1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
|
/* $OpenBSD: pmap.h,v 1.34 2015/08/15 22:20:20 miod Exp $ */
/* $NetBSD: pmap.h,v 1.76 2003/09/06 09:10:46 rearnsha Exp $ */
/*
* Copyright (c) 2002, 2003 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1994,1995 Mark Brinicombe.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _ARM_PMAP_H_
#define _ARM_PMAP_H_
#ifdef _KERNEL
#include <arm/cpuconf.h>
#include <arm/pte.h>
#ifndef _LOCORE
#include <arm/cpufunc.h>
#endif
/*
* a pmap describes a processes' 4GB virtual address space. this
* virtual address space can be broken up into 4096 1MB regions which
* are described by L1 PTEs in the L1 table.
*
* There is a line drawn at KERNEL_BASE. Everything below that line
* changes when the VM context is switched. Everything above that line
* is the same no matter which VM context is running. This is achieved
* by making the L1 PTEs for those slots above KERNEL_BASE reference
* kernel L2 tables.
*
* The basic layout of the virtual address space thus looks like this:
*
* 0xffffffff
* .
* .
* .
* KERNEL_BASE
* --------------------
* .
* .
* .
* 0x00000000
*/
/*
* The number of L2 descriptor tables which can be tracked by an l2_dtable.
* A bucket size of 16 provides for 16MB of contiguous virtual address
* space per l2_dtable. Most processes will, therefore, require only two or
* three of these to map their whole working set.
*/
#define L2_BUCKET_LOG2 4
#define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2)
/*
* Given the above "L2-descriptors-per-l2_dtable" constant, the number
* of l2_dtable structures required to track all possible page descriptors
* mappable by an L1 translation table is given by the following constants:
*/
#define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2)
#define L2_SIZE (1 << L2_LOG2)
#ifndef _LOCORE
struct l1_ttable;
struct l2_dtable;
/*
* Track cache/tlb occupancy using the following structure
*/
union pmap_cache_state {
struct {
union {
u_int8_t csu_cache_b[2];
u_int16_t csu_cache;
} cs_cache_u;
union {
u_int8_t csu_tlb_b[2];
u_int16_t csu_tlb;
} cs_tlb_u;
} cs_s;
u_int32_t cs_all;
};
#define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0]
#define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1]
#define cs_cache cs_s.cs_cache_u.csu_cache
#define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0]
#define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1]
#define cs_tlb cs_s.cs_tlb_u.csu_tlb
/*
* Assigned to cs_all to force cacheops to work for a particular pmap
*/
#define PMAP_CACHE_STATE_ALL 0xffffffffu
/*
* This structure is used by machine-dependent code to describe
* static mappings of devices, created at bootstrap time.
*/
struct pmap_devmap {
vaddr_t pd_va; /* virtual address */
paddr_t pd_pa; /* physical address */
psize_t pd_size; /* size of region */
vm_prot_t pd_prot; /* protection code */
int pd_cache; /* cache attributes */
};
/*
* The pmap structure itself
*/
struct pmap {
u_int8_t pm_domain;
boolean_t pm_remove_all;
struct l1_ttable *pm_l1;
union pmap_cache_state pm_cstate;
u_int pm_refs;
struct l2_dtable *pm_l2[L2_SIZE];
struct pmap_statistics pm_stats;
};
typedef struct pmap *pmap_t;
/*
* Physical / virtual address structure. In a number of places (particularly
* during bootstrapping) we need to keep track of the physical and virtual
* addresses of various pages
*/
typedef struct pv_addr {
SLIST_ENTRY(pv_addr) pv_list;
paddr_t pv_pa;
vaddr_t pv_va;
} pv_addr_t;
/*
* Determine various modes for PTEs (user vs. kernel, cacheable
* vs. non-cacheable).
*/
#define PTE_KERNEL 0
#define PTE_USER 1
#define PTE_NOCACHE 0
#define PTE_CACHE 1
#define PTE_PAGETABLE 2
/*
* Flags that indicate attributes of pages or mappings of pages.
