1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
|
/* $OpenBSD: pmap.c,v 1.87 2005/12/25 21:39:06 miod Exp $ */
/* $NetBSD: pmap.c,v 1.91 2000/06/02 17:46:37 thorpej Exp $ */
/*
*
* Copyright (c) 1997 Charles D. Cranor and Washington University.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Charles D. Cranor and
* Washington University.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* pmap.c: i386 pmap module rewrite
* Chuck Cranor <chuck@ccrc.wustl.edu>
* 11-Aug-97
*
* history of this pmap module: in addition to my own input, i used
* the following references for this rewrite of the i386 pmap:
*
* [1] the NetBSD i386 pmap. this pmap appears to be based on the
* BSD hp300 pmap done by Mike Hibler at University of Utah.
* it was then ported to the i386 by William Jolitz of UUNET
* Technologies, Inc. Then Charles M. Hannum of the NetBSD
* project fixed some bugs and provided some speed ups.
*
* [2] the FreeBSD i386 pmap. this pmap seems to be the
* Hibler/Jolitz pmap, as modified for FreeBSD by John S. Dyson
* and David Greenman.
*
* [3] the Mach pmap. this pmap, from CMU, seems to have migrated
* between several processors. the VAX version was done by
* Avadis Tevanian, Jr., and Michael Wayne Young. the i386
* version was done by Lance Berc, Mike Kupfer, Bob Baron,
* David Golub, and Richard Draves. the alpha version was
* done by Alessandro Forin (CMU/Mach) and Chris Demetriou
* (NetBSD/alpha).
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/pool.h>
#include <sys/user.h>
#include <sys/kernel.h>
#include <sys/mutex.h>
#include <uvm/uvm.h>
#include <machine/atomic.h>
#include <machine/cpu.h>
#include <machine/specialreg.h>
#include <machine/gdt.h>
#include <dev/isa/isareg.h>
#ifdef __NetBSD__
#include <machine/isa_machdep.h>
#endif
#ifdef __OpenBSD__
#include <sys/msgbuf.h>
#include <stand/boot/bootarg.h>
#endif
/*
* general info:
*
* - for an explanation of how the i386 MMU hardware works see
* the comments in <machine/pte.h>.
*
* - for an explanation of the general memory structure used by
* this pmap (including the recursive mapping), see the comments
* in <machine/pmap.h>.
*
* this file contains the code for the "pmap module." the module's
* job is to manage the hardware's virtual to physical address mappings.
* note that there are two levels of mapping in the VM system:
*
* [1] the upper layer of the VM system uses vm_map's and vm_map_entry's
* to map ranges of virtual address space to objects/files. for
* example, the vm_map may say: "map VA 0x1000 to 0x22000 read-only
* to the file /bin/ls starting at offset zero." note that
* the upper layer mapping is not concerned with how individual
* vm_pages are mapped.
*
* [2] the lower layer of the VM system (the pmap) maintains the mappings
* from virtual addresses. it is concerned with which vm_page is
* mapped where. for example, when you run /bin/ls and start
* at page 0x1000 the fault routine may lookup the correct page
* of the /bin/ls file and then ask the pmap layer to establish
* a mapping for it.
*
* note that information in the lower layer of the VM system can be
* thrown away since it can easily be reconstructed from the info
* in the upper layer.
*
* data structures we use include:
*
* - struct pmap: describes the address space of one thread
* - struct pv_entry: describes one <PMAP,VA> mapping of a PA
* - struct pv_head: there is one pv_head per managed page of
* physical memory. the pv_head points to a list of pv_entry
* structures which describe all the <PMAP,VA> pairs that this
* page is mapped in. this is critical for page based operations
* such as pmap_page_protect() [change protection on _all_ mappings
* of a page]
* - pv_page/pv_page_info: pv_entry's are allocated out of pv_page's.
* if we run out of pv_entry's we allocate a new pv_page and free
* its pv_entrys.
*/
/*
* memory allocation
*
* - there are three data structures that we must dynamically allocate:
*
* [A] new process' page directory page (PDP)
* - plan 1: done at pmap_create() we use
* uvm_km_alloc(kernel_map, PAGE_SIZE) [fka kmem_alloc] to do this
* allocation.
*
* if we are low in free physical memory then we sleep in
* uvm_km_alloc -- in this case this is ok since we are creating
* a new pmap and should not be holding any locks.
*
* if the kernel is totally out of virtual space
* (i.e. uvm_km_alloc returns NULL), then we panic.
*
* XXX: the fork code currently has no way to return an "out of
* memory, try again" error code since uvm_fork [fka vm_fork]
* is a void function.
*
* [B] new page tables pages (PTP)
* call uvm_pagealloc()
* => success: zero page, add to pm_pdir
* => failure: we are out of free vm_pages, let pmap_enter()
* tell UVM about it.
*
* note: for kernel PTPs, we start with NKPTP of them. as we map
* kernel memory (at uvm_map time) we check to see if we've grown
* the kernel pmap. if so, we call the optional function
* pmap_growkernel() to grow the kernel PTPs in advance.
*
* [C] pv_entry structures
* - plan 1: try to allocate one off the free list
* => success: done!
* => failure: no more free pv_entrys on the list
* - plan 2: try to allocate a new pv_page to add a chunk of
* pv_entrys to the free list
* [a] obtain a free, unmapped, VA in kmem_map. either
* we have one saved from a previous call, or we allocate
* one now using a "vm_map_lock_try" in uvm_map
* => success: we have an unmapped VA, continue to [b]
* => failure: unable to lock kmem_map or out of VA in it.
* move on to plan 3.
* [b] allocate a page in kmem_object for the VA
* => success: map it in, free the pv_entry's, DONE!
* => failure: kmem_object locked, no free vm_pages, etc.
* save VA for later call to [a], go to plan 3.
* If we fail, we simply let pmap_enter() tell UVM about it.
*/
/*
* locking
*
* we have the following locks that we must contend with:
*
* "normal" locks:
*
* - pmap_main_lock
* this lock is used to prevent deadlock and/or provide mutex
* access to the pmap system. most operations lock the pmap
* structure first, then they lock the pv_lists (if needed).
* however, some operations such as pmap_page_protect lock
* the pv_lists and then lock pmaps. in order to prevent a
* cycle, we require a mutex lock when locking the pv_lists
* first. thus, the "pmap = >pv_list" lockers must gain a
* read-lock on pmap_main_lock before locking the pmap. and
* the "pv_list => pmap" lockers must gain a write-lock on
* pmap_main_lock before locking. since only one thread
* can write-lock a lock at a time, this provides mutex.
*
* "simple" locks:
*
* - pmap lock (per pmap, part of uvm_object)
* this lock protects the fields in the pmap structure including
* the non-kernel PDEs in the PDP, and the PTEs. it also locks
* in the alternate PTE space (since that is determined by the
* entry in the PDP).
*
* - pvh_lock (per pv_head)
* this lock protects the pv_entry list which is chained off the
* pv_head structure for a specific managed PA. it is locked
* when traversing the list (e.g. adding/removing mappings,
* syncing R/M bits, etc.)
*
* - pvalloc_lock
* this lock protects the data structures which are used to manage
* the free list of pv_entry structures.
*
* - pmaps_lock
* this lock protects the list of active pmaps (headed by "pmaps").
* we lock it when adding or removing pmaps from this list.
*
*/
/*
* locking data structures
*/
struct simplelock pvalloc_lock;
struct simplelock pmaps_lock;
#if defined(MULTIPROCESSOR) && 0
struct lock pmap_main_lock;
#define PMAP_MAP_TO_HEAD_LOCK() \
spinlockmgr(&pmap_main_lock, LK_SHARED, (void *) 0)
#define PMAP_MAP_TO_HEAD_UNLOCK() \
spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
#define PMAP_HEAD_TO_MAP_LOCK() \
spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, (void *) 0)
#define PMAP_HEAD_TO_MAP_UNLOCK() \
spinlockmgr(&pmap_main_lock, LK_RELEASE, (void *) 0)
#else
#define PMAP_MAP_TO_HEAD_LOCK() /* null */
#define PMAP_MAP_TO_HEAD_UNLOCK() /* null */
#define PMAP_HEAD_TO_MAP_LOCK() /* null */
#define PMAP_HEAD_TO_MAP_UNLOCK() /* null */
#endif
/*
* TLB Shootdown:
*
* When a mapping is changed in a pmap, the TLB entry corresponding to
* the virtual address must be invalidated on all processors. In order
* to accomplish this on systems with multiple processors, messages are
* sent from the processor which performs the mapping change to all
* processors on which the pmap is active. For other processors, the
* ASN generation numbers for that processor is invalidated, so that
* the next time the pmap is activated on that processor, a new ASN
* will be allocated (which implicitly invalidates all TLB entries).
