1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
/* $OpenBSD: dmareg.h,v 1.6 1997/07/06 08:01:49 downsj Exp $ */
/* $NetBSD: dmareg.h,v 1.12 1997/05/05 21:02:40 thorpej Exp $ */
/*
* Copyright (c) 1982, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)dmareg.h 8.1 (Berkeley) 6/10/93
*/
#include <hp300/dev/iotypes.h> /* XXX */
#include <machine/hp300spu.h>
/*
* Hardware layout for the 98620[ABC]:
* 98620A (old 320s?): byte/word DMA in up to 64K chunks
* 98620B (320s only): 98620A with programmable IPL
* 98620C (all others): byte/word/longword DMA in up to 4Gb chunks
*/
struct dmaBdevice {
v_char *dmaB_addr;
vu_short dmaB_count;
vu_short dmaB_cmd;
#define dmaB_stat dmaB_cmd
};
struct dmadevice {
v_char *dma_addr;
vu_int dma_count;
vu_short dma_cmd;
vu_short dma_stat;
};
struct dmareg {
struct dmaBdevice dma_Bchan0;
struct dmaBdevice dma_Bchan1;
/* the rest are 98620C specific */
v_char dma_id[4];
vu_char dma_cr;
char dma_pad1[0xEB];
struct dmadevice dma_chan0;
char dma_pad2[0xF4];
struct dmadevice dma_chan1;
};
/* The hp300 has 2 DMA channels. */
#define NDMACHAN 2
/* addresses */
#define DMA_BASE IIOV(0x500000)
/* command bits */
#define DMA_ENAB 0x0001
#define DMA_WORD 0x0002
#define DMA_WRT 0x0004
#define DMA_PRI 0x0008
#define DMA_IPL(x) (((x) - 3) << 4)
#define DMA_LWORD 0x0100
#define DMA_START 0x8000
/* status bits */
#define DMA_ARMED 0x01
#define DMA_INTR 0x02
#define DMA_ACC 0x04
#define DMA_HALT 0x08
#define DMA_BERR 0x10
#define DMA_ALIGN 0x20
#define DMA_WRAP 0x40
#ifdef _KERNEL
/*
* Macros to attempt to hide the HW differences between the 98620B DMA
* board and the 1TQ4-0401 DMA chip (68020C "board"). The latter
* includes emulation registers for the former but you need to access
* the "native-mode" registers directly in order to do 32-bit DMA.
*
* DMA_CLEAR: Clear interrupt on DMA board. We just use the
* emulation registers on the 98620C as that is easiest.
* DMA_STAT: Read status register. Again, we always read the
* emulation register. Someday we might want to
* look at the 98620C status to get the extended bits.
* DMA_ARM: Load address, count and kick-off DMA.
*/
#define DMA_CLEAR(dc) do { \
v_int dmaclr; \
dmaclr = (int)dc->dm_Bhwaddr->dmaB_addr; \
} while (0);
#define DMA_STAT(dc) dc->dm_Bhwaddr->dmaB_stat
#if defined(HP320)
#define DMA_ARM(sc, dc) \
if (sc->sc_type == DMA_B) { \
struct dmaBdevice *dma = dc->dm_Bhwaddr; \
dma->dmaB_addr = dc->dm_chain[dc->dm_cur].dc_addr; \
dma->dmaB_count = dc->dm_chain[dc->dm_cur].dc_count - 1; \
dma->dmaB_cmd = dc->dm_cmd; \
} else { \
struct dmadevice *dma = dc->dm_hwaddr; \
dma->dma_addr = dc->dm_chain[dc->dm_cur].dc_addr; \
dma->dma_count = dc->dm_chain[dc->dm_cur].dc_count - 1; \
dma->dma_cmd = dc->dm_cmd; \
}
#else
#define DMA_ARM(sc, dc) \
{ \
struct dmadevice *dma = dc->dm_hwaddr; \
dma->dma_addr = dc->dm_chain[dc->dm_cur].dc_addr; \
dma->dma_count = dc->dm_chain[dc->dm_cur].dc_count - 1; \
dma->dma_cmd = dc->dm_cmd; \
}
#endif
#endif
|