*
* The PVF_MOD and PVF_REF flags are stored in the mdpage for each
* page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual
* pv_entry's for each page. They live in the same "namespace" so
* that we can clear multiple attributes at a time.
*
* Note the "non-cacheable" flag generally means the page has
* multiple mappings in a given address space.
*/
#define PVF_MOD 0x01 /* page is modified */
#define PVF_REF 0x02 /* page is referenced */
#define PVF_WIRED 0x04 /* mapping is wired */
#define PVF_WRITE 0x08 /* mapping is writable */
#define PVF_EXEC 0x10 /* mapping is executable */
#define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */
#define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */
#define PVF_NC (PVF_UNC|PVF_KNC)
/*
* Commonly referenced structures
*/
extern struct pmap kernel_pmap_store;
/*
* Macros that we need to export
*/
#define pmap_kernel() (&kernel_pmap_store)
#define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
#define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
#define pmap_is_modified(pg) \
(((pg)->mdpage.pvh_attrs & PVF_MOD) != 0)
#define pmap_is_referenced(pg) \
(((pg)->mdpage.pvh_attrs & PVF_REF) != 0)
#define pmap_deactivate(p) do { /* nothing */ } while (0)
#define pmap_copy(dp, sp, da, l, sa) do { /* nothing */ } while (0)
#define pmap_unuse_final(p) do { /* nothing */ } while (0)
#define pmap_remove_holes(vm) do { /* nothing */ } while (0)
/*
* Functions that we need to export
*/
void pmap_remove_all(pmap_t);
void pmap_uncache_page(paddr_t, vaddr_t);
#define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
/* Functions we use internally. */
void pmap_bootstrap(pd_entry_t *, vaddr_t, vaddr_t);
int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int);
boolean_t pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **);
boolean_t pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **);
void pmap_set_pcb_pagedir(pmap_t, struct pcb *);
void pmap_postinit(void);
void vector_page_setprot(int);
/* XXX */
void pmap_kenter_cache(vaddr_t va, paddr_t pa, vm_prot_t prot, int cacheable);
const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t);
const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t);
/* Bootstrapping routines. */
void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int);
void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int);
vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int);
void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *);
void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *);
void pmap_devmap_register(const struct pmap_devmap *);
/*
* The current top of kernel VM
*/
extern vaddr_t pmap_curmaxkvaddr;
/*
* Useful macros and constants
*/
/* Virtual address to page table entry */
static __inline pt_entry_t *
vtopte(vaddr_t va)
{
pd_entry_t *pdep;
pt_entry_t *ptep;
if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE)
return (NULL);
return (ptep);
}
/*
* The new pmap ensures that page-tables are always mapping Write-Thru.
* Thus, on some platforms we can run fast and loose and avoid syncing PTEs
* on every change.
*
* Unfortunately, not all CPUs have a write-through cache mode. So we
* define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs,
* and if there is the chance for PTE syncs to be needed, we define
* PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run)
* the code.
