1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
|
/* $OpenBSD: dbl_float.h,v 1.7 2002/03/14 03:15:53 millert Exp $ */
/*
* Copyright 1996 1995 by Open Software Foundation, Inc.
* All Rights Reserved
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby granted,
* provided that the above copyright notice appears in all copies and
* that both the copyright notice and this permission notice appear in
* supporting documentation.
*
* OSF DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE.
*
* IN NO EVENT SHALL OSF BE LIABLE FOR ANY SPECIAL, INDIRECT, OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT,
* NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
* WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* pmk1.1
*/
/*
* (c) Copyright 1986 HEWLETT-PACKARD COMPANY
*
* To anyone who acknowledges that this file is provided "AS IS"
* without any express or implied warranty:
* permission to use, copy, modify, and distribute this file
* for any purpose is hereby granted without fee, provided that
* the above copyright notice and this notice appears in all
* copies, and that the name of Hewlett-Packard Company not be
* used in advertising or publicity pertaining to distribution
* of the software without specific, written prior permission.
* Hewlett-Packard Company makes no representations about the
* suitability of this software for any purpose.
*/
#include <sys/cdefs.h>
/**************************************
* Declare double precision functions *
**************************************/
/* 32-bit word grabing functions */
#define Dbl_firstword(value) Dallp1(value)
#define Dbl_secondword(value) Dallp2(value)
#define Dbl_thirdword(value) dummy_location
#define Dbl_fourthword(value) dummy_location
#define Dbl_sign(object) Dsign(object)
#define Dbl_exponent(object) Dexponent(object)
#define Dbl_signexponent(object) Dsignexponent(object)
#define Dbl_mantissap1(object) Dmantissap1(object)
#define Dbl_mantissap2(object) Dmantissap2(object)
#define Dbl_exponentmantissap1(object) Dexponentmantissap1(object)
#define Dbl_allp1(object) Dallp1(object)
#define Dbl_allp2(object) Dallp2(object)
/* dbl_and_signs ands the sign bits of each argument and puts the result
* into the first argument. dbl_or_signs ors those same sign bits */
#define Dbl_and_signs( src1dst, src2) \
Dallp1(src1dst) = (Dallp1(src2)|~(1<<31)) & Dallp1(src1dst)
#define Dbl_or_signs( src1dst, src2) \
Dallp1(src1dst) = (Dallp1(src2)&(1<<31)) | Dallp1(src1dst)
/* The hidden bit is always the low bit of the exponent */
#define Dbl_clear_exponent_set_hidden(srcdst) Deposit_dexponent(srcdst,1)
#define Dbl_clear_signexponent_set_hidden(srcdst) \
Deposit_dsignexponent(srcdst,1)
#define Dbl_clear_sign(srcdst) Dallp1(srcdst) &= ~(1<<31)
#define Dbl_clear_signexponent(srcdst) \
Dallp1(srcdst) &= Dmantissap1((unsigned)-1)
/* Exponent field for doubles has already been cleared and may be
* included in the shift. Here we need to generate two double width
* variable shifts. The insignificant bits can be ignored.
