summaryrefslogtreecommitdiff
path: root/sys/arch/armv7/sunxi/sxitimer.c
blob: 4ed2ee5701d84b0c0287bb82ec07ad3ddcbe6437 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
/*	$OpenBSD: sxitimer.c,v 1.16 2021/02/23 04:44:30 cheloha Exp $	*/
/*
 * Copyright (c) 2007,2009 Dale Rahn <drahn@openbsd.org>
 * Copyright (c) 2013 Raphael Graf <r@undefined.ch>
 * Copyright (c) 2013 Artturi Alm
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <sys/evcount.h>
#include <sys/device.h>
#include <sys/timetc.h>
#include <dev/clock_subr.h>

#include <arm/cpufunc.h>

#include <machine/bus.h>
#include <machine/fdt.h>
#include <machine/intr.h>

#include <dev/fdt/sunxireg.h>

#include <dev/ofw/openfirm.h>
#include <dev/ofw/fdt.h>

#define	TIMER_IER 		0x00
#define	TIMER_ISR 		0x04
#define	TIMER_IRQ(x)		(1 << (x))

#define	TIMER_CTRL(x)		(0x10 + (0x10 * (x)))
#define	TIMER_INTV(x)		(0x14 + (0x10 * (x)))
#define	TIMER_CURR(x)		(0x18 + (0x10 * (x)))

/* A1X counter */
#define	CNT64_CTRL		0xa0
#define	CNT64_LOW		0xa4
#define	CNT64_HIGH		0xa8

#define	CNT64_CLR_EN		(1 << 0) /* clear enable */
#define	CNT64_RL_EN		(1 << 1) /* read latch enable */

#define	TIMER_ENABLE		(1 << 0)
#define	TIMER_RELOAD		(1 << 1)
#define	TIMER_CLK_SRC_MASK	(3 << 2)
#define	TIMER_OSC24M		(1 << 2)
#define	TIMER_PLL6_6		(2 << 2)
#define	TIMER_PRESC_1		(0 << 4)
#define	TIMER_PRESC_2		(1 << 4)
#define	TIMER_PRESC_4		(2 << 4)
#define	TIMER_PRESC_8		(3 << 4)
#define	TIMER_PRESC_16		(4 << 4)
#define	TIMER_PRESC_32		(5 << 4)
#define	TIMER_PRESC_64		(6 << 4)
#define	TIMER_PRESC_128		(7 << 4)
#define	TIMER_CONTINOUS		(0 << 7)
#define	TIMER_SINGLESHOT	(1 << 7)

#define	TICKTIMER		0
#define	STATTIMER		1
#define	CNTRTIMER		2

#define TIMER_SYNC		3

int	sxitimer_match(struct device *, void *, void *);
void	sxitimer_attach(struct device *, struct device *, void *);
int	sxitimer_tickintr(void *);
int	sxitimer_statintr(void *);
void	sxitimer_cpu_initclocks(void);
void	sxitimer_setstatclockrate(int);
uint64_t	sxitimer_readcnt64(void);
uint32_t	sxitimer_readcnt32(void);
void	sxitimer_sync(void);
void	sxitimer_delay(u_int);

u_int sxitimer_get_timecount(struct timecounter *);

static struct timecounter sxitimer_timecounter = {
	.tc_get_timecount = sxitimer_get_timecount,
	.tc_poll_pps = NULL,
	.tc_counter_mask = 0xffffffff,
	.tc_frequency = 0,
	.tc_name = "sxitimer",
	.tc_quality = 0,
	.tc_priv = NULL,
	.tc_user = 0,
};

bus_space_tag_t		sxitimer_iot;
bus_space_handle_t	sxitimer_ioh;

uint32_t sxitimer_freq[] = {
	TIMER0_FREQUENCY,
	TIMER1_FREQUENCY,
	TIMER2_FREQUENCY,
	0
};

uint32_t sxitimer_irq[] = {
	TIMER0_IRQ,
	TIMER1_IRQ,
	TIMER2_IRQ,
	0
};

