_per_intr);
#endif
}
void
amptimer_delay(u_int usecs)
{
struct amptimer_softc *sc = amptimer_cd.cd_devs[0];
u_int32_t clock, oclock, delta, delaycnt;
volatile int j;
int csec, usec;
if (usecs > (0x80000000 / (sc->sc_ticks_per_second))) {
csec = usecs / 10000;
usec = usecs % 10000;
delaycnt = (sc->sc_ticks_per_second / 100) * csec +
(sc->sc_ticks_per_second / 100) * usec / 10000;
} else {
delaycnt = sc->sc_ticks_per_second * usecs / 1000000;
}
if (delaycnt <= 1)
for (j = 100; j > 0; j--)
;
oclock = bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIMER_CNT_LOW);
while (1) {
for (j = 100; j > 0; j--)
;
clock = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
GTIMER_CNT_LOW);
delta = clock - oclock;
if (delta > delaycnt)
break;
}
}
void
amptimer_setstatclockrate(int newhz)
{
struct amptimer_softc *sc = amptimer_cd.cd_devs[0];
int minint, statint;
int s;
s = splclock();
statint = sc->sc_ticks_per_second / newhz;
/* calculate largest 2^n which is smaller that just over half statint */
sc->sc_statvar = 0x40000000; /* really big power of two */
minint = statint / 2 + 100;
while (sc->sc_statvar > minint)
sc->sc_statvar >>= 1;
sc->sc_statmin = statint - (sc->sc_statvar >> 1);
splx(s);
/*
* XXX this allows the next stat timer to occur then it switches
* to the new frequency. Rather than switching instantly.
*/
}
void
amptimer_startclock(void)
{
struct amptimer_softc *sc = amptimer_cd.cd_devs[0];
struct amptimer_pcpu_softc *pc = &sc->sc_pstat[CPU_INFO_UNIT(curcpu())];
uint64_t nextevent;
nextevent = amptimer_readcnt64(sc) + sc->sc_ticks_per_intr;
pc->pc_nexttickevent = pc->pc_nextstatevent = nextevent;
bus_space_write_4(sc->sc_iot, sc->sc_pioh, PTIMER_LOAD,
sc->sc_ticks_per_intr);
}
|