summaryrefslogtreecommitdiff
path: root/sys/arch/beagle/dev/amptimer.c
blob: cefd16bfdc2abd2794634f99a6c741b36346d543 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
/* $OpenBSD: amptimer.c,v 1.6 2011/11/10 19:37:01 uwe Exp $ */
/*
 * Copyright (c) 2011 Dale Rahn <drahn@openbsd.org>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/queue.h>
#include <sys/malloc.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/timetc.h>
#include <sys/evcount.h>

#include <arm/cpufunc.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <beagle/dev/omapvar.h>

#define GTIMER_CNT_LOW		0x200
#define GTIMER_CNT_HIGH		0x204
#define GTIMER_CTRL		0x208
#define 	GTIMER_CTRL_AA		(1 << 3)
#define 	GTIMER_CTRL_IRQ		(1 << 2)
#define 	GTIMER_CTRL_COMP	(1 << 1)
#define 	GTIMER_CTRL_TIMER	(1 << 0)
#define GTIMER_STATUS		0x20c
#define 	GTIMER_STATUS_EVENT		(1 << 0)
#define GTIMER_CMP_LOW		0x210
#define GTIMER_CMP_HIGH		0x214
#define GTIMER_AUTOINC		0x218

/* XXX - PERIPHCLK */
#define TIMER_FREQUENCY                 512 * 1024 * 1024 /* XXX - PERIPHCLK? */

u_int amptimer_get_timecount(struct timecounter *);

static struct timecounter amptimer_timecounter = {
        amptimer_get_timecount, NULL, 0x7fffffff, 0, "amptimer", 0, NULL
};

struct amptimer_softc {
	struct device		sc_dev;
        bus_space_tag_t		sc_iot;
        bus_space_handle_t	sc_ioh;
	volatile u_int64_t	sc_nexttickevent;
	volatile u_int64_t	sc_nextstatevent;
	u_int32_t		sc_ticks_per_second;
	u_int32_t		sc_ticks_per_intr;
	u_int32_t		sc_ticks_err_cnt;
	u_int32_t		sc_ticks_err_sum;
	u_int32_t		sc_statvar;
	u_int32_t		sc_statmin;

#ifdef AMPTIMER_DEBUG
	struct evcount		sc_clk_count;
	struct evcount		sc_stat_count;
#endif
};

void		amptimer_attach(struct device *, struct device *, void *);
uint64_t	amptimer_readcnt64(struct amptimer_softc *sc);
int		amptimer_intr(void *);
void		amptimer_cpu_initclocks(void);
void		amptimer_delay(u_int);
void		amptimer_setstatclockrate(int stathz);

/* hack - XXXX
 * gptimer connects directly to ampintc, not thru the generic
 * inteface because it uses an 'internal' interupt
 * not a peripheral interrupt.
 */
void	*ampintc_intr_establish(int, int, int (*)(void *), void *, char *);



struct cfattach amptimer_ca = {
	sizeof (struct amptimer_softc), NULL, amptimer_attach
};

struct cfdriver amptimer_cd = {
	NULL, "amptimer", DV_DULL
};

uint64_t
amptimer_readcnt64(struct amptimer_softc *sc)
{
	uint32_t high0, high1, low;
        bus_space_tag_t iot = sc->sc_iot;
        bus_space_handle_t ioh = sc->sc_ioh;

	do {
		high0 = bus_space_read_4(iot, ioh, GTIMER_CNT_HIGH);
		low = bus_space_read_4(iot, ioh, GTIMER_CNT_LOW);
		high1 = bus_space_read_4(iot, ioh, GTIMER_CNT_HIGH);
	} while (high0 != high1);

	return ((((uint64_t)high1) << 32) | low);
}


void
amptimer_attach(struct device *parent, struct device *self, void *args)
{
	struct amptimer_softc *sc = (struct amptimer_softc *)self;
	struct omap_attach_args *oa = args;
	bus_space_handle_t ioh;

	sc->sc_iot = oa->oa_iot;

	if (bus_space_map(sc->sc_iot, oa->oa_dev->mem[0].addr,
	    oa->oa_dev->mem[0].size, 0, &ioh))
		panic("amptimer_attach: bus_space_map failed!");

	sc->sc_ticks_per_second = TIMER_FREQUENCY;
	printf(": tick rate %d KHz\n", sc->sc_ticks_per_second /1024);

	sc->sc_ioh = ioh;

	/* disable global timer */
	bus_space_write_4(sc->sc_iot, ioh, GTIMER_CTRL, 0);

	/* XXX ??? reset counters to 0 - gives us uptime in the counter */
	bus_space_write_4(sc->sc_iot, ioh, GTIMER_CNT_LOW, 0);
	bus_space_write_4(sc->sc_iot, ioh, GTIMER_CNT_HIGH, 0);

	/* enable global timer */
	bus_space_write_4(sc->sc_iot, ioh, GTIMER_CTRL, GTIMER_CTRL_TIMER);

	/* clear event */
	bus_space_write_4(sc->sc_iot, ioh, GTIMER_STATUS, 1);

#ifdef AMPTIMER_DEBUG
	evcount_attach(&sc->sc_clk_count, "clock", NULL);
	evcount_attach(&sc->sc_stat_count, "stat", NULL);
#endif

	/*
	 * comparator registers and interrupts not enabled until
	 * timer configures
	 */

	arm_clock_register(amptimer_cpu_initclocks, amptimer_delay,
	    amptimer_setstatclockrate);

	amptimer_timecounter.tc_frequency = sc->sc_ticks_per_second;
	amptimer_timecounter.tc_priv = sc;

	tc_init(&amptimer_timecounter);
}

u_int
amptimer_get_timecount(struct timecounter *tc)
{
	struct amptimer_softc *sc = amptimer_timecounter.tc_priv;
        return bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIMER_CNT_LOW);
}


int
amptimer_intr(void *frame)
{
	struct amptimer_softc	*sc = amptimer_cd.cd_devs[0];
	uint64_t		 now;
	uint64_t		 nextevent;
	uint32_t		 r, reg;
	int			 skip = 1;
	int			 rc = 0;