*
* Shootdown job queue entries are allocated using a simple special-
* purpose allocator for speed.
*/
struct pmap_tlb_shootdown_job {
TAILQ_ENTRY(pmap_tlb_shootdown_job) pj_list;
vaddr_t pj_va; /* virtual address */
pmap_t pj_pmap; /* the pmap which maps the address */
pt_entry_t pj_pte; /* the PTE bits */
struct pmap_tlb_shootdown_job *pj_nextfree;
};
struct pmap_tlb_shootdown_q {
TAILQ_HEAD(, pmap_tlb_shootdown_job) pq_head;
int pq_pte; /* aggregate PTE bits */
int pq_count; /* number of pending requests */
struct mutex pq_mutex; /* mutex on queue */
int pq_flushg; /* pending flush global */
int pq_flushu; /* pending flush user */
} pmap_tlb_shootdown_q[I386_MAXPROCS];
#define PMAP_TLB_MAXJOBS 16
void pmap_tlb_shootdown_q_drain(struct pmap_tlb_shootdown_q *);
struct pmap_tlb_shootdown_job *pmap_tlb_shootdown_job_get(
struct pmap_tlb_shootdown_q *);
void pmap_tlb_shootdown_job_put(struct pmap_tlb_shootdown_q *,
struct pmap_tlb_shootdown_job *);
struct mutex pmap_tlb_shootdown_job_mutex;
struct pmap_tlb_shootdown_job *pj_page, *pj_free;
/*
* global data structures
*/
struct pmap kernel_pmap_store; /* the kernel's pmap (proc0) */
/*
* nkpde is the number of kernel PTPs allocated for the kernel at
* boot time (NKPTP is a compile time override). this number can
* grow dynamically as needed (but once allocated, we never free
* kernel PTPs).
*/
int nkpde = NKPTP;
#ifdef NKPDE
#error "obsolete NKPDE: use NKPTP"
#endif
/*
* pmap_pg_g: if our processor supports PG_G in the PTE then we
* set pmap_pg_g to PG_G (otherwise it is zero).
*/
int pmap_pg_g = 0;
/*
* i386 physical memory comes in a big contig chunk with a small
* hole toward the front of it... the following 4 paddr_t's
* (shared with machdep.c) describe the physical address space
* of this machine.
*/
paddr_t avail_start; /* PA of first available physical page */
paddr_t avail_end; /* PA of last available physical page */
paddr_t hole_start; /* PA of start of "hole" */
paddr_t hole_end; /* PA of end of "hole" */
/*
* other data structures
*/
static pt_entry_t protection_codes[8]; /* maps MI prot to i386 prot code */
static boolean_t pmap_initialized = FALSE; /* pmap_init done yet? */
/*
* the following two vaddr_t's are used during system startup
* to keep track of how much of the kernel's VM space we have used.
* once the system is started, the management of the remaining kernel
* VM space is turned over to the kernel_map vm_map.
*/
static vaddr_t virtual_avail; /* VA of first free KVA */
static vaddr_t virtual_end; /* VA of last free KVA */
/*
* pv_page management structures: locked by pvalloc_lock
*/
TAILQ_HEAD(pv_pagelist, pv_page);
static struct pv_pagelist pv_freepages; /* list of pv_pages with free entries */
static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
static int pv_nfpvents; /* # of free pv entries */
static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
static vaddr_t pv_cachedva; /* cached VA for later use */
#define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
#define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
/* high water mark */
/*
* linked list of all non-kernel pmaps
*/
static struct pmap_head pmaps;
static struct pmap *pmaps_hand = NULL; /* used by pmap_steal_ptp */
/*
* pool that pmap structures are allocated from
*/
struct pool pmap_pmap_pool;
/*
* MULTIPROCESSOR: special VA's/ PTE's are actually allocated inside a
* I386_MAXPROCS*NPTECL array of PTE's, to avoid cache line thrashing
* due to false sharing.
*/
#ifdef MULTIPROCESSOR
#define PTESLEW(pte, id) ((pte)+(id)*NPTECL)
#define VASLEW(va,id) ((va)+(id)*NPTECL*NBPG)
#else
#define PTESLEW(pte, id) (pte)
#define VASLEW(va,id) (va)
#endif
/*
* special VAs and the PTEs that map them
*/
static pt_entry_t *csrc_pte, *cdst_pte, *zero_pte, *ptp_pte;
static caddr_t csrcp, cdstp, zerop, ptpp;
caddr_t vmmap; /* XXX: used by mem.c... it should really uvm_map_reserve it */
#ifdef __NetBSD__
extern vaddr_t msgbuf_vaddr;
extern paddr_t msgbuf_paddr;
extern vaddr_t idt_vaddr; /* we allocate IDT early */
extern paddr_t idt_paddr;
#endif
#if defined(I586_CPU)
/* stuff to fix the pentium f00f bug */
extern vaddr_t pentium_idt_vaddr;
#endif
/*
* local prototypes
*/
struct pv_entry *pmap_add_pvpage(struct pv_page *, boolean_t);
struct vm_page *pmap_alloc_ptp(struct pmap *, int, boolean_t);
struct pv_entry *pmap_alloc_pv(struct pmap *, int); /* see codes below */
#define ALLOCPV_NEED 0 /* need PV now */
#define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
#define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
struct pv_entry *pmap_alloc_pvpage(struct pmap *, int);
void pmap_enter_pv(struct pv_head *,
struct pv_entry *, struct pmap *,
vaddr_t, struct vm_page *);
void pmap_free_pv(struct pmap *, struct pv_entry *);
void pmap_free_pvs(struct pmap *, struct pv_entry *);
void pmap_free_pv_doit(struct pv_entry *);
void pmap_free_pvpage(void);
struct vm_page *pmap_get_ptp(struct pmap *, int, boolean_t);
boolean_t pmap_is_curpmap(struct pmap *);
boolean_t pmap_is_active(struct pmap *, int);
pt_entry_t *pmap_map_ptes(struct pmap *);
struct pv_entry *pmap_remove_pv(struct pv_head *, struct pmap *,
vaddr_t);
boolean_t pmap_remove_pte(struct pmap *, struct vm_page *, pt_entry_t *,
vaddr_t, int32_t *);
void pmap_remove_ptes(struct pmap *, struct vm_page *, vaddr_t,
vaddr_t, vaddr_t, int32_t *);
struct vm_page *pmap_steal_ptp(struct uvm_object *, vaddr_t);
vaddr_t pmap_tmpmap_pa(paddr_t);
pt_entry_t *pmap_tmpmap_pvepte(struct pv_entry *);
void pmap_tmpunmap_pa(void);
void pmap_tmpunmap_pvepte(struct pv_entry *);
void pmap_apte_flush(struct pmap *);
boolean_t pmap_try_steal_pv(struct pv_head *,
struct pv_entry *,
struct pv_entry *);
void pmap_unmap_ptes(struct pmap *);
void pmap_exec_account(struct pmap *, vaddr_t, pt_entry_t,
pt_entry_t);
void pmap_pinit(pmap_t);
void pmap_release(pmap_t);
void pmap_zero_phys(paddr_t);
/*
* p m a p i n l i n e h e l p e r f u n c t i o n s
*/
/*
* pmap_is_curpmap: is this pmap the one currently loaded [in %cr3]?
* of course the kernel is always loaded
*/
boolean_t
pmap_is_curpmap(pmap)
struct pmap *pmap;
{
return((pmap == pmap_kernel()) ||
(pmap->pm_pdirpa == (paddr_t) rcr3()));
}
/*
* pmap_is_active: is this pmap loaded into the specified processor's %cr3?