* MTSAR f(varamount)
* VSHD srcdst.high,srcdst.low => srcdst.low
* VSHD 0,srcdst.high => srcdst.high
* This is very difficult to model with C expressions since the shift amount
* could exceed 32. */
/* varamount must be less than 64 */
#define Dbl_rightshift(srcdstA, srcdstB, varamount) \
{if((varamount) >= 32) { \
Dallp2(srcdstB) = Dallp1(srcdstA) >> (varamount-32); \
Dallp1(srcdstA)=0; \
} \
else if(varamount > 0) { \
Variable_shift_double(Dallp1(srcdstA), Dallp2(srcdstB), \
(varamount), Dallp2(srcdstB)); \
Dallp1(srcdstA) >>= varamount; \
} }
/* varamount must be less than 64 */
#define Dbl_rightshift_exponentmantissa(srcdstA, srcdstB, varamount) \
{if((varamount) >= 32) { \
Dallp2(srcdstB) = Dexponentmantissap1(srcdstA) >> ((varamount)-32); \
Dallp1(srcdstA) &= (1<<31); /* clear exponentmantissa field */ \
} \
else if(varamount > 0) { \
Variable_shift_double(Dexponentmantissap1(srcdstA), Dallp2(srcdstB), \
(varamount), Dallp2(srcdstB)); \
Deposit_dexponentmantissap1(srcdstA, \
(Dexponentmantissap1(srcdstA)>>(varamount))); \
} }
/* varamount must be less than 64 */
#define Dbl_leftshift(srcdstA, srcdstB, varamount) \
{if((varamount) >= 32) { \
Dallp1(srcdstA) = Dallp2(srcdstB) << (varamount-32); \
Dallp2(srcdstB)=0; \
} \
else { \
if ((varamount) > 0) { \
Dallp1(srcdstA) = (Dallp1(srcdstA) << (varamount)) | \
(Dallp2(srcdstB) >> (32-(varamount))); \
Dallp2(srcdstB) <<= varamount; \
} \
} }
#define Dbl_leftshiftby1_withextent(lefta,leftb,right,resulta,resultb) \
Shiftdouble(Dallp1(lefta), Dallp2(leftb), 31, Dallp1(resulta)); \
Shiftdouble(Dallp2(leftb), Extall(right), 31, Dallp2(resultb))
#define Dbl_rightshiftby1_withextent(leftb,right,dst) \
Extall(dst) = (Dallp2(leftb) << 31) | ((unsigned)Extall(right) >> 1) | \
Extlow(right)
#define Dbl_arithrightshiftby1(srcdstA,srcdstB) \
Shiftdouble(Dallp1(srcdstA),Dallp2(srcdstB),1,Dallp2(srcdstB));\
Dallp1(srcdstA) = (int)Dallp1(srcdstA) >> 1
/* Sign extend the sign bit with an integer destination */
#define Dbl_signextendedsign(value) Dsignedsign(value)
#define Dbl_isone_hidden(dbl_value) (Is_dhidden(dbl_value)!=0)
/* Singles and doubles may include the sign and exponent fields. The
* hidden bit and the hidden overflow must be included. */
#define Dbl_increment(dbl_valueA,dbl_valueB) \
if( (Dallp2(dbl_valueB) += 1) == 0 ) Dallp1(dbl_valueA) += 1
#define Dbl_increment_mantissa(dbl_valueA,dbl_valueB) \
if( (Dmantissap2(dbl_valueB) += 1) == 0 ) \
Deposit_dmantissap1(dbl_valueA,dbl_valueA+1)
#define Dbl_decrement(dbl_valueA,dbl_valueB) \
if( Dallp2(dbl_valueB) == 0 ) Dallp1(dbl_valueA) -= 1; \
Dallp2(dbl_valueB) -= 1
#define Dbl_isone_sign(dbl_value) (Is_dsign(dbl_value)!=0)
#define Dbl_isone_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)!=0)
#define Dbl_isone_lowmantissap1(dbl_valueA) (Is_dlowp1(dbl_valueA)!=0)
#define Dbl_isone_lowmantissap2(dbl_valueB) (Is_dlowp2(dbl_valueB)!=0)
#define Dbl_isone_signaling(dbl_value) (Is_dsignaling(dbl_value)!=0)
#define Dbl_is_signalingnan(dbl_value) (Dsignalingnan(dbl_value)==0xfff)
#define Dbl_isnotzero(dbl_valueA,dbl_valueB) \
(Dallp1(dbl_valueA) || Dallp2(dbl_valueB))
#define Dbl_isnotzero_hiddenhigh7mantissa(dbl_value) \
(Dhiddenhigh7mantissa(dbl_value)!=0)
#define Dbl_isnotzero_exponent(dbl_value) (Dexponent(dbl_value)!=0)
#define Dbl_isnotzero_mantissa(dbl_valueA,dbl_valueB) \
(Dmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
#define Dbl_isnotzero_mantissap1(dbl_valueA) (Dmantissap1(dbl_valueA)!=0)
