summaryrefslogtreecommitdiff
path: root/sys/arch/arm/include/pte.h
blob: f263fffc6cd62e4b2a648ed347b97d846b26714b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*	$OpenBSD: pte.h,v 1.1 2004/02/01 05:09:49 drahn Exp $	*/
/*	$NetBSD: pte.h,v 1.6 2003/04/18 11:08:28 scw Exp $	*/

/*
 * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
 * All rights reserved.
 *
 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed for the NetBSD Project by
 *	Wasabi Systems, Inc.
 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
 *    or promote products derived from this software without specific prior
 *    written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef _ARM_PTE_H_
#define	_ARM_PTE_H_

/*
 * The ARM MMU architecture was introduced with ARM v3 (previous ARM
 * architecture versions used an optional off-CPU memory controller
 * to perform address translation).
 *
 * The ARM MMU consists of a TLB and translation table walking logic.
 * There is typically one TLB per memory interface (or, put another
 * way, one TLB per software-visible cache).
 *
 * The ARM MMU is capable of mapping memory in the following chunks:
 *
 *	1M	Sections (L1 table)
 *
 *	64K	Large Pages (L2 table)
 *
 *	4K	Small Pages (L2 table)
 *
 *	1K	Tiny Pages (L2 table)
 *
 * There are two types of L2 tables: Coarse Tables and Fine Tables.
 * Coarse Tables can map Large and Small Pages.  Fine Tables can
 * map Tiny Pages.
 *
 * Coarse Tables can define 4 Subpages within Large and Small pages.
 * Subpages define different permissions for each Subpage within
 * a Page.
 *
 * Coarse Tables are 1K in length.  Fine tables are 4K in length.
 *
 * The Translation Table Base register holds the pointer to the
 * L1 Table.  The L1 Table is a 16K contiguous chunk of memory
 * aligned to a 16K boundary.  Each entry in the L1 Table maps
 * 1M of virtual address space, either via a Section mapping or
 * via an L2 Table.
 *
 * In addition, the Fast Context Switching Extension (FCSE) is available
 * on some ARM v4 and ARM v5 processors.  FCSE is a way of eliminating
 * TLB/cache flushes on context switch by use of a smaller address space
 * and a "process ID" that modifies the virtual address before being
 * presented to the translation logic.
 */

#ifndef _LOCORE
typedef uint32_t	pd_entry_t;	/* L1 table entry */
typedef uint32_t	pt_entry_t;	/* L2 table entry */
#endif /* _LOCORE */

#define	L1_S_SIZE	0x00100000	/* 1M */
#define	L1_S_OFFSET	(L1_S_SIZE - 1)
#define	L1_S_FRAME	(~L1_S_OFFSET)
#define	L1_S_SHIFT	20

#define	L2_L_SIZE	0x00010000	/* 64K */
#define	L2_L_OFFSET	(L2_L_SIZE - 1)
#define	L2_L_FRAME	(~L2_L_OFFSET)
#define	L2_L_SHIFT	16

#define	L2_S_SIZE	0x00001000	/* 4K */
#define	L2_S_OFFSET	(L2_S_SIZE - 1)
#define	L2_S_FRAME	(~L2_S_OFFSET)
#define	L2_S_SHIFT	12

#define	L2_T_SIZE	0x00000400	/* 1K */
#define	L2_T_OFFSET	(L2_T_SIZE - 1)
#define	L2_T_FRAME	(~L2_T_OFFSET)
#define	L2_T_SHIFT	10

/*
 * The NetBSD VM implementation only works on whole pages (4K),
 * whereas the ARM MMU's Coarse tables are sized in terms of 1K
 * (16K L1 table, 1K L2 table).
 *
 * So, we allocate L2 tables 4 at a time, thus yielding a 4K L2
 * table.
 */
#define	L1_ADDR_BITS	0xfff00000	/* L1 PTE address bits */
#define	L2_ADDR_BITS	0x000ff000	/* L2 PTE address bits */

#define	L1_TABLE_SIZE	0x4000		/* 16K */
#define	L2_TABLE_SIZE	0x1000		/* 4K */
/*
 * The new pmap deals with the 1KB coarse L2 tables by
 * allocating them from a pool. Until every port has been converted,
 * keep the old L2_TABLE_SIZE define lying around. Converted ports
 * should use L2_TABLE_SIZE_REAL until then.
 */
#define	L2_TABLE_SIZE_REAL	0x400	/* 1K */

/*
 * ARM L1 Descriptors
 */

#define	L1_TYPE_INV	0x00		/* Invalid (fault) */
#define	L1_TYPE_C	0x01		/* Coarse L2 */
#define	L1_TYPE_S	0x02		/* Section */
#define	L1_TYPE_F	0x03		/* Fine L2 */
#define	L1_TYPE_MASK	0x03		/* mask of type bits */