*/
boolean_t
pmap_is_active(pmap, cpu_id)
struct pmap *pmap;
int cpu_id;
{
return (pmap == pmap_kernel() ||
(pmap->pm_cpus & (1U << cpu_id)) != 0);
}
/*
* pmap_tmpmap_pa: map a page in for tmp usage
*/
vaddr_t
pmap_tmpmap_pa(pa)
paddr_t pa;
{
#ifdef MULTIPROCESSOR
int id = cpu_number();
#endif
pt_entry_t *ptpte = PTESLEW(ptp_pte, id);
caddr_t ptpva = VASLEW(ptpp, id);
#if defined(DIAGNOSTIC)
if (*ptpte)
panic("pmap_tmpmap_pa: ptp_pte in use?");
#endif
*ptpte = PG_V | PG_RW | pa; /* always a new mapping */
return((vaddr_t)ptpva);
}
/*
* pmap_tmpunmap_pa: unmap a tmp use page (undoes pmap_tmpmap_pa)
*/
void
pmap_tmpunmap_pa()
{
#ifdef MULTIPROCESSOR
int id = cpu_number();
#endif
pt_entry_t *ptpte = PTESLEW(ptp_pte, id);
caddr_t ptpva = VASLEW(ptpp, id);
#if defined(DIAGNOSTIC)
if (!pmap_valid_entry(*ptpte))
panic("pmap_tmpunmap_pa: our pte invalid?");
#endif
*ptpte = 0; /* zap! */
pmap_update_pg((vaddr_t)ptpva);
#ifdef MULTIPROCESSOR
/*
* No need for tlb shootdown here, since ptp_pte is per-CPU.
*/
#endif
}
/*
* pmap_tmpmap_pvepte: get a quick mapping of a PTE for a pv_entry
*
* => do NOT use this on kernel mappings [why? because pv_ptp may be NULL]
*/
pt_entry_t *
pmap_tmpmap_pvepte(pve)
struct pv_entry *pve;
{
#ifdef DIAGNOSTIC
if (pve->pv_pmap == pmap_kernel())
panic("pmap_tmpmap_pvepte: attempt to map kernel");
#endif
/* is it current pmap? use direct mapping... */
if (pmap_is_curpmap(pve->pv_pmap))
return(vtopte(pve->pv_va));
return(((pt_entry_t *)pmap_tmpmap_pa(VM_PAGE_TO_PHYS(pve->pv_ptp)))
+ ptei((unsigned)pve->pv_va));
}
/*
* pmap_tmpunmap_pvepte: release a mapping obtained with pmap_tmpmap_pvepte
*/
void
pmap_tmpunmap_pvepte(pve)
struct pv_entry *pve;
{
/* was it current pmap? if so, return */
if (pmap_is_curpmap(pve->pv_pmap))
return;
pmap_tmpunmap_pa();
}
void
pmap_apte_flush(struct pmap *pmap)
{
#if defined(MULTIPROCESSOR)
struct pmap_tlb_shootdown_q *pq;
struct cpu_info *ci, *self = curcpu();
CPU_INFO_ITERATOR cii;
#endif
tlbflush(); /* flush TLB on current processor */
#if defined(MULTIPROCESSOR)
/*
* Flush the APTE mapping from all other CPUs that
* are using the pmap we are using (who's APTE space
* is the one we've just modified).
*
* XXXthorpej -- find a way to defer the IPI.
*/
CPU_INFO_FOREACH(cii, ci) {
if (ci == self)
continue;
if (pmap_is_active(pmap, ci->ci_cpuid)) {
pq = &pmap_tlb_shootdown_q[ci->ci_cpuid];
mtx_enter(&pq->pq_mutex);
pq->pq_flushu++;
mtx_leave(&pq->pq_mutex);
i386_send_ipi(ci, I386_IPI_TLB);
}
}
#endif
}
/*
* pmap_map_ptes: map a pmap's PTEs into KVM and lock them in
*
* => we lock enough pmaps to keep things locked in
* => must be undone with pmap_unmap_ptes before returning
*/
pt_entry_t *
pmap_map_ptes(pmap)
struct pmap *pmap;
{
pd_entry_t opde;
/* the kernel's pmap is always accessible */
if (pmap == pmap_kernel()) {
return(PTE_BASE);
}
/* if curpmap then we are always mapped */
if (pmap_is_curpmap(pmap)) {
simple_lock(&pmap->pm_obj.vmobjlock);
return(PTE_BASE);
}
/* need to lock both curpmap and pmap: use ordered locking */
if ((unsigned) pmap < (unsigned) curpcb->pcb_pmap) {
simple_lock(&pmap->pm_obj.vmobjlock);
simple_lock(&curpcb->pcb_pmap->pm_obj.vmobjlock);
} else {
simple_lock(&curpcb->pcb_pmap->pm_obj.vmobjlock);
simple_lock(&pmap->pm_obj.vmobjlock);
}
/* need to load a new alternate pt space into curpmap? */
opde = *APDP_PDE;
if (!pmap_valid_entry(opde) || (opde & PG_FRAME) != pmap->pm_pdirpa) {
*APDP_PDE = (pd_entry_t) (pmap->pm_pdirpa | PG_RW | PG_V);
if (pmap_valid_entry(opde))
pmap_apte_flush(curpcb->pcb_pmap);
}
return(APTE_BASE);
}
/*
* pmap_unmap_ptes: unlock the PTE mapping of "pmap"
*/
void
pmap_unmap_ptes(pmap)
struct pmap *pmap;
{
if (pmap == pmap_kernel()) {
return;
}
if (pmap_is_curpmap(pmap)) {
simple_unlock(&pmap->pm_obj.vmobjlock);
} else {
#if defined(MULTIPROCESSOR)
*APDP_PDE = 0;
pmap_apte_flush(curpcb->pcb_pmap);
#endif
simple_unlock(&pmap->pm_obj.vmobjlock);
simple_unlock(&curpcb->pcb_pmap->pm_obj.vmobjlock);
}
}
void
pmap_exec_account(struct pmap *pm, vaddr_t va,
pt_entry_t opte, pt_entry_t npte)
{
if (curproc == NULL || curproc->p_vmspace == NULL ||
pm != vm_map_pmap(&curproc->p_vmspace->vm_map))
return;
if ((opte ^ npte) & PG_X) {
#ifdef MULTIPROCESSOR
int32_t cpumask = 0;
pmap_tlb_shootdown(pm, va, opte, &cpumask);
pmap_tlb_shootnow(cpumask);
#else
/* Don't bother deferring in the single CPU case. */
pmap_update_pg(va);
#endif
}
/*
* Executability was removed on the last executable change.
* Reset the code segment to something conservative and
* let the trap handler deal with setting the right limit.
* We can't do that because of locking constraints on the vm map.
*
* XXX - floating cs - set this _really_ low.
*/
if ((opte & PG_X) && (npte & PG_X) == 0 && va == pm->pm_hiexec) {
struct trapframe *tf = curproc->p_md.md_regs;
struct pcb *pcb = &curproc->p_addr->u_pcb;
pcb->pcb_cs = tf->tf_cs = GSEL(GUCODE_SEL, SEL_UPL);
pm->pm_hiexec = I386_MAX_EXE_ADDR;
}
}
/*
* Fixup the code segment to cover all potential executable mappings.
* returns 0 if no changes to the code segment were made.
*/
int
pmap_exec_fixup(struct vm_map *map, struct trapframe *tf, struct pcb *pcb)
{
struct vm_map_entry *ent;
struct pmap *pm = vm_map_pmap(map);
vaddr_t va = 0;
vm_map_lock(map);
for (ent = (&map->header)->next; ent != &map->header; ent = ent->next) {
/*
* This entry has greater va than the entries before.
* We need to make it point to the last page, not past it.
*/
if (ent->protection & VM_PROT_EXECUTE)
va = trunc_page(ent->end) - PAGE_SIZE;
}
vm_map_unlock(map);
if (va == pm->pm_hiexec)
return (0);
pm->pm_hiexec = va;
if (pm->pm_hiexec > (vaddr_t)I386_MAX_EXE_ADDR) {
pcb->pcb_cs = tf->tf_cs = GSEL(GUCODE1_SEL, SEL_UPL);
} else {
pcb->pcb_cs = tf->tf_cs = GSEL(GUCODE_SEL, SEL_UPL);
}
return (1);
}
/*
* p m a p k e n t e r f u n c t i o n s
*
* functions to quickly enter/remove pages from the kernel address
* space. pmap_kremove is exported to MI kernel. we make use of
* the recursive PTE mappings.