#define Dbl_isnotzero_mantissap2(dbl_valueB) (Dmantissap2(dbl_valueB)!=0)
#define Dbl_isnotzero_exponentmantissa(dbl_valueA,dbl_valueB) \
(Dexponentmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
#define Dbl_isnotzero_low4p2(dbl_value) (Dlow4p2(dbl_value)!=0)
#define Dbl_iszero(dbl_valueA,dbl_valueB) (Dallp1(dbl_valueA)==0 && \
Dallp2(dbl_valueB)==0)
#define Dbl_iszero_allp1(dbl_value) (Dallp1(dbl_value)==0)
#define Dbl_iszero_allp2(dbl_value) (Dallp2(dbl_value)==0)
#define Dbl_iszero_hidden(dbl_value) (Is_dhidden(dbl_value)==0)
#define Dbl_iszero_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)==0)
#define Dbl_iszero_hiddenhigh3mantissa(dbl_value) \
(Dhiddenhigh3mantissa(dbl_value)==0)
#define Dbl_iszero_hiddenhigh7mantissa(dbl_value) \
(Dhiddenhigh7mantissa(dbl_value)==0)
#define Dbl_iszero_sign(dbl_value) (Is_dsign(dbl_value)==0)
#define Dbl_iszero_exponent(dbl_value) (Dexponent(dbl_value)==0)
#define Dbl_iszero_mantissa(dbl_valueA,dbl_valueB) \
(Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
#define Dbl_iszero_exponentmantissa(dbl_valueA,dbl_valueB) \
(Dexponentmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
#define Dbl_isinfinity_exponent(dbl_value) \
(Dexponent(dbl_value)==DBL_INFINITY_EXPONENT)
#define Dbl_isnotinfinity_exponent(dbl_value) \
(Dexponent(dbl_value)!=DBL_INFINITY_EXPONENT)
#define Dbl_isinfinity(dbl_valueA,dbl_valueB) \
(Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT && \
Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
#define Dbl_isnan(dbl_valueA,dbl_valueB) \
(Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT && \
(Dmantissap1(dbl_valueA)!=0 || Dmantissap2(dbl_valueB)!=0))
#define Dbl_isnotnan(dbl_valueA,dbl_valueB) \
(Dexponent(dbl_valueA)!=DBL_INFINITY_EXPONENT || \
(Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0))
#define Dbl_islessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
(Dallp1(dbl_op1a) < Dallp1(dbl_op2a) || \
(Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \
Dallp2(dbl_op1b) < Dallp2(dbl_op2b)))
#define Dbl_isgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
(Dallp1(dbl_op1a) > Dallp1(dbl_op2a) || \
(Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \
Dallp2(dbl_op1b) > Dallp2(dbl_op2b)))
#define Dbl_isnotlessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
(Dallp1(dbl_op1a) > Dallp1(dbl_op2a) || \
(Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \
Dallp2(dbl_op1b) >= Dallp2(dbl_op2b)))
#define Dbl_isnotgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
(Dallp1(dbl_op1a) < Dallp1(dbl_op2a) || \
(Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \
Dallp2(dbl_op1b) <= Dallp2(dbl_op2b)))
#define Dbl_isequal(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
((Dallp1(dbl_op1a) == Dallp1(dbl_op2a)) && \
(Dallp2(dbl_op1b) == Dallp2(dbl_op2b)))
#define Dbl_leftshiftby8(dbl_valueA,dbl_valueB) \
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),24,Dallp1(dbl_valueA)); \
Dallp2(dbl_valueB) <<= 8
#define Dbl_leftshiftby7(dbl_valueA,dbl_valueB) \
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),25,Dallp1(dbl_valueA)); \
Dallp2(dbl_valueB) <<= 7
#define Dbl_leftshiftby4(dbl_valueA,dbl_valueB) \
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),28,Dallp1(dbl_valueA)); \
Dallp2(dbl_valueB) <<= 4
#define Dbl_leftshiftby3(dbl_valueA,dbl_valueB) \
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),29,Dallp1(dbl_valueA)); \
Dallp2(dbl_valueB) <<= 3
#define Dbl_leftshiftby2(dbl_valueA,dbl_valueB) \