uint32_t sxitimer_stat_tpi, sxitimer_tick_tpi;
uint32_t sxitimer_statvar, sxitimer_statmin;
uint32_t sxitimer_tick_nextevt, sxitimer_stat_nextevt;
uint32_t sxitimer_ticks_err_cnt, sxitimer_ticks_err_sum;

struct sxitimer_softc {
	struct device		sc_dev;
};

struct cfattach sxitimer_ca = {
	sizeof (struct sxitimer_softc), sxitimer_match, sxitimer_attach
};

struct cfdriver sxitimer_cd = {
	NULL, "sxitimer", DV_DULL
};

int
sxitimer_match(struct device *parent, void *match, void *aux)
{
	struct fdt_attach_args *faa = aux;
	int node;

	node = OF_finddevice("/");
	if (!OF_is_compatible(node, "allwinner,sun4i-a10") &&
	    !OF_is_compatible(node, "allwinner,sun5i-a10s") &&
	    !OF_is_compatible(node, "allwinner,sun5i-a13"))
		return 0;

	return OF_is_compatible(faa->fa_node, "allwinner,sun4i-a10-timer");
}

void
sxitimer_attach(struct device *parent, struct device *self, void *aux)
{
	struct fdt_attach_args *faa = aux;
	uint32_t freq, ival, now;

	KASSERT(faa->fa_nreg > 0);

	sxitimer_iot = faa->fa_iot;
	if (bus_space_map(sxitimer_iot, faa->fa_reg[0].addr,
	    faa->fa_reg[0].size, 0, &sxitimer_ioh))
		panic("%s: bus_space_map failed!", __func__);

	/* clear counter, loop until ready */
	bus_space_write_4(sxitimer_iot, sxitimer_ioh, CNT64_CTRL,
	    CNT64_CLR_EN); /* XXX as a side-effect counter clk src=OSC24M */
	while (bus_space_read_4(sxitimer_iot, sxitimer_ioh, CNT64_CTRL)
	    & CNT64_CLR_EN)
		continue;

	/* timers are down-counters, from interval to 0 */
	now = 0xffffffff; /* known big value */
	freq = sxitimer_freq[TICKTIMER];

	/* stop timer, and set clk src */
	bus_space_write_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_CTRL(TICKTIMER), TIMER_OSC24M);

	ival = sxitimer_tick_tpi = freq / hz;
	sxitimer_tick_nextevt = now - ival;

	sxitimer_ticks_err_cnt = freq % hz;
	sxitimer_ticks_err_sum = 0;

	bus_space_write_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_INTV(TICKTIMER), ival);

	/* timers are down-counters, from interval to 0 */
	now = 0xffffffff; /* known big value */
	freq = sxitimer_freq[STATTIMER];

	/* stop timer, and set clk src */
	bus_space_write_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_CTRL(STATTIMER), TIMER_OSC24M);

	/* 100/1000 or 128/1024 ? */
	stathz = 128;
	profhz = 1024;
	sxitimer_setstatclockrate(stathz);

	ival = sxitimer_stat_tpi = freq / stathz;
	sxitimer_stat_nextevt = now - ival;

	bus_space_write_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_INTV(STATTIMER), ival);

	/* timers are down-counters, from interval to 0 */
	now = 0xffffffff; /* known big value */
	freq = sxitimer_freq[CNTRTIMER];

	/* stop timer, and set clk src */
	bus_space_write_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_CTRL(CNTRTIMER), TIMER_OSC24M);

	ival = now;

	sxitimer_timecounter.tc_frequency = freq;
	tc_init(&sxitimer_timecounter);
	arm_clock_register(sxitimer_cpu_initclocks, sxitimer_delay,
	    sxitimer_setstatclockrate, NULL);

	printf(": %d kHz", freq / 1000);

	bus_space_write_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_INTV(CNTRTIMER), ival);

	printf("\n");
}

/*
 * would be interesting to play with trigger mode while having one timer
 * in 32kHz mode, and the other timer running in sysclk mode and use
 * the high resolution speeds (matters more for delay than tick timer)
 */

void
sxitimer_cpu_initclocks(void)
{
	uint32_t isr, ier, ctrl;