*/
/*
* pmap_kenter_pa: enter a kernel mapping without R/M (pv_entry) tracking
*
* => no need to lock anything, assume va is already allocated
* => should be faster than normal pmap enter function
*/
void
pmap_kenter_pa(va, pa, prot)
vaddr_t va;
paddr_t pa;
vm_prot_t prot;
{
pt_entry_t *pte, opte, npte;
pte = vtopte(va);
npte = pa | ((prot & VM_PROT_WRITE)? PG_RW : PG_RO) | PG_V | pmap_pg_g;
opte = i386_atomic_testset_ul(pte, npte); /* zap! */
if (pmap_valid_entry(opte)) {
#ifdef MULTIPROCESSOR
int32_t cpumask = 0;
pmap_tlb_shootdown(pmap_kernel(), va, opte, &cpumask);
pmap_tlb_shootnow(cpumask);
#else
/* Don't bother deferring in the single CPU case. */
pmap_update_pg(va);
#endif
}
}
/*
* pmap_kremove: remove a kernel mapping(s) without R/M (pv_entry) tracking
*
* => no need to lock anything
* => caller must dispose of any vm_page mapped in the va range
* => note: not an inline function
* => we assume the va is page aligned and the len is a multiple of PAGE_SIZE
*/
void
pmap_kremove(va, len)
vaddr_t va;
vsize_t len;
{
pt_entry_t *pte, opte;
#ifdef MULTIPROCESSOR
int32_t cpumask = 0;
#endif
len >>= PAGE_SHIFT;
for ( /* null */ ; len ; len--, va += PAGE_SIZE) {
if (va < VM_MIN_KERNEL_ADDRESS)
pte = vtopte(va);
else
pte = kvtopte(va);
opte = i386_atomic_testset_ul(pte, 0); /* zap! */
#ifdef DIAGNOSTIC
if (opte & PG_PVLIST)
panic("pmap_kremove: PG_PVLIST mapping for 0x%lx", va);
#endif
if ((opte & (PG_V | PG_U)) == (PG_V | PG_U))
#ifdef MULTIPROCESSOR
pmap_tlb_shootdown(pmap_kernel(), va, opte, &cpumask);
#else
pmap_update_pg(va);
#endif
}
#ifdef MULTIPROCESSOR
pmap_tlb_shootnow(cpumask);
#endif
}
/*
* p m a p i n i t f u n c t i o n s
*
* pmap_bootstrap and pmap_init are called during system startup
* to init the pmap module. pmap_bootstrap() does a low level
* init just to get things rolling. pmap_init() finishes the job.
*/
/*
* pmap_bootstrap: get the system in a state where it can run with VM
* properly enabled (called before main()). the VM system is
* fully init'd later...
*
* => on i386, locore.s has already enabled the MMU by allocating
* a PDP for the kernel, and nkpde PTP's for the kernel.
* => kva_start is the first free virtual address in kernel space
*/
void
pmap_bootstrap(kva_start)
vaddr_t kva_start;
{
struct pmap *kpm;
vaddr_t kva;
pt_entry_t *pte;
int i;
/*
* set the page size (default value is 4K which is ok)
*/
uvm_setpagesize();
/*
* a quick sanity check
*/
if (PAGE_SIZE != NBPG)
panic("pmap_bootstrap: PAGE_SIZE != NBPG");
/*
* use the very last page of physical memory for the message buffer
*/
avail_end -= round_page(MSGBUFSIZE);
/*
* The arguments passed in from /boot needs space too.
*/
avail_end -= round_page(bootargc);
/*
* set up our local static global vars that keep track of the
* usage of KVM before kernel_map is set up
*/
virtual_avail = kva_start; /* first free KVA */
virtual_end = VM_MAX_KERNEL_ADDRESS; /* last KVA */
/*
* set up protection_codes: we need to be able to convert from
* a MI protection code (some combo of VM_PROT...) to something
* we can jam into a i386 PTE.
*/
protection_codes[UVM_PROT_NONE] = 0; /* --- */
protection_codes[UVM_PROT_EXEC] = PG_X; /* --x */
protection_codes[UVM_PROT_READ] = PG_RO; /* -r- */
protection_codes[UVM_PROT_RX] = PG_X; /* -rx */
protection_codes[UVM_PROT_WRITE] = PG_RW; /* w-- */
protection_codes[UVM_PROT_WX] = PG_RW|PG_X; /* w-x */
protection_codes[UVM_PROT_RW] = PG_RW; /* wr- */
protection_codes[UVM_PROT_RWX] = PG_RW|PG_X; /* wrx */
/*
* now we init the kernel's pmap
*
* the kernel pmap's pm_obj is not used for much. however, in
* user pmaps the pm_obj contains the list of active PTPs.
* the pm_obj currently does not have a pager. it might be possible
* to add a pager that would allow a process to read-only mmap its
* own page tables (fast user level vtophys?). this may or may not
* be useful.
*/
kpm = pmap_kernel();
simple_lock_init(&kpm->pm_obj.vmobjlock);
kpm->pm_obj.pgops = NULL;
TAILQ_INIT(&kpm->pm_obj.memq);
kpm->pm_obj.uo_npages = 0;
kpm->pm_obj.uo_refs = 1;
bzero(&kpm->pm_list, sizeof(kpm->pm_list)); /* pm_list not used */
kpm->pm_pdir = (pd_entry_t *)(proc0.p_addr->u_pcb.pcb_cr3 + KERNBASE);
kpm->pm_pdirpa = (u_int32_t) proc0.p_addr->u_pcb.pcb_cr3;
kpm->pm_stats.wired_count = kpm->pm_stats.resident_count =
atop(kva_start - VM_MIN_KERNEL_ADDRESS);
/*
* the above is just a rough estimate and not critical to the proper
* operation of the system.
*/
/*
* enable global TLB entries if they are supported
*/
if (cpu_feature & CPUID_PGE) {
lcr4(rcr4() | CR4_PGE); /* enable hardware (via %cr4) */
pmap_pg_g = PG_G; /* enable software */
/* add PG_G attribute to already mapped kernel pages */
for (kva = VM_MIN_KERNEL_ADDRESS ; kva < virtual_avail ;
kva += PAGE_SIZE)
if (pmap_valid_entry(PTE_BASE[atop(kva)]))
PTE_BASE[atop(kva)] |= PG_G;
}
/*
* now we allocate the "special" VAs which are used for tmp mappings
* by the pmap (and other modules). we allocate the VAs by advancing
* virtual_avail (note that there are no pages mapped at these VAs).
* we find the PTE that maps the allocated VA via the linear PTE
* mapping.
*/
pte = PTE_BASE + atop(virtual_avail);
#ifdef MULTIPROCESSOR
/*
* Waste some VA space to avoid false sharing of cache lines
* for page table pages: Give each possible CPU a cache line
* of PTE's (8) to play with, though we only need 4. We could
* recycle some of this waste by putting the idle stacks here
* as well; we could waste less space if we knew the largest
* CPU ID beforehand.
*/
csrcp = (caddr_t) virtual_avail; csrc_pte = pte;
cdstp = (caddr_t) virtual_avail+PAGE_SIZE; cdst_pte = pte+1;
zerop = (caddr_t) virtual_avail+PAGE_SIZE*2; zero_pte = pte+2;
ptpp = (caddr_t) virtual_avail+PAGE_SIZE*3; ptp_pte = pte+3;
virtual_avail += PAGE_SIZE * I386_MAXPROCS * NPTECL;
pte += I386_MAXPROCS * NPTECL;
#else
csrcp = (caddr_t) virtual_avail; csrc_pte = pte; /* allocate */
virtual_avail += PAGE_SIZE; pte++; /* advance */
cdstp = (caddr_t) virtual_avail; cdst_pte = pte;
virtual_avail += PAGE_SIZE; pte++;
zerop = (caddr_t) virtual_avail; zero_pte = pte;
virtual_avail += PAGE_SIZE; pte++;
ptpp = (caddr_t) virtual_avail; ptp_pte = pte;
virtual_avail += PAGE_SIZE; pte++;
#endif
/* XXX: vmmap used by mem.c... should be uvm_map_reserve */
vmmap = (char *)virtual_avail; /* don't need pte */
virtual_avail += PAGE_SIZE;
#ifdef __NetBSD
msgbuf_vaddr = virtual_avail; /* don't need pte */
#endif
#ifdef __OpenBSD__
msgbufp = (struct msgbuf *)virtual_avail; /* don't need pte */
#endif
virtual_avail += round_page(MSGBUFSIZE); pte++;
#ifdef __NetBSD__
idt_vaddr = virtual_avail; /* don't need pte */
virtual_avail += PAGE_SIZE; pte++;
idt_paddr = avail_start; /* steal a page */
avail_start += PAGE_SIZE;
#if defined(I586_CPU)
/* pentium f00f bug stuff */
pentium_idt_vaddr = virtual_avail; /* don't need pte */
virtual_avail += PAGE_SIZE; pte++;
#endif
#endif
#ifdef __OpenBSD__
bootargp = (bootarg_t *)virtual_avail;
virtual_avail += round_page(bootargc); pte++;
#endif
/*
* now we reserve some VM for mapping pages when doing a crash dump
*/
virtual_avail = reserve_dumppages(virtual_avail);
/*
* init the static-global locks and global lists.