/* L1 Section Descriptor */
#define	L1_S_B		0x00000004	/* bufferable Section */
#define	L1_S_C		0x00000008	/* cacheable Section */
#define	L1_S_IMP	0x00000010	/* implementation defined */
#define	L1_S_DOM(x)	((x) << 5)	/* domain */
#define	L1_S_DOM_MASK	L1_S_DOM(0xf)
#define	L1_S_AP(x)	((x) << 10)	/* access permissions */
#define	L1_S_ADDR_MASK	0xfff00000	/* phys address of section */

#define	L1_S_XSCALE_P	0x00000200	/* ECC enable for this section */
#define	L1_S_XSCALE_TEX(x) ((x) << 12)	/* Type Extension */

/* L1 Coarse Descriptor */
#define	L1_C_IMP0	0x00000004	/* implementation defined */
#define	L1_C_IMP1	0x00000008	/* implementation defined */
#define	L1_C_IMP2	0x00000010	/* implementation defined */
#define	L1_C_DOM(x)	((x) << 5)	/* domain */
#define	L1_C_DOM_MASK	L1_C_DOM(0xf)
#define	L1_C_ADDR_MASK	0xfffffc00	/* phys address of L2 Table */

#define	L1_C_XSCALE_P	0x00000200	/* ECC enable for this section */

/* L1 Fine Descriptor */
#define	L1_F_IMP0	0x00000004	/* implementation defined */
#define	L1_F_IMP1	0x00000008	/* implementation defined */
#define	L1_F_IMP2	0x00000010	/* implementation defined */
#define	L1_F_DOM(x)	((x) << 5)	/* domain */
#define	L1_F_DOM_MASK	L1_F_DOM(0xf)
#define	L1_F_ADDR_MASK	0xfffff000	/* phys address of L2 Table */

#define	L1_F_XSCALE_P	0x00000200	/* ECC enable for this section */

/*
 * ARM L2 Descriptors
 */

#define	L2_TYPE_INV	0x00		/* Invalid (fault) */
#define	L2_TYPE_L	0x01		/* Large Page */
#define	L2_TYPE_S	0x02		/* Small Page */
#define	L2_TYPE_T	0x03		/* Tiny Page */
#define	L2_TYPE_MASK	0x03		/* mask of type bits */

	/*
	 * This L2 Descriptor type is available on XScale processors
	 * when using a Coarse L1 Descriptor.  The Extended Small
	 * Descriptor has the same format as the XScale Tiny Descriptor,
	 * but describes a 4K page, rather than a 1K page.
	 */
#define	L2_TYPE_XSCALE_XS 0x03		/* XScale Extended Small Page */

#define	L2_B		0x00000004	/* Bufferable page */
#define	L2_C		0x00000008	/* Cacheable page */
#define	L2_AP0(x)	((x) << 4)	/* access permissions (sp 0) */
#define	L2_AP1(x)	((x) << 6)	/* access permissions (sp 1) */
#define	L2_AP2(x)	((x) << 8)	/* access permissions (sp 2) */
#define	L2_AP3(x)	((x) << 10)	/* access permissions (sp 3) */
#define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))

#define	L2_XSCALE_L_TEX(x) ((x) << 12)	/* Type Extension */
#define	L2_XSCALE_T_TEX(x) ((x) << 6)	/* Type Extension */

/*
 * Access Permissions for L1 and L2 Descriptors.
 */
#define	AP_W		0x01		/* writable */
#define	AP_U		0x02		/* user */

/*
 * Short-hand for common AP_* constants.
 *
 * Note: These values assume the S (System) bit is set and
 * the R (ROM) bit is clear in CP15 register 1.
 */
#define	AP_KR		0x00		/* kernel read */
#define	AP_KRW		0x01		/* kernel read/write */
#define	AP_KRWUR	0x02		/* kernel read/write usr read */
#define	AP_KRWURW	0x03		/* kernel read/write usr read/write */

/*
 * Domain Types for the Domain Access Control Register.
 */
#define	DOMAIN_FAULT	0x00		/* no access */
#define	DOMAIN_CLIENT	0x01		/* client */
#define	DOMAIN_RESERVED	0x02		/* reserved */
#define	DOMAIN_MANAGER	0x03		/* manager */

/*
 * Type Extension bits for XScale processors.
 *
 * Behavior of C and B when X == 0:
 *
 * C B  Cacheable  Bufferable  Write Policy  Line Allocate Policy
 * 0 0      N          N            -                 -
 * 0 1      N          Y            -                 -
 * 1 0      Y          Y       Write-through    Read Allocate
 * 1 1      Y          Y        Write-back      Read Allocate
 *
 * Behavior of C and B when X == 1:
 * C B  Cacheable  Bufferable  Write Policy  Line Allocate Policy
 * 0 0      -          -            -                 -           DO NOT USE
 * 0 1      N          Y            -                 -
 * 1 0  Mini-Data      -            -                 -
 * 1 1      Y          Y        Write-back       R/W Allocate
 */
#define	TEX_XSCALE_X	0x01		/* X modifies C and B */

#endif /* _ARM_PTE_H_ */