1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
|
/* $OpenBSD: i80321_clock.c,v 1.7 2007/05/21 14:54:35 drahn Exp $ */
/*
* Copyright (c) 2006 Dale Rahn <drahn@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <sys/device.h>
#include <sys/timetc.h>
#include <dev/clock_subr.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <arm/cpufunc.h>
#include <arm/xscale/i80321reg.h>
#include <arm/xscale/i80321var.h>
#define TIMER_FREQUENCY 200000000 /* 200MHz */
static struct evcount clk_count;
static struct evcount stat_count;
static int clk_irq = 129; /* XXX */
static int stat_irq = 130; /* XXX */
uint32_t nextstatevent;
uint32_t nexttickevent;
uint32_t ticks_per_intr;
uint32_t ticks_per_second;
uint32_t lastnow;
uint32_t statvar, statmin;
int i80321_timer_inited;
static inline u_int32_t tmr0_read(void);
static inline void tmr0_write(u_int32_t val);
static inline u_int32_t tcr0_read(void);
static inline void tcr0_write(u_int32_t val);
static inline u_int32_t trr0_read(void);
static inline void trr0_write(u_int32_t val);
static inline u_int32_t tmr1_read(void);
static inline void tmr1_write(u_int32_t val);
static inline u_int32_t tcr1_read(void);
static inline void tcr1_write(u_int32_t val);
static inline u_int32_t trr1_read(void);
static inline void trr1_write(u_int32_t val);
static inline u_int32_t tisr_read(void);
static inline void tisr_write(u_int32_t val);
int i80321_intr(void *frame);
u_int tcr1_get_timecount(struct timecounter *tc);
static struct timecounter tcr1_timecounter = {
tcr1_get_timecount, NULL, 0xffffffff, 0, "tcr1", 0, NULL
};
/*
* TMR0 is used in non-reload mode as it is used for both the clock
* timer and sched timer.
*
* The counters on 80321 are count down interrupt on 0, not match
* register based, so it is not possible to find out how much
* many interrupts passed while irqs were blocked.
* also it is not possible to atomically add to the register
* get get it to precisely fire at a non-fixed interval.
*
* To work around this both timers are used, TMR1 is used as a reference
* clock set to auto reload with 0xffffffff, however we just ignore the
* interrupt it would generate. NOTE: does this drop one tick
* ever wrap? Could the reference timer be used in non-reload mode,
* where it would just keep counting, and not stop at 0 ?
*
* Internally this keeps track of when the next timer should fire
* and based on that time and the current value of the reference
* clock a number is written into the timer count register to schedule
* the next event.
*/
static inline u_int32_t
tmr0_read(void)
{
u_int32_t ret;
__asm volatile ("mrc p6, 0, %0, c0, c1, 0" : "=r" (ret));
return ret;
}
static inline void
tmr0_write(u_int32_t val)
{
__asm volatile ("mcr p6, 0, %0, c0, c1, 0" :: "r" (val));
}
static inline u_int32_t
tcr0_read(void)
{
u_int32_t ret;
__asm volatile ("mrc p6, 0, %0, c2, c1, 0" : "=r" (ret));
return ret;
}
static inline void
tcr0_write(u_int32_t val)
{
__asm volatile ("mcr p6, 0, %0, c2, c1, 0" :: "r" (val));
}
static inline u_int32_t
trr0_read(void)
{
u_int32_t ret;
__asm volatile ("mrc p6, 0, %0, c4, c1, 0" : "=r" (ret));
return ret;
}
static inline void
trr0_write(u_int32_t val)
{