	/* establish interrupts */
	arm_intr_establish(sxitimer_irq[TICKTIMER], IPL_CLOCK,
	    sxitimer_tickintr, NULL, "tick");
	arm_intr_establish(sxitimer_irq[STATTIMER], IPL_STATCLOCK,
	    sxitimer_statintr, NULL, "stattick");

	/* clear timer interrupt pending bits */
	isr = bus_space_read_4(sxitimer_iot, sxitimer_ioh, TIMER_ISR);
	isr |= TIMER_IRQ(STATTIMER) | TIMER_IRQ(TICKTIMER);
	bus_space_write_4(sxitimer_iot, sxitimer_ioh, TIMER_ISR, isr);

	/* enable timer IRQs */
	ier = bus_space_read_4(sxitimer_iot, sxitimer_ioh, TIMER_IER);
	ier |= TIMER_IRQ(STATTIMER) | TIMER_IRQ(TICKTIMER);
	bus_space_write_4(sxitimer_iot, sxitimer_ioh, TIMER_IER, ier);

	/* enable timers */
	ctrl = bus_space_read_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_CTRL(CNTRTIMER));
	bus_space_write_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_CTRL(CNTRTIMER),
	    ctrl | TIMER_ENABLE | TIMER_RELOAD | TIMER_CONTINOUS);

	ctrl = bus_space_read_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_CTRL(STATTIMER));
	bus_space_write_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_CTRL(STATTIMER),
	    ctrl | TIMER_ENABLE | TIMER_RELOAD | TIMER_SINGLESHOT);

	ctrl = bus_space_read_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_CTRL(TICKTIMER));
	bus_space_write_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_CTRL(TICKTIMER),
	    ctrl | TIMER_ENABLE | TIMER_RELOAD | TIMER_SINGLESHOT);
}

/*
 * See comment in arm/xscale/i80321_clock.c
 *
 * Counter is count up, but with autoreload timers it is not possible
 * to detect how many interrupts passed while interrupts were blocked.
 * Also it is not possible to atomically add to the register.
 *
 * To work around this two timers are used, one is used as a reference
 * clock without reload, however we just disable the interrupt it
 * could generate.
 *
 * Internally this keeps track of when the next timer should fire
 * and based on that time and the current value of the reference
 * clock a number is written into the timer count register to schedule
 * the next event.
 */
/* XXX update above comment */
int
sxitimer_tickintr(void *frame)
{
	uint32_t now, nextevent;
	uint32_t val;
	int rc = 0;

	splassert(IPL_CLOCK);	

	/* clear timer pending interrupt bit */
	bus_space_write_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_ISR, TIMER_IRQ(TICKTIMER));

	now = sxitimer_readcnt32();

	while ((int32_t)(now - sxitimer_tick_nextevt) < 0) {
		sxitimer_tick_nextevt -= sxitimer_tick_tpi;
		sxitimer_ticks_err_sum += sxitimer_ticks_err_cnt;

		while (sxitimer_ticks_err_sum  > hz) {
			sxitimer_tick_nextevt += 1;
			sxitimer_ticks_err_sum -= hz;
		}

		rc = 1;
		hardclock(frame);
	}
	nextevent = now - sxitimer_tick_nextevt;
	if (nextevent < 10 /* XXX */)
		nextevent = 10;

	if (nextevent > sxitimer_tick_tpi) {
		/*
		 * If interrupts are blocked too long, like during
		 * the root prompt or ddb, the timer can roll over,
		 * this will allow the system to continue to run
		 * even if time is lost.
		 */
		nextevent = sxitimer_tick_tpi;
		sxitimer_tick_nextevt = now;
	}

	val = bus_space_read_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_CTRL(TICKTIMER));
	bus_space_write_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_CTRL(TICKTIMER), val & ~TIMER_ENABLE);

	sxitimer_sync();

	bus_space_write_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_INTV(TICKTIMER), nextevent);

	val = bus_space_read_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_CTRL(TICKTIMER));
	bus_space_write_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_CTRL(TICKTIMER),
	    val | TIMER_ENABLE | TIMER_RELOAD | TIMER_SINGLESHOT);

	return rc;
}

int
sxitimer_statintr(void *frame)
{
	uint32_t now, nextevent, r;
	uint32_t val;
	int rc = 0;

	splassert(IPL_STATCLOCK);	