*/
extern int pmap_needs_pte_sync;
#define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync
#define PMAP_INCLUDE_PTE_SYNC
#define PTE_SYNC(pte) \
do { \
cpu_drain_writebuf(); \
if (PMAP_NEEDS_PTE_SYNC) { \
paddr_t pa; \
cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\
if (cpu_sdcache_enabled()) { \
(void)pmap_extract(pmap_kernel(), (vaddr_t)(pte), &pa); \
cpu_sdcache_wb_range((vaddr_t)(pte), (paddr_t)(pa), \
sizeof(pt_entry_t)); \
}; \
cpu_drain_writebuf(); \
} \
} while (/*CONSTCOND*/0)
#define PTE_SYNC_RANGE(pte, cnt) \
do { \
cpu_drain_writebuf(); \
if (PMAP_NEEDS_PTE_SYNC) { \
paddr_t pa; \
cpu_dcache_wb_range((vaddr_t)(pte), \
(cnt) << 2); /* * sizeof(pt_entry_t) */ \
if (cpu_sdcache_enabled()) { \
(void)pmap_extract(pmap_kernel(), (vaddr_t)(pte), &pa);\
cpu_sdcache_wb_range((vaddr_t)(pte), (paddr_t)(pa), \
(cnt) << 2); /* * sizeof(pt_entry_t) */ \
}; \
cpu_drain_writebuf(); \
} \
} while (/*CONSTCOND*/0)
#define l1pte_valid(pde) (((pde) & L1_TYPE_MASK) != L1_TYPE_INV)
#define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S)
#define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C)
#define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F)
#define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT)
#define l2pte_valid(pte) (((pte) & L2_TYPE_MASK) != L2_TYPE_INV)
#define l2pte_pa(pte) ((pte) & L2_S_FRAME)
#define l2pte_minidata(pte) (((pte) & \
(L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\
== (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))
/* L1 and L2 page table macros */
#define pmap_pde_v(pde) l1pte_valid(*(pde))
#define pmap_pde_section(pde) l1pte_section_p(*(pde))
#define pmap_pde_page(pde) l1pte_page_p(*(pde))
#define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde))
/************************* ARM MMU configuration *****************************/
#if (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V7) != 0
void pmap_copy_page_generic(struct vm_page *, struct vm_page *);
void pmap_zero_page_generic(struct vm_page *);
void pmap_pte_init_generic(void);
#if defined(CPU_ARM8)
void pmap_pte_init_arm8(void);
#endif
#if defined(CPU_ARM9)
void pmap_pte_init_arm9(void);
#endif /* CPU_ARM9 */
#if defined(CPU_ARM10)
void pmap_pte_init_arm10(void);
#endif /* CPU_ARM10 */
#if defined(CPU_ARM11)
void pmap_pte_init_arm11(void);
#endif /* CPU_ARM11 */
#if defined(CPU_ARMv7)
void pmap_pte_init_armv7(void);
#endif /* CPU_ARMv7 */
#endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1 + ARM_MMU_V7) != 0 */
#if ARM_MMU_SA1 == 1
void pmap_pte_init_sa1(void);
#endif /* ARM_MMU_SA1 == 1 */
#if ARM_MMU_V7 == 1
void pmap_pte_init_v7(void);
#endif /* ARM_MMU_V7 == 1 */
#if ARM_MMU_XSCALE == 1
void pmap_copy_page_xscale(struct vm_page *, struct vm_page *);
void pmap_zero_page_xscale(struct vm_page *);
void pmap_pte_init_xscale(void);
void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t);
#define PMAP_UAREA(va) pmap_uarea(va)
void pmap_uarea(vaddr_t);
#endif /* ARM_MMU_XSCALE == 1 */
extern pt_entry_t pte_l1_s_cache_mode;
extern pt_entry_t pte_l1_s_cache_mask;
extern pt_entry_t pte_l2_l_cache_mode;
extern pt_entry_t pte_l2_l_cache_mask;
extern pt_entry_t pte_l2_s_cache_mode;
extern pt_entry_t pte_l2_s_cache_mask;
extern pt_entry_t pte_l1_s_cache_mode_pt;
extern pt_entry_t pte_l2_l_cache_mode_pt;
extern pt_entry_t pte_l2_s_cache_mode_pt;
extern pt_entry_t pte_l1_s_coherent;
extern pt_entry_t pte_l2_l_coherent;
extern pt_entry_t pte_l2_s_coherent;
extern pt_entry_t pte_l1_s_prot_ur;
extern pt_entry_t pte_l1_s_prot_uw;
extern pt_entry_t pte_l1_s_prot_kr;
extern pt_entry_t pte_l1_s_prot_kw;
extern pt_entry_t pte_l1_s_prot_mask;
extern pt_entry_t pte_l2_s_prot_ur;
extern pt_entry_t pte_l2_s_prot_uw;
extern pt_entry_t pte_l2_s_prot_kr;
extern pt_entry_t pte_l2_s_prot_kw;
extern pt_entry_t pte_l2_s_prot_mask;
extern pt_entry_t pte_l1_s_proto;
extern pt_entry_t pte_l1_c_proto;
extern pt_entry_t pte_l2_s_proto;
extern void (*pmap_copy_page_func)(struct vm_page *, struct vm_page *);
extern void (*pmap_zero_page_func)(struct vm_page *);
#endif /* !_LOCORE */
/*****************************************************************************/
/*
* Definitions for MMU domains
*/
#define PMAP_DOMAINS 15 /* 15 'user' domains (0-14) */
#define PMAP_DOMAIN_KERNEL 15 /* The kernel uses domain #15 */
#define PMAP_DOMAIN_USER_V7 0 /* V7 Userland uses a single domain */
/*
* These macros define the various bit masks in the PTE.