*/
#if defined(MULTIPROCESSOR) && 0
spinlockinit(&pmap_main_lock, "pmaplk", 0);
#endif
simple_lock_init(&pvalloc_lock);
simple_lock_init(&pmaps_lock);
LIST_INIT(&pmaps);
TAILQ_INIT(&pv_freepages);
TAILQ_INIT(&pv_unusedpgs);
/*
* initialize the pmap pool.
*/
pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
&pool_allocator_nointr);
/*
* Initialize the TLB shootdown queues.
*/
mtx_init(&pmap_tlb_shootdown_job_mutex, IPL_NONE);
for (i = 0; i < I386_MAXPROCS; i++) {
TAILQ_INIT(&pmap_tlb_shootdown_q[i].pq_head);
mtx_init(&pmap_tlb_shootdown_q[i].pq_mutex, IPL_IPI);
}
#ifdef __NetBSD__
/*
* we must call uvm_page_physload() after we are done playing with
* virtual_avail but before we call pmap_steal_memory. [i.e. here]
* this call tells the VM system how much physical memory it
* controls. If we have 16M of RAM or less, just put it all on
* the default free list. Otherwise, put the first 16M of RAM
* on a lower priority free list (so that all of the ISA DMA'able
* memory won't be eaten up first-off).
*/
if (avail_end <= (16 * 1024 * 1024))
first16q = VM_FREELIST_DEFAULT;
else
first16q = VM_FREELIST_FIRST16;
if (avail_start < hole_start) /* any free memory before the hole? */
uvm_page_physload(atop(avail_start), atop(hole_start),
atop(avail_start), atop(hole_start),
first16q);
if (first16q != VM_FREELIST_DEFAULT &&
hole_end < 16 * 1024 * 1024) {
uvm_page_physload(atop(hole_end), atop(16 * 1024 * 1024),
atop(hole_end), atop(16 * 1024 * 1024),
first16q);
uvm_page_physload(atop(16 * 1024 * 1024), atop(avail_end),
atop(16 * 1024 * 1024), atop(avail_end),
VM_FREELIST_DEFAULT);
} else {
uvm_page_physload(atop(hole_end), atop(avail_end),
atop(hole_end), atop(avail_end),
VM_FREELIST_DEFAULT);
}
#endif
/*
* ensure the TLB is sync'd with reality by flushing it...
*/
tlbflush();
}
/*
* pmap_init: called from uvm_init, our job is to get the pmap
* system ready to manage mappings... this mainly means initing
* the pv_entry stuff.
*/
void
pmap_init()
{
int npages, lcv, i;
vaddr_t addr;
vsize_t s;
/*
* compute the number of pages we have and then allocate RAM
* for each pages' pv_head and saved attributes.
*/
npages = 0;
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
npages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
s = (vsize_t) (sizeof(struct pv_head) * npages +
sizeof(char) * npages);
s = round_page(s); /* round up */
addr = (vaddr_t) uvm_km_zalloc(kernel_map, s);
if (addr == 0)
panic("pmap_init: unable to allocate pv_heads");
/*
* init all pv_head's and attrs in one bzero
*/
/* allocate pv_head stuff first */
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
vm_physmem[lcv].pmseg.pvhead = (struct pv_head *) addr;
addr = (vaddr_t)(vm_physmem[lcv].pmseg.pvhead +
(vm_physmem[lcv].end - vm_physmem[lcv].start));
for (i = 0;
i < (vm_physmem[lcv].end - vm_physmem[lcv].start); i++) {
simple_lock_init(
&vm_physmem[lcv].pmseg.pvhead[i].pvh_lock);
}
}
/* now allocate attrs */
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
vm_physmem[lcv].pmseg.attrs = (char *) addr;
addr = (vaddr_t)(vm_physmem[lcv].pmseg.attrs +
(vm_physmem[lcv].end - vm_physmem[lcv].start));
}
/*
* now we need to free enough pv_entry structures to allow us to get
* the kmem_map/kmem_object allocated and inited (done after this
* function is finished). to do this we allocate one bootstrap page out
* of kernel_map and use it to provide an initial pool of pv_entry
* structures. we never free this page.
*/
pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
if (pv_initpage == NULL)
panic("pmap_init: pv_initpage");
pv_cachedva = 0; /* a VA we have allocated but not used yet */
pv_nfpvents = 0;
(void) pmap_add_pvpage(pv_initpage, FALSE);
pj_page = (void *)uvm_km_alloc(kernel_map, PAGE_SIZE);
if (pj_page == NULL)
panic("pmap_init: pj_page");
for (i = 0; i < PAGE_SIZE / sizeof *pj_page - 1; i++)
pj_page[i].pj_nextfree = &pj_page[i + 1];
pj_page[i].pj_nextfree = NULL;
pj_free = &pj_page[0];
/*
* done: pmap module is up (and ready for business)
*/
pmap_initialized = TRUE;
}
/*
* p v _ e n t r y f u n c t i o n s
*/
/*
* pv_entry allocation functions:
* the main pv_entry allocation functions are:
* pmap_alloc_pv: allocate a pv_entry structure
* pmap_free_pv: free one pv_entry
* pmap_free_pvs: free a list of pv_entrys
*
* the rest are helper functions
*/
/*
* pmap_alloc_pv: inline function to allocate a pv_entry structure
* => we lock pvalloc_lock
* => if we fail, we call out to pmap_alloc_pvpage
* => 3 modes:
* ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
* ALLOCPV_TRY = we want a pv_entry, but not enough to steal
* ALLOCPV_NONEED = we are trying to grow our free list, don't really need
* one now
*
* "try" is for optional functions like pmap_copy().
*/
struct pv_entry *
pmap_alloc_pv(pmap, mode)
struct pmap *pmap;
int mode;
{
struct pv_page *pvpage;
struct pv_entry *pv;
simple_lock(&pvalloc_lock);
if (!TAILQ_EMPTY(&pv_freepages)) {
pvpage = TAILQ_FIRST(&pv_freepages);
pvpage->pvinfo.pvpi_nfree--;
if (pvpage->pvinfo.pvpi_nfree == 0) {
/* nothing left in this one? */
TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
}
pv = pvpage->pvinfo.pvpi_pvfree;
#ifdef DIAGNOSTIC
if (pv == NULL)
panic("pmap_alloc_pv: pvpi_nfree off");
#endif
pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
pv_nfpvents--; /* took one from pool */
} else {
pv = NULL; /* need more of them */
}
/*
* if below low water mark or we didn't get a pv_entry we try and
* create more pv_entrys ...
*/
if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
if (pv == NULL)
pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
mode : ALLOCPV_NEED);
else
(void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
}
simple_unlock(&pvalloc_lock);
return(pv);
}
/*
* pmap_alloc_pvpage: maybe allocate a new pvpage
*
* if need_entry is false: try and allocate a new pv_page
* if need_entry is true: try and allocate a new pv_page and return a
* new pv_entry from it. if we are unable to allocate a pv_page
* we make a last ditch effort to steal a pv_page from some other
* mapping. if that fails, we panic...
*
* => we assume that the caller holds pvalloc_lock
*/
struct pv_entry *
pmap_alloc_pvpage(pmap, mode)
struct pmap *pmap;
int mode;
{
struct vm_page *pg;
struct pv_page *pvpage;
int lcv, idx, npg, s;
struct pv_entry *pv, *cpv, *prevpv;
/*
* if we need_entry and we've got unused pv_pages, allocate from there
*/
if (mode != ALLOCPV_NONEED && !TAILQ_EMPTY(&pv_unusedpgs)) {
/* move it to pv_freepages list */
pvpage = TAILQ_FIRST(&pv_unusedpgs);
TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
/* allocate a pv_entry */
pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
pv = pvpage->pvinfo.pvpi_pvfree;
#ifdef DIAGNOSTIC
if (pv == NULL)
panic("pmap_alloc_pvpage: pvpi_nfree off");
#endif
pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
pv_nfpvents--; /* took one from pool */
return(pv);
}
/*
* see if we've got a cached unmapped VA that we can map a page in.