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),30,Dallp1(dbl_valueA)); \
Dallp2(dbl_valueB) <<= 2
#define Dbl_leftshiftby1(dbl_valueA,dbl_valueB) \
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),31,Dallp1(dbl_valueA)); \
Dallp2(dbl_valueB) <<= 1
#define Dbl_rightshiftby8(dbl_valueA,dbl_valueB) \
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),8,Dallp2(dbl_valueB)); \
Dallp1(dbl_valueA) >>= 8
#define Dbl_rightshiftby4(dbl_valueA,dbl_valueB) \
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),4,Dallp2(dbl_valueB)); \
Dallp1(dbl_valueA) >>= 4
#define Dbl_rightshiftby2(dbl_valueA,dbl_valueB) \
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),2,Dallp2(dbl_valueB)); \
Dallp1(dbl_valueA) >>= 2
#define Dbl_rightshiftby1(dbl_valueA,dbl_valueB) \
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),1,Dallp2(dbl_valueB)); \
Dallp1(dbl_valueA) >>= 1
/* This magnitude comparison uses the signless first words and
* the regular part2 words. The comparison is graphically:
*
* 1st greater? -------------
* |
* 1st less?-----------------+---------
* | |
* 2nd greater or equal----->| |
* False True
*/
#define Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \
((signlessleft <= signlessright) && \
( (signlessleft < signlessright) || (Dallp2(leftB)<Dallp2(rightB)) ))
#define Dbl_copytoint_exponentmantissap1(src,dest) \
dest = Dexponentmantissap1(src)
/* A quiet NaN has the high mantissa bit clear and at least on other (in this
* case the adjacent bit) bit set. */
#define Dbl_set_quiet(dbl_value) Deposit_dhigh2mantissa(dbl_value,1)
#define Dbl_set_exponent(dbl_value, exp) Deposit_dexponent(dbl_value,exp)
#define Dbl_set_mantissa(desta,destb,valuea,valueb) \
Deposit_dmantissap1(desta,valuea); \
Dmantissap2(destb) = Dmantissap2(valueb)
#define Dbl_set_mantissap1(desta,valuea) \
Deposit_dmantissap1(desta,valuea)
#define Dbl_set_mantissap2(destb,valueb) \
Dmantissap2(destb) = Dmantissap2(valueb)
#define Dbl_set_exponentmantissa(desta,destb,valuea,valueb) \
Deposit_dexponentmantissap1(desta,valuea); \
Dmantissap2(destb) = Dmantissap2(valueb)
#define Dbl_set_exponentmantissap1(dest,value) \
Deposit_dexponentmantissap1(dest,value)
#define Dbl_copyfromptr(src,desta,destb) \
Dallp1(desta) = src->wd0; \
Dallp2(destb) = src->wd1
#define Dbl_copytoptr(srca,srcb,dest) \
dest->wd0 = Dallp1(srca); \
dest->wd1 = Dallp2(srcb)
/* An infinity is represented with the max exponent and a zero mantissa */
#define Dbl_setinfinity_exponent(dbl_value) \
Deposit_dexponent(dbl_value,DBL_INFINITY_EXPONENT)
#define Dbl_setinfinity_exponentmantissa(dbl_valueA,dbl_valueB) \
Deposit_dexponentmantissap1(dbl_valueA, \
(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)))); \
Dmantissap2(dbl_valueB) = 0
#define Dbl_setinfinitypositive(dbl_valueA,dbl_valueB) \
Dallp1(dbl_valueA) \
= (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \
Dmantissap2(dbl_valueB) = 0
#define Dbl_setinfinitynegative(dbl_valueA,dbl_valueB) \
Dallp1(dbl_valueA) = (1<<31) | \
(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \
Dmantissap2(dbl_valueB) = 0
#define Dbl_setinfinity(dbl_valueA,dbl_valueB,sign) \
Dallp1(dbl_valueA) = (sign << 31) | \
(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \
Dmantissap2(dbl_valueB) = 0
#define Dbl_sethigh4bits(dbl_value, extsign) Deposit_dhigh4p1(dbl_value,extsign)
#define Dbl_set_sign(dbl_value,sign) Deposit_dsign(dbl_value,sign)
#define Dbl_invert_sign(dbl_value) Deposit_dsign(dbl_value,~Dsign(dbl_value))