*
* We use these macros since we use different bits on different processor
* models.
*/
#define L1_S_PROT_UR_generic (L1_S_AP(AP_U))
#define L1_S_PROT_UW_generic (L1_S_AP(AP_U|AP_W))
#define L1_S_PROT_KR_generic (L1_S_AP(0))
#define L1_S_PROT_KW_generic (L1_S_AP(AP_W))
#define L1_S_PROT_MASK_generic (L1_S_AP(0x03))
#define L1_S_PROT_UR_xscale (L1_S_AP(AP_U))
#define L1_S_PROT_UW_xscale (L1_S_AP(AP_U|AP_W))
#define L1_S_PROT_KR_xscale (L1_S_AP(0))
#define L1_S_PROT_KW_xscale (L1_S_AP(AP_W))
#define L1_S_PROT_MASK_xscale (L1_S_AP(0x03))
#define L1_S_PROT_UR_v7 (L1_S_V7_AP(AP_KRWUR))
#define L1_S_PROT_UW_v7 (L1_S_V7_AP(AP_KRWURW))
#define L1_S_PROT_KR_v7 (L1_S_V7_AP(AP_V7_KR))
#define L1_S_PROT_KW_v7 (L1_S_V7_AP(AP_KRW))
#define L1_S_PROT_MASK_v7 (L1_S_V7_AP(0x07))
#define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C)
#define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
#define L1_S_CACHE_MASK_v7 (L1_S_B|L1_S_C|L1_S_V7_TEX_MASK)
#define L1_S_COHERENT_generic (L1_S_B|L1_S_C)
#define L1_S_COHERENT_xscale (L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X))
#define L1_S_COHERENT_v7 (L1_S_C|L1_S_V7_TEX_MASK)
#define L2_L_PROT_KR (L2_AP(0))
#define L2_L_PROT_UR (L2_AP(AP_U))
#define L2_L_PROT_KW (L2_AP(AP_W))
#define L2_L_PROT_UW (L2_AP(AP_U|AP_W))
#define L2_L_PROT_MASK (L2_AP(AP_U|AP_W))
#define L2_L_CACHE_MASK_generic (L2_B|L2_C)
#define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
#define L2_L_CACHE_MASK_v7 (L2_B|L2_C|L2_V7_L_TEX_MASK)
#define L2_L_COHERENT_generic (L2_B|L2_C)
#define L2_L_COHERENT_xscale (L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X))
#define L2_L_COHERENT_v7 (L2_C|L2_V7_L_TEX_MASK)
#define L2_S_PROT_UR_generic (L2_AP(AP_U))
#define L2_S_PROT_UW_generic (L2_AP(AP_U|AP_W))
#define L2_S_PROT_KR_generic (L2_AP(0))
#define L2_S_PROT_KW_generic (L2_AP(AP_W))
#define L2_S_PROT_MASK_generic (L2_AP(AP_U|AP_W))
#define L2_S_PROT_UR_xscale (L2_AP0(AP_U))
#define L2_S_PROT_UW_xscale (L2_AP0(AP_U|AP_W))
#define L2_S_PROT_KR_xscale (L2_AP0(0))
#define L2_S_PROT_KW_xscale (L2_AP0(AP_W))
#define L2_S_PROT_MASK_xscale (L2_AP0(AP_U|AP_W))
#define L2_S_PROT_UR_v7 (L2_V7_AP(AP_KRWUR))
#define L2_S_PROT_UW_v7 (L2_V7_AP(AP_KRWURW))
#define L2_S_PROT_KR_v7 (L2_V7_AP(AP_V7_KR))
#define L2_S_PROT_KW_v7 (L2_V7_AP(AP_KRW))
#define L2_S_PROT_MASK_v7 (L2_V7_AP(0x07) | L2_V7_S_XN)
#define L2_S_CACHE_MASK_generic (L2_B|L2_C)
#define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
#define L2_S_CACHE_MASK_v7 (L2_B|L2_C|L2_V7_S_TEX_MASK)