	/* clear timer pending interrupt bit */
	bus_space_write_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_ISR, TIMER_IRQ(STATTIMER));

	now = sxitimer_readcnt32();
	while ((int32_t)(now - sxitimer_stat_nextevt) < 0) {
		do {
			r = random() & (sxitimer_statvar -1);
		} while (r == 0); /* random == 0 not allowed */
		sxitimer_stat_nextevt -= sxitimer_statmin + r;
		rc = 1;
		statclock(frame);
	}

	nextevent = now - sxitimer_stat_nextevt;

	if (nextevent < 10 /* XXX */)
		nextevent = 10;

	if (nextevent > sxitimer_stat_tpi) {
		/*
		 * If interrupts are blocked too long, like during
		 * the root prompt or ddb, the timer can roll over,
		 * this will allow the system to continue to run
		 * even if time is lost.
		 */
		nextevent = sxitimer_stat_tpi;
		sxitimer_stat_nextevt = now;
	}

	val = bus_space_read_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_CTRL(STATTIMER));
	bus_space_write_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_CTRL(STATTIMER), val & ~TIMER_ENABLE);

	sxitimer_sync();

	bus_space_write_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_INTV(STATTIMER), nextevent);

	val = bus_space_read_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_CTRL(STATTIMER));
	bus_space_write_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_CTRL(STATTIMER),
	    val | TIMER_ENABLE | TIMER_RELOAD | TIMER_SINGLESHOT);

	return rc;
}

uint64_t
sxitimer_readcnt64(void)
{
	uint32_t low, high;

	/* latch counter, loop until ready */
	bus_space_write_4(sxitimer_iot, sxitimer_ioh, CNT64_CTRL, CNT64_RL_EN);
	while (bus_space_read_4(sxitimer_iot, sxitimer_ioh, CNT64_CTRL)
	    & CNT64_RL_EN)
		continue;

	/*
	 * A10 usermanual doesn't mention anything about order, but fwiw
	 * iirc. A20 manual mentions that low should be read first.
	 */
	/* XXX check above */
	low = bus_space_read_4(sxitimer_iot, sxitimer_ioh, CNT64_LOW);
	high = bus_space_read_4(sxitimer_iot, sxitimer_ioh, CNT64_HIGH);
	return (uint64_t)high << 32 | low;
}

uint32_t
sxitimer_readcnt32(void)
{
	return bus_space_read_4(sxitimer_iot, sxitimer_ioh,
	    TIMER_CURR(CNTRTIMER));
}

void
sxitimer_sync(void)
{
	uint32_t now = sxitimer_readcnt32();

	while ((now - sxitimer_readcnt32()) < TIMER_SYNC)
		CPU_BUSY_CYCLE();
}

void
sxitimer_delay(u_int usecs)
{
	uint64_t oclock, timeout;

	oclock = sxitimer_readcnt64();
	timeout = oclock + (COUNTER_FREQUENCY / 1000000) * usecs;

	while (oclock < timeout)
		oclock = sxitimer_readcnt64();
}

void
sxitimer_setstatclockrate(int newhz)
{
	int minint, statint, s;
	
	s = splstatclock();

	statint = sxitimer_freq[STATTIMER] / newhz;
	/* calculate largest 2^n which is smaller than just over half statint */
	sxitimer_statvar = 0x40000000; /* really big power of two */
	minint = statint / 2 + 100;
	while (sxitimer_statvar > minint)
		sxitimer_statvar >>= 1;

	sxitimer_statmin = statint - (sxitimer_statvar >> 1);

	splx(s);

	/*
	 * XXX this allows the next stat timer to occur then it switches
	 * to the new frequency. Rather than switching instantly.
	 */
}

u_int
sxitimer_get_timecount(struct timecounter *tc)
{
	return (u_int)UINT_MAX - sxitimer_readcnt32();
}