#define Dbl_setone_sign(dbl_value) Deposit_dsign(dbl_value,1)
#define Dbl_setone_lowmantissap2(dbl_value) Deposit_dlowp2(dbl_value,1)
#define Dbl_setzero_sign(dbl_value) Dallp1(dbl_value) &= 0x7fffffff
#define Dbl_setzero_exponent(dbl_value) \
Dallp1(dbl_value) &= 0x800fffff
#define Dbl_setzero_mantissa(dbl_valueA,dbl_valueB) \
Dallp1(dbl_valueA) &= 0xfff00000; \
Dallp2(dbl_valueB) = 0
#define Dbl_setzero_mantissap1(dbl_value) Dallp1(dbl_value) &= 0xfff00000
#define Dbl_setzero_mantissap2(dbl_value) Dallp2(dbl_value) = 0
#define Dbl_setzero_exponentmantissa(dbl_valueA,dbl_valueB) \
Dallp1(dbl_valueA) &= 0x80000000; \
Dallp2(dbl_valueB) = 0
#define Dbl_setzero_exponentmantissap1(dbl_valueA) \
Dallp1(dbl_valueA) &= 0x80000000
#define Dbl_setzero(dbl_valueA,dbl_valueB) \
Dallp1(dbl_valueA) = 0; Dallp2(dbl_valueB) = 0
#define Dbl_setzerop1(dbl_value) Dallp1(dbl_value) = 0
#define Dbl_setzerop2(dbl_value) Dallp2(dbl_value) = 0
#define Dbl_setnegativezero(dbl_value) \
Dallp1(dbl_value) = 1 << 31; Dallp2(dbl_value) = 0
#define Dbl_setnegativezerop1(dbl_value) Dallp1(dbl_value) = 1 << 31
/* Use the following macro for both overflow & underflow conditions */
#define ovfl -
#define unfl +
#define Dbl_setwrapped_exponent(dbl_value,exponent,op) \
Deposit_dexponent(dbl_value,(exponent op DBL_WRAP))
#define Dbl_setlargestpositive(dbl_valueA,dbl_valueB) \
Dallp1(dbl_valueA) = ((DBL_MAX_EXP+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ); \
Dallp2(dbl_valueB) = 0xFFFFFFFF
#define Dbl_setlargestnegative(dbl_valueA,dbl_valueB) \
Dallp1(dbl_valueA) = ((DBL_MAX_EXP+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ) | (1<<31); \
Dallp2(dbl_valueB) = 0xFFFFFFFF
#define Dbl_setlargest_exponentmantissa(dbl_valueA,dbl_valueB) \
Deposit_dexponentmantissap1(dbl_valueA, \
(((DBL_MAX_EXP+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ))); \
Dallp2(dbl_valueB) = 0xFFFFFFFF
#define Dbl_setnegativeinfinity(dbl_valueA,dbl_valueB) \
Dallp1(dbl_valueA) = ((1<<DBL_EXP_LENGTH) | DBL_INFINITY_EXPONENT) \
<< (32-(1+DBL_EXP_LENGTH)) ; \
Dallp2(dbl_valueB) = 0
#define Dbl_setlargest(dbl_valueA,dbl_valueB,sign) \
Dallp1(dbl_valueA) = (sign << 31) | \
((DBL_MAX_EXP+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) | \
((1 << (32-(1+DBL_EXP_LENGTH))) - 1 ); \
Dallp2(dbl_valueB) = 0xFFFFFFFF
/* The high bit is always zero so arithmetic or logical shifts will work. */
#define Dbl_right_align(srcdstA,srcdstB,shift,extent) \
if( shift >= 32 ) \
{ \
/* Big shift requires examining the portion shift off \
the end to properly set inexact. */ \
if(shift < 64) \
{ \
if(shift > 32) \
{ \
Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB), \
shift-32, Extall(extent)); \
if(Dallp2(srcdstB) << (64 - (shift))) Ext_setone_low(extent); \
} \
else Extall(extent) = Dallp2(srcdstB); \
Dallp2(srcdstB) = Dallp1(srcdstA) >> (shift - 32); \
} \
else \
{ \
Extall(extent) = Dallp1(srcdstA); \
if(Dallp2(srcdstB)) Ext_setone_low(extent); \
Dallp2(srcdstB) = 0; \
} \
Dallp1(srcdstA) = 0; \
} \
else \
{ \
/* Small alignment is simpler. Extension is easily set. */ \
if (shift > 0) \
{ \
Extall(extent) = Dallp2(srcdstB) << (32 - (shift)); \
Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),shift, \
Dallp2(srcdstB)); \
Dallp1(srcdstA) >>= shift; \
} \
else Extall(extent) = 0; \
}
/*
* Here we need to shift the result right to correct for an overshift
* (due to the exponent becoming negative) during normalization.