__asm volatile ("mcr p6, 0, %0, c4, c1, 0" :: "r" (val));
}
static inline u_int32_t
tmr1_read(void)
{
u_int32_t ret;
__asm volatile ("mrc p6, 0, %0, c1, c1, 0" : "=r" (ret));
return ret;
}
static inline void
tmr1_write(u_int32_t val)
{
__asm volatile ("mcr p6, 0, %0, c1, c1, 0" :: "r" (val));
}
inline u_int32_t
tcr1_read(void)
{
u_int32_t ret;
__asm volatile ("mrc p6, 0, %0, c3, c1, 0" : "=r" (ret));
return ret;
}
static inline void
tcr1_write(u_int32_t val)
{
__asm volatile ("mcr p6, 0, %0, c3, c1, 0" :: "r" (val));
}
static inline u_int32_t
trr1_read(void)
{
u_int32_t ret;
__asm volatile ("mrc p6, 0, %0, c5, c1, 0" : "=r" (ret));
return ret;
}
static inline void
trr1_write(u_int32_t val)
{
__asm volatile ("mcr p6, 0, %0, c5, c1, 0" :: "r" (val));
}
static inline u_int32_t
tisr_read()
{
u_int32_t ret;
__asm volatile ("mrc p6, 0, %0, c6, c1, 0" : "=r" (ret));
return ret;
}
static inline void
tisr_write(u_int32_t val)
{
__asm volatile ("mcr p6, 0, %0, c6, c1, 0" :: "r" (val));
}
/* counter counts down not up, so reverse the results by subtracting. */
u_int
tcr1_get_timecount(struct timecounter *tc)
{
return UINT_MAX - tcr1_read();
}
/*
* timer 1 is running a timebase counter,
* ie reload 0xffffffff, reload, interrupt ignored
* timer 0 will be programmed with the delay until the next
* event. this is not set for reload
*/
int
i80321_intr(void *frame)
{
uint32_t now, r;
uint32_t nextevent;
tisr_write(TISR_TMR0);
now = tcr1_read();
#if 0
if (lastnow < now) {
/* rollover, remove the missing 'tick'; 1-0xffffffff, not 0- */
nextstatevent -=1;
nexttickevent -=1;
}
#endif
while ((int32_t) (now - nexttickevent) < 0) {
nexttickevent -= ticks_per_intr;
/* XXX - correct nexttickevent? */
clk_count.ec_count++;
hardclock(frame);
}
while ((int32_t) (now - nextstatevent) < 0) {
do {
r = random() & (statvar -1);
} while (r == 0); /* random == 0 not allowed */
nextstatevent -= statmin + r;
/* XXX - correct nextstatevent? */
stat_count.ec_count++;
statclock(frame);
}
if ((now - nexttickevent) < (now - nextstatevent))
nextevent = now - nexttickevent;
else
nextevent = now - nextstatevent;
if (nextevent < 10 /* XXX */)
nextevent = 10;
if (nextevent > ticks_per_intr) {
/*
* If interrupts are blocked too long, like during
* the root prompt or ddb, the timer can roll over,
* this will allow the system to continue to run
* even if time is lost.
*/
nextevent = ticks_per_intr;
nexttickevent = now;
nextstatevent = now;
}
tcr0_write(nextevent);
tmr0_write(TMRx_ENABLE|TMRx_PRIV|TMRx_CSEL_CORE);
lastnow = now;
return 1;
}
void
cpu_initclocks()
{
uint32_t now;
/* would it make sense to have this be 100/1000 to round nicely? */
/* 100/1000 or 128/1024 ? */
stathz = 100;
profhz = 1000;
ticks_per_second = 200 * 1000000; /* 200 MHz */
setstatclockrate(stathz);
ticks_per_intr = ticks_per_second / hz;
evcount_attach(&clk_count, "clock", (void *)&clk_irq, &evcount_intr);
evcount_attach(&stat_count, "stat", (void *)&stat_irq, &evcount_intr);
(void) i80321_intr_establish(ICU_INT_TMR0, IPL_CLOCK, i80321_intr,
NULL, NULL);
now = 0xffffffff;
nextstatevent = now - ticks_per_intr;
nexttickevent = now - ticks_per_intr;
tcr1_write(now);
trr1_write(now);