* if not, try to allocate one.
*/
s = splvm(); /* must protect kmem_map/kmem_object with splvm! */
if (pv_cachedva == 0) {
pv_cachedva = uvm_km_kmemalloc(kmem_map, uvmexp.kmem_object,
NBPG, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
if (pv_cachedva == 0) {
splx(s);
goto steal_one;
}
}
/*
* we have a VA, now let's try and allocate a page in the object
* note: we are still holding splvm to protect kmem_object
*/
if (!simple_lock_try(&uvmexp.kmem_object->vmobjlock)) {
splx(s);
goto steal_one;
}
pg = uvm_pagealloc(uvmexp.kmem_object, pv_cachedva -
vm_map_min(kernel_map),
NULL, UVM_PGA_USERESERVE);
if (pg)
pg->flags &= ~PG_BUSY; /* never busy */
simple_unlock(&uvmexp.kmem_object->vmobjlock);
splx(s);
/* splvm now dropped */
if (pg == NULL)
goto steal_one;
/*
* add a mapping for our new pv_page and free its entries (save one!)
*
* NOTE: If we are allocating a PV page for the kernel pmap, the
* pmap is already locked! (...but entering the mapping is safe...)
*/
pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
VM_PROT_READ|VM_PROT_WRITE);
pvpage = (struct pv_page *) pv_cachedva;
pv_cachedva = 0;
return(pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
steal_one:
/*
* if we don't really need a pv_entry right now, we can just return.
*/
if (mode != ALLOCPV_NEED)
return(NULL);
/*
* last ditch effort! we couldn't allocate a free page to make
* more pv_entrys so we try and steal one from someone else.
*/
pv = NULL;
for (lcv = 0 ; pv == NULL && lcv < vm_nphysseg ; lcv++) {
npg = vm_physmem[lcv].end - vm_physmem[lcv].start;
for (idx = 0 ; idx < npg ; idx++) {
struct pv_head *pvhead = vm_physmem[lcv].pmseg.pvhead;
if (pvhead->pvh_list == NULL)
continue; /* spot check */
if (!simple_lock_try(&pvhead->pvh_lock))
continue;
cpv = prevpv = pvhead->pvh_list;
while (cpv) {
if (pmap_try_steal_pv(pvhead, cpv, prevpv))
break;
prevpv = cpv;
cpv = cpv->pv_next;
}
simple_unlock(&pvhead->pvh_lock);
/* got one? break out of the loop! */
if (cpv) {
pv = cpv;
break;
}
}
}
return(pv);
}
/*
* pmap_try_steal_pv: try and steal a pv_entry from a pmap
*
* => return true if we did it!
*/
boolean_t
pmap_try_steal_pv(pvh, cpv, prevpv)
struct pv_head *pvh;
struct pv_entry *cpv, *prevpv;
{
pt_entry_t *ptep, opte;
#ifdef MULTIPROCESSOR
int32_t cpumask = 0;
#endif
/*
* we never steal kernel mappings or mappings from pmaps we can't lock
*/
if (cpv->pv_pmap == pmap_kernel() ||
!simple_lock_try(&cpv->pv_pmap->pm_obj.vmobjlock))
return(FALSE);
/*
* yes, we can try and steal it. first we need to remove the
* mapping from the pmap.
*/
ptep = pmap_tmpmap_pvepte(cpv);
if (*ptep & PG_W) {
ptep = NULL; /* wired page, avoid stealing this one */
} else {
opte = i386_atomic_testset_ul(ptep, 0); /* zap! */
#ifdef MULTIPROCESSOR
pmap_tlb_shootdown(cpv->pv_pmap, cpv->pv_va, opte, &cpumask);
pmap_tlb_shootnow(cpumask);
#else
/* Don't bother deferring in the single CPU case. */
if (pmap_is_curpmap(cpv->pv_pmap))
pmap_update_pg(cpv->pv_va);
#endif
pmap_tmpunmap_pvepte(cpv);
}
if (ptep == NULL) {
simple_unlock(&cpv->pv_pmap->pm_obj.vmobjlock);
return(FALSE); /* wired page, abort! */
}
cpv->pv_pmap->pm_stats.resident_count--;
if (cpv->pv_ptp && cpv->pv_ptp->wire_count)
/* drop PTP's wired count */
cpv->pv_ptp->wire_count--;
/*
* XXX: if wire_count goes to one the PTP could be freed, however,
* we'd have to lock the page queues (etc.) to do that and it could
* cause deadlock headaches. besides, the pmap we just stole from
* may want the mapping back anyway, so leave the PTP around.
*/
/*
* now we need to remove the entry from the pvlist
*/
if (cpv == pvh->pvh_list)
pvh->pvh_list = cpv->pv_next;
else
prevpv->pv_next = cpv->pv_next;
return(TRUE);
}
/*
* pmap_add_pvpage: add a pv_page's pv_entrys to the free list
*
* => caller must hold pvalloc_lock
* => if need_entry is true, we allocate and return one pv_entry
*/
struct pv_entry *
pmap_add_pvpage(pvp, need_entry)
struct pv_page *pvp;
boolean_t need_entry;
{
int tofree, lcv;
/* do we need to return one? */
tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
pvp->pvinfo.pvpi_pvfree = NULL;
pvp->pvinfo.pvpi_nfree = tofree;
for (lcv = 0 ; lcv < tofree ; lcv++) {
pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
}
if (need_entry)
TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
else
TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
pv_nfpvents += tofree;
return((need_entry) ? &pvp->pvents[lcv] : NULL);
}
/*
* pmap_free_pv_doit: actually free a pv_entry
*
* => do not call this directly! instead use either
* 1. pmap_free_pv ==> free a single pv_entry
* 2. pmap_free_pvs => free a list of pv_entrys
* => we must be holding pvalloc_lock
*/
void
pmap_free_pv_doit(pv)
struct pv_entry *pv;
{
struct pv_page *pvp;
pvp = (struct pv_page*)trunc_page((vaddr_t)pv);
pv_nfpvents++;
pvp->pvinfo.pvpi_nfree++;
/* nfree == 1 => fully allocated page just became partly allocated */
if (pvp->pvinfo.pvpi_nfree == 1) {
TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
}
/* free it */
pv->pv_next = pvp->pvinfo.pvpi_pvfree;
pvp->pvinfo.pvpi_pvfree = pv;
/*
* are all pv_page's pv_entry's free? move it to unused queue.
*/
if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
}
}
/*
* pmap_free_pv: free a single pv_entry
*
* => we gain the pvalloc_lock
*/
void
pmap_free_pv(pmap, pv)
struct pmap *pmap;
struct pv_entry *pv;
{
simple_lock(&pvalloc_lock);
pmap_free_pv_doit(pv);
/*
* Can't free the PV page if the PV entries were associated with
* the kernel pmap; the pmap is already locked.
*/
if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
pmap != pmap_kernel())
pmap_free_pvpage();
simple_unlock(&pvalloc_lock);
}
/*
* pmap_free_pvs: free a list of pv_entrys
*
* => we gain the pvalloc_lock
*/
void
pmap_free_pvs(pmap, pvs)
struct pmap *pmap;
struct pv_entry *pvs;
{
struct pv_entry *nextpv;
simple_lock(&pvalloc_lock);
for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
nextpv = pvs->pv_next;
pmap_free_pv_doit(pvs);
}
/*
* Can't free the PV page if the PV entries were associated with
* the kernel pmap; the pmap is already locked.
*/
if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
pmap != pmap_kernel())
pmap_free_pvpage();
simple_unlock(&pvalloc_lock);
}
/*
* pmap_free_pvpage: try and free an unused pv_page structure
*
* => assume caller is holding the pvalloc_lock and that
* there is a page on the pv_unusedpgs list
* => if we can't get a lock on the kmem_map we try again later
* => note: analysis of MI kmem_map usage [i.e. malloc/free] shows
* that if we can lock the kmem_map then we are not already
* holding kmem_object's lock.