*/
#define Dbl_fix_overshift(srcdstA,srcdstB,shift,extent) \
Extall(extent) = Dallp2(srcdstB) << (32 - (shift)); \
Dallp2(srcdstB) = (Dallp1(srcdstA) << (32 - (shift))) | \
(Dallp2(srcdstB) >> (shift)); \
Dallp1(srcdstA) = Dallp1(srcdstA) >> shift
#define Dbl_hiddenhigh3mantissa(dbl_value) Dhiddenhigh3mantissa(dbl_value)
#define Dbl_hidden(dbl_value) Dhidden(dbl_value)
#define Dbl_lowmantissap2(dbl_value) Dlowp2(dbl_value)
/* The left argument is never smaller than the right argument */
#define Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb) \
if( Dallp2(rightb) > Dallp2(leftb) ) Dallp1(lefta)--; \
Dallp2(resultb) = Dallp2(leftb) - Dallp2(rightb); \
Dallp1(resulta) = Dallp1(lefta) - Dallp1(righta)
/* Subtract right augmented with extension from left augmented with zeros and
* store into result and extension. */
#define Dbl_subtract_withextension(lefta,leftb,righta,rightb,extent,resulta,resultb) \
Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb); \
if( (Extall(extent) = 0-Extall(extent)) ) \
{ \
if((Dallp2(resultb)--) == 0) Dallp1(resulta)--; \
}
#define Dbl_addition(lefta,leftb,righta,rightb,resulta,resultb) \
/* If the sum of the low words is less than either source, then \
* an overflow into the next word occurred. */ \
Dallp1(resulta) = Dallp1(lefta) + Dallp1(righta); \
if((Dallp2(resultb) = Dallp2(leftb) + Dallp2(rightb)) < Dallp2(rightb)) \
Dallp1(resulta)++
#define Dbl_xortointp1(left,right,result) \
result = Dallp1(left) XOR Dallp1(right)
#define Dbl_xorfromintp1(left,right,result) \
Dallp1(result) = left XOR Dallp1(right)
#define Dbl_swap_lower(left,right) \
Dallp2(left) = Dallp2(left) XOR Dallp2(right); \
Dallp2(right) = Dallp2(left) XOR Dallp2(right); \
Dallp2(left) = Dallp2(left) XOR Dallp2(right)
/* Need to Initialize */
#define Dbl_makequietnan(desta,destb) \
Dallp1(desta) = ((DBL_MAX_EXP+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH)) \
| (1<<(32-(1+DBL_EXP_LENGTH+2))); \
Dallp2(destb) = 0
#define Dbl_makesignalingnan(desta,destb) \
Dallp1(desta) = ((DBL_MAX_EXP+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH)) \
| (1<<(32-(1+DBL_EXP_LENGTH+1))); \
Dallp2(destb) = 0
#define Dbl_normalize(dbl_opndA,dbl_opndB,exponent) \
while(Dbl_iszero_hiddenhigh7mantissa(dbl_opndA)) { \
Dbl_leftshiftby8(dbl_opndA,dbl_opndB); \
exponent -= 8; \
} \
if(Dbl_iszero_hiddenhigh3mantissa(dbl_opndA)) { \
Dbl_leftshiftby4(dbl_opndA,dbl_opndB); \
exponent -= 4; \
} \
while(Dbl_iszero_hidden(dbl_opndA)) { \
Dbl_leftshiftby1(dbl_opndA,dbl_opndB); \
exponent -= 1; \
}
#define Twoword_add(src1dstA,src1dstB,src2A,src2B) \
/* \
* want this macro to generate: \
* ADD src1dstB,src2B,src1dstB; \
* ADDC src1dstA,src2A,src1dstA; \
*/ \
if ((src1dstB) + (src2B) < (src1dstB)) Dallp1(src1dstA)++; \