#define L2_S_COHERENT_generic (L2_B|L2_C)
#define L2_S_COHERENT_xscale (L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X))
#define L2_S_COHERENT_v7 (L2_C|L2_V7_S_TEX_MASK)
#define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP)
#define L1_S_PROTO_xscale (L1_TYPE_S)
#define L1_S_PROTO_v7 (L1_TYPE_S)
#define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2)
#define L1_C_PROTO_xscale (L1_TYPE_C)
#define L1_C_PROTO_v7 (L1_TYPE_C)
#define L2_L_PROTO (L2_TYPE_L)
#define L2_S_PROTO_generic (L2_TYPE_S)
#define L2_S_PROTO_xscale (L2_TYPE_XSCALE_XS)
#define L2_S_PROTO_v7 (L2_TYPE_S)
/*
* User-visible names for the ones that vary with MMU class.
*/
#if ARM_NMMUS > 1
/* More than one MMU class configured; use variables. */
#define L1_S_PROT_UR pte_l1_s_prot_ur
#define L1_S_PROT_UW pte_l1_s_prot_uw
#define L1_S_PROT_KR pte_l1_s_prot_kr
#define L1_S_PROT_KW pte_l1_s_prot_kw
#define L1_S_PROT_MASK pte_l1_s_prot_mask
#define L2_S_PROT_UR pte_l2_s_prot_ur
#define L2_S_PROT_UW pte_l2_s_prot_uw
#define L2_S_PROT_KR pte_l2_s_prot_kr
#define L2_S_PROT_KW pte_l2_s_prot_kw
#define L2_S_PROT_MASK pte_l2_s_prot_mask
#define L1_S_CACHE_MASK pte_l1_s_cache_mask
#define L2_L_CACHE_MASK pte_l2_l_cache_mask
#define L2_S_CACHE_MASK pte_l2_s_cache_mask
#define L1_S_COHERENT pte_l1_s_coherent
#define L2_L_COHERENT pte_l2_l_coherent
#define L2_S_COHERENT pte_l2_s_coherent
#define L1_S_PROTO pte_l1_s_proto
#define L1_C_PROTO pte_l1_c_proto
#define L2_S_PROTO pte_l2_s_proto
#define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d))
#define pmap_zero_page(d) (*pmap_zero_page_func)((d))
#elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0
#define L1_S_PROT_UR L1_S_PROT_UR_generic
#define L1_S_PROT_UW L1_S_PROT_UW_generic
#define L1_S_PROT_KR L1_S_PROT_KR_generic
#define L1_S_PROT_KW L1_S_PROT_KW_generic
#define L1_S_PROT_MASK L1_S_PROT_MASK_generic
#define L2_S_PROT_UR L2_S_PROT_UR_generic
#define L2_S_PROT_UW L2_S_PROT_UW_generic
#define L2_S_PROT_KR L2_S_PROT_KR_generic
#define L2_S_PROT_KW L2_S_PROT_KW_generic
#define L2_S_PROT_MASK L2_S_PROT_MASK_generic
#define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic
#define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic
#define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic
#define L1_S_COHERENT L1_S_COHERENT_generic
#define L2_L_COHERENT L2_L_COHERENT_generic
#define L2_S_COHERENT L2_S_COHERENT_generic
#define L1_S_PROTO L1_S_PROTO_generic
#define L1_C_PROTO L1_C_PROTO_generic