	/*
	 * DSR - I know that the tick timer is 64 bits, but the following
	 * code deals with rollover, so there is no point in dealing
	 * with the 64 bit math, just let the 32 bit rollover 
	 * do the right thing
	 */

	now = amptimer_readcnt64(sc);

	while (sc->sc_nexttickevent <= now) {
		sc->sc_nexttickevent += sc->sc_ticks_per_intr;
		sc->sc_ticks_err_sum += sc->sc_ticks_err_cnt;
		/* looping a few times is faster than divide */
		while (sc->sc_ticks_err_sum > hz) {
			sc->sc_nexttickevent += 1;
			sc->sc_ticks_err_sum -= hz;
		}

		/* looping a few times is faster than divide */
		while (sc->sc_ticks_err_sum  > hz) {
			sc->sc_nexttickevent += 1;
			sc->sc_ticks_err_sum -= hz;
		}

#ifdef AMPTIMER_DEBUG
		sc->sc_clk_count.ec_count++;
#endif
		rc = 1;
		hardclock(frame);
	}
	while (sc->sc_nextstatevent <= now) {
		do {
			r = random() & (sc->sc_statvar -1);
		} while (r == 0); /* random == 0 not allowed */
		sc->sc_nextstatevent += sc->sc_statmin + r;

		/* XXX - correct nextstatevent? */
#ifdef AMPTIMER_DEBUG
		sc->sc_stat_count.ec_count++;
#endif
		rc = 1;
		statclock(frame);
	}

	if (sc->sc_nexttickevent < sc->sc_nextstatevent)
		nextevent = sc->sc_nexttickevent;
	else
		nextevent = sc->sc_nextstatevent;

again:
	reg = bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIMER_CTRL);
	reg &= ~GTIMER_CTRL_COMP;
	bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CTRL, reg);
	bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CMP_LOW,
	    nextevent & 0xffffffff);
	bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CMP_HIGH,
	    nextevent >> 32);
	reg |= GTIMER_CTRL_COMP;
	bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CTRL, reg);
		
	now = amptimer_readcnt64(sc);
	if (now >= nextevent) {
		nextevent = now + skip;
		skip += 1;
		goto again;
	}

	return (rc);
}

void
amptimer_cpu_initclocks()
{
	struct amptimer_softc	*sc = amptimer_cd.cd_devs[0];
	uint64_t		 next;
	uint32_t		 reg;

	stathz = hz;
	profhz = hz * 10;

	sc->sc_ticks_per_second = TIMER_FREQUENCY;

	amptimer_setstatclockrate(stathz);

	sc->sc_ticks_per_intr = sc->sc_ticks_per_second / hz;
	sc->sc_ticks_err_cnt = sc->sc_ticks_per_second % hz;
	sc->sc_ticks_err_sum = 0;; 

	/* establish interrupts */
	/* XXX - irq */
	ampintc_intr_establish(27, IPL_CLOCK, amptimer_intr,
	    NULL, "tick");

	/* setup timer 0 (hardware timer 2) */
	next = amptimer_readcnt64(sc) + sc->sc_ticks_per_intr;
	sc->sc_nexttickevent = sc->sc_nextstatevent = next;

	reg = bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIMER_CTRL);
	reg &= ~GTIMER_CTRL_COMP;
	bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CTRL, reg);
	bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CMP_LOW,
	    next & 0xffffffff);
	bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CMP_HIGH,
	    next >> 32);
	reg |= GTIMER_CTRL_COMP | GTIMER_CTRL_IRQ;
	bus_space_write_4(sc->sc_iot, sc->sc_ioh, GTIMER_CTRL, reg);
	
}
void
amptimer_delay(u_int usecs)
{
	struct amptimer_softc	*sc = amptimer_cd.cd_devs[0];
	u_int32_t		clock, oclock, delta, delaycnt;
	volatile int		j;
	int			csec, usec;

	if (usecs > (0x80000000 / (sc->sc_ticks_per_second))) {
		csec = usecs / 10000;
		usec = usecs % 10000;

		delaycnt = (sc->sc_ticks_per_second / 100) * csec +
		    (sc->sc_ticks_per_second / 100) * usec / 10000;
	} else {
		delaycnt = sc->sc_ticks_per_second * usecs / 1000000;
	}
	if (delaycnt <= 1)
		for (j = 100; j > 0; j--)
			;

	oclock = bus_space_read_4(sc->sc_iot, sc->sc_ioh, GTIMER_CNT_LOW);
	while (1) {
		for (j = 100; j > 0; j--)
			;
		clock = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
		    GTIMER_CNT_LOW);
		delta = clock - oclock;
		if (delta > delaycnt)
			break;
	}
	
}

void
amptimer_setstatclockrate(int newhz)
{
	struct amptimer_softc	*sc = amptimer_cd.cd_devs[0];
	int			 minint, statint;
	int			 s;
	
	s = splclock();

	statint = sc->sc_ticks_per_second / newhz;
	/* calculate largest 2^n which is smaller that just over half statint */
	sc->sc_statvar = 0x40000000; /* really big power of two */
	minint = statint / 2 + 100;
	while (sc->sc_statvar > minint)
		sc->sc_statvar >>= 1;

	sc->sc_statmin = statint - (sc->sc_statvar >> 1);
	
	splx(s);

	/*
	 * XXX this allows the next stat timer to occur then it switches
	 * to the new frequency. Rather than switching instantly.
	 */
}