*/
void
pmap_free_pvpage()
{
int s;
struct vm_map *map;
struct vm_map_entry *dead_entries;
struct pv_page *pvp;
s = splvm(); /* protect kmem_map */
pvp = TAILQ_FIRST(&pv_unusedpgs);
/*
* note: watch out for pv_initpage which is allocated out of
* kernel_map rather than kmem_map.
*/
if (pvp == pv_initpage)
map = kernel_map;
else
map = kmem_map;
if (vm_map_lock_try(map)) {
/* remove pvp from pv_unusedpgs */
TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
/* unmap the page */
dead_entries = NULL;
uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
&dead_entries, NULL);
vm_map_unlock(map);
if (dead_entries != NULL)
uvm_unmap_detach(dead_entries, 0);
pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
}
if (pvp == pv_initpage)
/* no more initpage, we've freed it */
pv_initpage = NULL;
splx(s);
}
/*
* main pv_entry manipulation functions:
* pmap_enter_pv: enter a mapping onto a pv_head list
* pmap_remove_pv: remove a mappiing from a pv_head list
*
* NOTE: pmap_enter_pv expects to lock the pvh itself
* pmap_remove_pv expects te caller to lock the pvh before calling
*/
/*
* pmap_enter_pv: enter a mapping onto a pv_head lst
*
* => caller should hold the proper lock on pmap_main_lock
* => caller should have pmap locked
* => we will gain the lock on the pv_head and allocate the new pv_entry
* => caller should adjust ptp's wire_count before calling
*/
void
pmap_enter_pv(pvh, pve, pmap, va, ptp)
struct pv_head *pvh;
struct pv_entry *pve; /* preallocated pve for us to use */
struct pmap *pmap;
vaddr_t va;
struct vm_page *ptp; /* PTP in pmap that maps this VA */
{
pve->pv_pmap = pmap;
pve->pv_va = va;
pve->pv_ptp = ptp; /* NULL for kernel pmap */
simple_lock(&pvh->pvh_lock); /* lock pv_head */
pve->pv_next = pvh->pvh_list; /* add to ... */
pvh->pvh_list = pve; /* ... locked list */
simple_unlock(&pvh->pvh_lock); /* unlock, done! */
}
/*
* pmap_remove_pv: try to remove a mapping from a pv_list
*
* => caller should hold proper lock on pmap_main_lock
* => pmap should be locked
* => caller should hold lock on pv_head [so that attrs can be adjusted]
* => caller should adjust ptp's wire_count and free PTP if needed
* => we return the removed pve
*/
struct pv_entry *
pmap_remove_pv(pvh, pmap, va)
struct pv_head *pvh;
struct pmap *pmap;
vaddr_t va;
{
struct pv_entry *pve, **prevptr;
prevptr = &pvh->pvh_list; /* previous pv_entry pointer */
pve = *prevptr;
while (pve) {
if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
*prevptr = pve->pv_next; /* remove it! */
break;
}
prevptr = &pve->pv_next; /* previous pointer */
pve = pve->pv_next; /* advance */
}
return(pve); /* return removed pve */
}
/*
* p t p f u n c t i o n s
*/
/*
* pmap_alloc_ptp: allocate a PTP for a PMAP
*
* => pmap should already be locked by caller
* => we use the ptp's wire_count to count the number of active mappings
* in the PTP (we start it at one to prevent any chance this PTP
* will ever leak onto the active/inactive queues)
* => we should not be holding any pv_head locks (in case we are forced
* to call pmap_steal_ptp())
* => we may need to lock pv_head's if we have to steal a PTP
* => just_try: true if we want a PTP, but not enough to steal one
* from another pmap (e.g. during optional functions like pmap_copy)
*/
struct vm_page *
pmap_alloc_ptp(pmap, pde_index, just_try)
struct pmap *pmap;
int pde_index;
boolean_t just_try;
{
struct vm_page *ptp;
ptp = uvm_pagealloc(&pmap->pm_obj, ptp_i2o(pde_index), NULL,
UVM_PGA_USERESERVE|UVM_PGA_ZERO);
if (ptp == NULL) {
if (just_try)
return(NULL);
ptp = pmap_steal_ptp(&pmap->pm_obj, ptp_i2o(pde_index));
if (ptp == NULL) {
return (NULL);
}
/* stole one; zero it. */
pmap_zero_page(ptp);
}
/* got one! */
ptp->flags &= ~PG_BUSY; /* never busy */
ptp->wire_count = 1; /* no mappings yet */
pmap->pm_pdir[pde_index] =
(pd_entry_t) (VM_PAGE_TO_PHYS(ptp) | PG_u | PG_RW | PG_V);
pmap->pm_stats.resident_count++; /* count PTP as resident */
pmap->pm_ptphint = ptp;
return(ptp);
}
/*
* pmap_steal_ptp: steal a PTP from any pmap that we can access
*
* => obj is locked by caller.
* => we can throw away mappings at this level (except in the kernel's pmap)
* => stolen PTP is placed in <obj,offset> pmap
* => we lock pv_head's
* => hopefully, this function will be seldom used [much better to have
* enough free pages around for us to allocate off the free page list]
*/
struct vm_page *
pmap_steal_ptp(obj, offset)
struct uvm_object *obj;
vaddr_t offset;
{
struct vm_page *ptp = NULL;
struct pmap *firstpmap;
struct uvm_object *curobj;
pt_entry_t *ptes;
int idx, lcv;
boolean_t caller_locked, we_locked;
int32_t cpumask = 0;
simple_lock(&pmaps_lock);
if (pmaps_hand == NULL)
pmaps_hand = LIST_FIRST(&pmaps);
firstpmap = pmaps_hand;
do { /* while we haven't looped back around to firstpmap */
curobj = &pmaps_hand->pm_obj;
we_locked = FALSE;
caller_locked = (curobj == obj);
if (!caller_locked) {
we_locked = simple_lock_try(&curobj->vmobjlock);
}
if (caller_locked || we_locked) {
TAILQ_FOREACH(ptp, &curobj->memq, listq) {
/*
* might have found a PTP we can steal
* (unless it has wired pages).
*/
idx = ptp_o2i(ptp->offset);
#ifdef DIAGNOSTIC
if (VM_PAGE_TO_PHYS(ptp) !=
(pmaps_hand->pm_pdir[idx] & PG_FRAME))
panic("pmap_steal_ptp: PTP mismatch!");
#endif
ptes = (pt_entry_t *)
pmap_tmpmap_pa(VM_PAGE_TO_PHYS(ptp));
for (lcv = 0 ; lcv < PTES_PER_PTP ; lcv++)
if ((ptes[lcv] & (PG_V|PG_W)) ==
(PG_V|PG_W))
break;
if (lcv == PTES_PER_PTP)
pmap_remove_ptes(pmaps_hand, ptp,
(vaddr_t)ptes, ptp_i2v(idx),
ptp_i2v(idx+1), &cpumask);
pmap_tmpunmap_pa();
if (lcv != PTES_PER_PTP)
/* wired, try next PTP */
continue;
/*
* got it!!!
*/
pmaps_hand->pm_pdir[idx] = 0; /* zap! */
pmaps_hand->pm_stats.resident_count--;
#ifdef MULTIPROCESSOR
pmap_apte_flush(pmaps_hand);
#else
if (pmap_is_curpmap(pmaps_hand))
pmap_apte_flush(pmaps_hand);
else if (pmap_valid_entry(*APDP_PDE) &&
(*APDP_PDE & PG_FRAME) ==
pmaps_hand->pm_pdirpa)
pmap_update_pg(((vaddr_t)APTE_BASE) +
ptp->offset);
#endif
/* put it in our pmap! */
uvm_pagerealloc(ptp, obj, offset);
break; /* break out of "for" loop */
}
if (we_locked) {
simple_unlock(&curobj->vmobjlock);
}
}
/* advance the pmaps_hand */
pmaps_hand = LIST_NEXT(pmaps_hand, pm_list);
if (pmaps_hand == NULL) {
pmaps_hand = LIST_FIRST(&pmaps);
}
} while (ptp == NULL && pmaps_hand != firstpmap);
simple_unlock(&pmaps_lock);
pmap_tlb_shootnow(cpumask);
return(ptp);
}
/*
* pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
*
* => pmap should NOT be pmap_kernel()
* => pmap should be locked
*/
struct vm_page *
pmap_get_ptp(pmap, pde_index, just_try)
struct pmap *pmap;
int pde_index;
boolean_t just_try;
{
struct vm_page *ptp;
if (pmap_valid_entry(pmap->pm_pdir[pde_index])) {
/* valid... check hint (saves us a PA->PG lookup) */
if (pmap->pm_ptphint &&
(pmap->pm_pdir[pde_index] & PG_FRAME) ==
VM_PAGE_TO_PHYS(pmap->pm_ptphint))
return(pmap->pm_ptphint);
ptp = uvm_pagelookup(&pmap->pm_obj, ptp_i2o(pde_index));
#ifdef DIAGNOSTIC
if (ptp == NULL)
panic("pmap_get_ptp: unmanaged user PTP");
#endif
pmap->pm_ptphint = ptp;
return(ptp);
}
/* allocate a new PTP (updates ptphint) */
return(pmap_alloc_ptp(pmap, pde_index, just_try));
}
/*
* p m a p l i f e c y c l e f u n c t i o n s
*/
/*
* pmap_create: create a pmap
*
* => note: old pmap interface took a "size" args which allowed for
* the creation of "software only" pmaps (not in bsd).