#define L2_S_PROTO L2_S_PROTO_generic
#define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d))
#define pmap_zero_page(d) pmap_zero_page_generic((d))
#elif ARM_MMU_XSCALE == 1
#define L1_S_PROT_UR L1_S_PROT_UR_xscale
#define L1_S_PROT_UW L1_S_PROT_UW_xscale
#define L1_S_PROT_KR L1_S_PROT_KR_xscale
#define L1_S_PROT_KW L1_S_PROT_KW_xscale
#define L1_S_PROT_MASK L1_S_PROT_MASK_xscale
#define L2_S_PROT_UR L2_S_PROT_UR_xscale
#define L2_S_PROT_UW L2_S_PROT_UW_xscale
#define L2_S_PROT_KR L2_S_PROT_KR_xscale
#define L2_S_PROT_KW L2_S_PROT_KW_xscale
#define L2_S_PROT_MASK L2_S_PROT_MASK_xscale
#define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale
#define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale
#define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale
#define L1_S_COHERENT L1_S_COHERENT_xscale
#define L2_L_COHERENT L2_L_COHERENT_xscale
#define L2_S_COHERENT L2_S_COHERENT_xscale
#define L1_S_PROTO L1_S_PROTO_xscale
#define L1_C_PROTO L1_C_PROTO_xscale
#define L2_S_PROTO L2_S_PROTO_xscale
#define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d))
#define pmap_zero_page(d) pmap_zero_page_xscale((d))
#elif ARM_MMU_V7 == 1
#define L1_S_PROT_UR L1_S_PROT_UR_v7
#define L1_S_PROT_UW L1_S_PROT_UW_v7
#define L1_S_PROT_KR L1_S_PROT_KR_v7
#define L1_S_PROT_KW L1_S_PROT_KW_v7
#define L1_S_PROT_MASK L1_S_PROT_MASK_v7
#define L2_S_PROT_UR L2_S_PROT_UR_v7
#define L2_S_PROT_UW L2_S_PROT_UW_v7
#define L2_S_PROT_KR L2_S_PROT_KR_v7
#define L2_S_PROT_KW L2_S_PROT_KW_v7
#define L2_S_PROT_MASK L2_S_PROT_MASK_v7
#define L1_S_CACHE_MASK L1_S_CACHE_MASK_v7
#define L2_L_CACHE_MASK L2_L_CACHE_MASK_v7
#define L2_S_CACHE_MASK L2_S_CACHE_MASK_v7
#define L1_S_COHERENT L1_S_COHERENT_v7
#define L2_L_COHERENT L2_L_COHERENT_v7
#define L2_S_COHERENT L2_S_COHERENT_v7
#define L1_S_PROTO L1_S_PROTO_v7
#define L1_C_PROTO L1_C_PROTO_v7
#define L2_S_PROTO L2_S_PROTO_v7
#define pmap_copy_page(s, d) pmap_copy_page_v7((s), (d))
#define pmap_zero_page(d) pmap_zero_page_v7((d))
#endif /* ARM_NMMUS > 1 */
/*
* These macros return various bits based on kernel/user and protection.
* Note that the compiler will usually fold these at compile time.
*/
#ifndef _LOCORE
static __inline pt_entry_t
L1_S_PROT(int ku, vm_prot_t pr)
{
pt_entry_t pte;
if (ku == PTE_USER)
pte = (pr & PROT_WRITE) ? L1_S_PROT_UW : L1_S_PROT_UR;
else
pte = (pr & PROT_WRITE) ? L1_S_PROT_KW : L1_S_PROT_KR;
/*
* If we set the XN bit, the abort handlers or the vector page
* might be marked as such. Needs Debugging.