Dallp1(src1dstA) += (src2A); \
Dallp2(src1dstB) += (src2B)
#define Twoword_subtract(src1dstA,src1dstB,src2A,src2B) \
/* \
* want this macro to generate: \
* SUB src1dstB,src2B,src1dstB; \
* SUBB src1dstA,src2A,src1dstA; \
*/ \
if ((src1dstB) < (src2B)) Dallp1(src1dstA)--; \
Dallp1(src1dstA) -= (src2A); \
Dallp2(src1dstB) -= (src2B)
#define Dbl_setoverflow(resultA,resultB) \
/* set result to infinity or largest number */ \
switch (Rounding_mode()) { \
case ROUNDPLUS: \
if (Dbl_isone_sign(resultA)) { \
Dbl_setlargestnegative(resultA,resultB); \
} \
else { \
Dbl_setinfinitypositive(resultA,resultB); \
} \
break; \
case ROUNDMINUS: \
if (Dbl_iszero_sign(resultA)) { \
Dbl_setlargestpositive(resultA,resultB); \
} \
else { \
Dbl_setinfinitynegative(resultA,resultB); \
} \
break; \
case ROUNDNEAREST: \
Dbl_setinfinity_exponentmantissa(resultA,resultB); \
break; \
case ROUNDZERO: \
Dbl_setlargest_exponentmantissa(resultA,resultB); \
}
#define Dbl_denormalize(opndp1,opndp2,exponent,guard,sticky,inexact) \
Dbl_clear_signexponent_set_hidden(opndp1); \
if (exponent >= (1-DBL_P)) { \
if (exponent >= -31) { \
guard = (Dallp2(opndp2) >> (-(exponent))) & 1; \
if (exponent < 0) sticky |= Dallp2(opndp2) << (32+exponent); \
if (exponent > -31) { \
Variable_shift_double(opndp1,opndp2,1-exponent,opndp2); \
Dallp1(opndp1) >>= 1-exponent; \
} \
else { \
Dallp2(opndp2) = Dallp1(opndp1); \
Dbl_setzerop1(opndp1); \
} \
} \
else { \
guard = (Dallp1(opndp1) >> (-32-(exponent))) & 1; \
if (exponent == -32) sticky |= Dallp2(opndp2); \
else sticky |= (Dallp2(opndp2) | Dallp1(opndp1) << (64+(exponent))); \
Dallp2(opndp2) = Dallp1(opndp1) >> (-31-(exponent)); \
Dbl_setzerop1(opndp1); \
} \
inexact = guard | sticky; \
} \
else { \
guard = 0; \
sticky |= (Dallp1(opndp1) | Dallp2(opndp2)); \
Dbl_setzero(opndp1,opndp2); \
inexact = sticky; \
}
int dbl_fadd(dbl_floating_point *, dbl_floating_point *, dbl_floating_point *, unsigned int *);
int dbl_fcmp(dbl_floating_point *, dbl_floating_point *, unsigned int, unsigned int *);
int dbl_fdiv(dbl_floating_point *, dbl_floating_point *, dbl_floating_point *, unsigned int *);
int dbl_fmpy(dbl_floating_point *, dbl_floating_point *, dbl_floating_point *, unsigned int *);
int dbl_frem(dbl_floating_point *, dbl_floating_point *, dbl_floating_point *, unsigned int *);
int dbl_fsqrt(dbl_floating_point *, dbl_floating_point *, unsigned int *);
int dbl_fsub(dbl_floating_point *, dbl_floating_point *, dbl_floating_point *, unsigned int *);
dbl_floating_point dbl_setoverflow(unsigned int);
int sgl_to_dbl_fcnvff(sgl_floating_point *, dbl_floating_point *, unsigned int *);
int dbl_to_sgl_fcnvff(dbl_floating_point *, sgl_floating_point *, unsigned int *);
int dbl_frnd(dbl_floating_point *, dbl_floating_point *, unsigned int *);
|