tmr1_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_PRIV|TMRx_CSEL_CORE);
tcr0_write(now); /* known big value */
tmr0_write(TMRx_ENABLE|TMRx_PRIV|TMRx_CSEL_CORE);
tcr0_write(ticks_per_intr);
tcr1_timecounter.tc_frequency = ticks_per_second;
tc_init(&tcr1_timecounter);
i80321_timer_inited = 1;
}
void
delay(u_int usecs)
{
u_int32_t clock, oclock, delta, delaycnt;
volatile int j;
int csec, usec;
csec = usecs / 10000;
usec = usecs % 10000;
delaycnt = (TIMER_FREQUENCY / 100) * csec +
(TIMER_FREQUENCY / 100) * usec / 10000;
if (delaycnt <= 1) /* delay too short spin for a bit */
for (j = 100; j > 0; j--)
;
if (i80321_timer_inited == 0) {
/* clock isn't initialized yet */
for (; usecs > 0; usecs--)
for (j = 100; j > 0; j--)
;
return;
}
oclock = tcr1_read();
while(1) {
clock = tcr1_read();
/* timer counts down, not up so old - new */
delta = oclock - clock;
if (delta > delaycnt)
break;
}
}
void
setstatclockrate(int newhz)
{
int minint, statint;
int s;
s = splclock();
statint = ticks_per_second / newhz;
/* calculate largest 2^n which is smaller that just over half statint */
statvar = 0x40000000; /* really big power of two */
minint = statint / 2 + 100;
while (statvar > minint)
statvar >>= 1;
statmin = statint - (statvar >> 1);
splx(s);
/*
* XXX this allows the next stat timer to occur then it switches
* to the new frequency. Rather than switching instantly.
*/
}
void
i80321_calibrate_delay(void)
{
tmr1_write(0); /* stop timer */
tisr_write(TISR_TMR1); /* clear interrupt */
trr1_write(0xffffffff); /* reload value */
tcr1_write(0xffffffff); /* current value */
tmr1_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_PRIV|TMRx_CSEL_CORE);
}
todr_chip_handle_t todr_handle;
/*
* inittodr:
*
* Initialize time from the time-of-day register.
*/
#define MINYEAR 2003 /* minimum plausible year */
void
inittodr(time_t base)
{
time_t deltat;
struct timeval rtctime;
struct timespec ts;
int badbase;
if (base < (MINYEAR - 1970) * SECYR) {
printf("WARNING: preposterous time in file system\n");
/* read the system clock anyway */
base = (MINYEAR - 1970) * SECYR;
badbase = 1;
} else
badbase = 0;
if (todr_handle == NULL ||
todr_gettime(todr_handle, &rtctime) != 0 ||
rtctime.tv_sec == 0) {
/*
* Believe the time in the file system for lack of
* anything better, resetting the TODR.
*/
rtctime.tv_sec = base;
rtctime.tv_usec = 0;
if (todr_handle != NULL && !badbase) {
printf("WARNING: preposterous clock chip time\n");
resettodr();
}
goto bad;
}
ts.tv_sec = rtctime.tv_sec;
ts.tv_nsec = rtctime.tv_usec * 1000;
tc_setclock(&ts);
if (!badbase) {
/*
* See if we gained/lost two or more days; if
* so, assume something is amiss.
*/
deltat = rtctime.tv_sec - base;
if (deltat < 0)
deltat = -deltat;
if (deltat < 2 * SECDAY)
return; /* all is well */
printf("WARNING: clock %s %ld days\n",
rtctime.tv_sec < base ? "lost" : "gained",
(long)deltat / SECDAY);
}
bad:
printf("WARNING: CHECK AND RESET THE DATE!\n");
}
/*
* resettodr:
*
* Reset the time-of-day register with the current time.
*/
void
resettodr(void)
{
struct timeval rtctime;
if (time_second == 0)
return;
microtime(&rtctime);
if (todr_handle != NULL &&
todr_settime(todr_handle, &rtctime) != 0)
printf("resettodr: failed to set time\n");
}
|