*/
/*
if ((pr & PROT_EXEC) == 0)
pte |= L1_S_V7_XN;
*/
return pte;
}
static __inline pt_entry_t
L2_L_PROT(int ku, vm_prot_t pr)
{
pt_entry_t pte;
if (ku == PTE_USER)
pte = (pr & PROT_WRITE) ? L2_L_PROT_UW : L2_L_PROT_UR;
else
pte = (pr & PROT_WRITE) ? L2_L_PROT_KW : L2_L_PROT_KR;
/*
* If we set the XN bit, the abort handlers or the vector page
* might be marked as such. Needs Debugging.
*/
/*
if ((pr & PROT_EXEC) == 0)
pte |= L2_V7_L_XN;
*/
return pte;
}
static __inline pt_entry_t
L2_S_PROT(int ku, vm_prot_t pr)
{
pt_entry_t pte;
if (ku == PTE_USER)
pte = (pr & PROT_WRITE) ? L2_S_PROT_UW : L2_S_PROT_UR;
else
pte = (pr & PROT_WRITE) ? L2_S_PROT_KW : L2_S_PROT_KR;
/*
* If we set the XN bit, the abort handlers or the vector page
* might be marked as such. Needs Debugging.
*/
/*
if ((pr & PROT_EXEC) == 0)
pte |= L2_V7_S_XN;
*/
return pte;
}
static __inline boolean_t
l2pte_is_writeable(pt_entry_t pte, struct pmap *pm)
{
/* XXX use of L2_V7_S_XN */
return (pte & L2_S_PROT_MASK & ~L2_V7_S_XN) ==
L2_S_PROT(pm == pmap_kernel() ? PTE_KERNEL : PTE_USER,
PROT_WRITE);
}
#endif
/*
* Macros to test if a mapping is mappable with an L1 Section mapping
* or an L2 Large Page mapping.
*/
#define L1_S_MAPPABLE_P(va, pa, size) \
((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE)
#define L2_L_MAPPABLE_P(va, pa, size) \
((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE)
#ifndef _LOCORE
/* pmap_prefer bits for VIPT ARMv7 */
#define PMAP_PREFER(fo, ap) pmap_prefer((fo), (ap))
vaddr_t pmap_prefer(vaddr_t, vaddr_t);
extern uint32_t pmap_alias_dist;
extern uint32_t pmap_alias_bits;
/* pmap prefer alias alignment. */
#define PMAP_PREFER_ALIGN() (pmap_alias_dist)
/* pmap prefer offset withing alignment. */
#define PMAP_PREFER_OFFSET(of) \
(PMAP_PREFER_ALIGN() == 0 ? 0 : ((of) & (PMAP_PREFER_ALIGN() - 1)))
#endif /* _LOCORE */
#endif /* _KERNEL */
#ifndef _LOCORE
/*
* pmap-specific data store in the vm_page structure.
*/
struct vm_page_md {
struct pv_entry *pvh_list; /* pv_entry list */
int pvh_attrs; /* page attributes */
u_int uro_mappings;
u_int urw_mappings;
union {
u_short s_mappings[2]; /* Assume kernel count <= 65535 */
u_int i_mappings;
} k_u;
#define kro_mappings k_u.s_mappings[0]
#define krw_mappings k_u.s_mappings[1]
#define k_mappings k_u.i_mappings
};
#define VM_MDPAGE_INIT(pg) \
do { \
(pg)->mdpage.pvh_list = NULL; \
(pg)->mdpage.pvh_attrs = 0; \
(pg)->mdpage.uro_mappings = 0; \
(pg)->mdpage.urw_mappings = 0; \
(pg)->mdpage.k_mappings = 0; \
} while (/*CONSTCOND*/0)
#endif /* _LOCORE */
#endif /* _ARM_PMAP_H_ */
|