*/
struct pmap *
pmap_create()
{
struct pmap *pmap;
pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
pmap_pinit(pmap);
return(pmap);
}
/*
* pmap_pinit: given a zero'd pmap structure, init it.
*/
void
pmap_pinit(pmap)
struct pmap *pmap;
{
/* init uvm_object */
simple_lock_init(&pmap->pm_obj.vmobjlock);
pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
TAILQ_INIT(&pmap->pm_obj.memq);
pmap->pm_obj.uo_npages = 0;
pmap->pm_obj.uo_refs = 1;
pmap->pm_stats.wired_count = 0;
pmap->pm_stats.resident_count = 1; /* count the PDP allocd below */
pmap->pm_ptphint = NULL;
pmap->pm_hiexec = 0;
pmap->pm_flags = 0;
/* allocate PDP */
pmap->pm_pdir = (pd_entry_t *) uvm_km_alloc(kernel_map, NBPG);
if (pmap->pm_pdir == NULL)
panic("pmap_pinit: kernel_map out of virtual space!");
(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
(paddr_t *)&pmap->pm_pdirpa);
/* init PDP */
/* zero init area */
bzero(pmap->pm_pdir, PDSLOT_PTE * sizeof(pd_entry_t));
/* put in recursive PDE to map the PTEs */
pmap->pm_pdir[PDSLOT_PTE] = pmap->pm_pdirpa | PG_V | PG_KW;
/* init the LDT */
pmap->pm_ldt = NULL;
pmap->pm_ldt_len = 0;
pmap->pm_ldt_sel = GSEL(GLDT_SEL, SEL_KPL);
/*
* we need to lock pmaps_lock to prevent nkpde from changing on
* us. note that there is no need to splvm to protect us from
* malloc since malloc allocates out of a submap and we should have
* already allocated kernel PTPs to cover the range...
*/
simple_lock(&pmaps_lock);
/* put in kernel VM PDEs */
bcopy(&PDP_BASE[PDSLOT_KERN], &pmap->pm_pdir[PDSLOT_KERN],
nkpde * sizeof(pd_entry_t));
/* zero the rest */
bzero(&pmap->pm_pdir[PDSLOT_KERN + nkpde],
NBPG - ((PDSLOT_KERN + nkpde) * sizeof(pd_entry_t)));
LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
simple_unlock(&pmaps_lock);
}
/*
* pmap_destroy: drop reference count on pmap. free pmap if
* reference count goes to zero.
*/
void
pmap_destroy(pmap)
struct pmap *pmap;
{
int refs;
/*
* drop reference count
*/
simple_lock(&pmap->pm_obj.vmobjlock);
refs = --pmap->pm_obj.uo_refs;
simple_unlock(&pmap->pm_obj.vmobjlock);
if (refs > 0) {
return;
}
/*
* reference count is zero, free pmap resources and then free pmap.
*/
pmap_release(pmap);
pool_put(&pmap_pmap_pool, pmap);
}
/*
* pmap_release: release all resources held by a pmap
*
* => if pmap is still referenced it should be locked
* => XXX: we currently don't expect any busy PTPs because we don't
* allow anything to map them (except for the kernel's private
* recursive mapping) or make them busy.
*/
void
pmap_release(pmap)
struct pmap *pmap;
{
struct vm_page *pg;
/*
* remove it from global list of pmaps
*/
simple_lock(&pmaps_lock);
if (pmap == pmaps_hand)
pmaps_hand = LIST_NEXT(pmaps_hand, pm_list);
LIST_REMOVE(pmap, pm_list);
simple_unlock(&pmaps_lock);
/*
* free any remaining PTPs
*/
while (!TAILQ_EMPTY(&pmap->pm_obj.memq)) {
pg = TAILQ_FIRST(&pmap->pm_obj.memq);
#ifdef DIAGNOSTIC
if (pg->flags & PG_BUSY)
panic("pmap_release: busy page table page");
#endif
/* pmap_page_protect? currently no need for it. */
pg->wire_count = 0;
uvm_pagefree(pg);
}
/*
* MULTIPROCESSOR -- no need to flush out of other processors'
* APTE space because we do that in pmap_unmap_ptes().
*/
uvm_km_free(kernel_map, (vaddr_t)pmap->pm_pdir, NBPG);
#ifdef USER_LDT
if (pmap->pm_flags & PMF_USER_LDT) {
/*
* no need to switch the LDT; this address space is gone,
* nothing is using it.
*
* No need to lock the pmap for ldt_free (or anything else),
* we're the last one to use it.
*/
ldt_free(pmap);
uvm_km_free(kernel_map, (vaddr_t)pmap->pm_ldt,
pmap->pm_ldt_len * sizeof(union descriptor));
}
#endif
}
/*
* Add a reference to the specified pmap.
*/
void
pmap_reference(pmap)
struct pmap *pmap;
{
simple_lock(&pmap->pm_obj.vmobjlock);
pmap->pm_obj.uo_refs++;
simple_unlock(&pmap->pm_obj.vmobjlock);
}
#if defined(PMAP_FORK)
/*
* pmap_fork: perform any necessary data structure manipulation when
* a VM space is forked.
*/
void
pmap_fork(pmap1, pmap2)
struct pmap *pmap1, *pmap2;
{
simple_lock(&pmap1->pm_obj.vmobjlock);
simple_lock(&pmap2->pm_obj.vmobjlock);
#ifdef USER_LDT
/* Copy the LDT, if necessary. */
if (pmap1->pm_flags & PMF_USER_LDT) {
union descriptor *new_ldt;
size_t len;
len = pmap1->pm_ldt_len * sizeof(union descriptor);
new_ldt = (union descriptor *)uvm_km_alloc(kernel_map, len);
bcopy(pmap1->pm_ldt, new_ldt, len);
pmap2->pm_ldt = new_ldt;
pmap2->pm_ldt_len = pmap1->pm_ldt_len;
pmap2->pm_flags |= PMF_USER_LDT;
ldt_alloc(pmap2, new_ldt, len);
}
#endif /* USER_LDT */
simple_unlock(&pmap2->pm_obj.vmobjlock);
simple_unlock(&pmap1->pm_obj.vmobjlock);
}
#endif /* PMAP_FORK */
#ifdef USER_LDT
/*
* pmap_ldt_cleanup: if the pmap has a local LDT, deallocate it, and
* restore the default.
*/
void
pmap_ldt_cleanup(p)
struct proc *p;
{
struct pcb *pcb = &p->p_addr->u_pcb;
pmap_t pmap = p->p_vmspace->vm_map.pmap;
union descriptor *old_ldt = NULL;
size_t len = 0;
simple_lock(&pmap->pm_obj.vmobjlock);
if (pmap->pm_flags & PMF_USER_LDT) {
ldt_free(pmap);
pmap->pm_ldt_sel = GSEL(GLDT_SEL, SEL_KPL);
pcb->pcb_ldt_sel = pmap->pm_ldt_sel;
if (pcb == curpcb)
lldt(pcb->pcb_ldt_sel);
old_ldt = pmap->pm_ldt;
len = pmap->pm_ldt_len * sizeof(union descriptor);
pmap->pm_ldt = NULL;
pmap->pm_ldt_len = 0;
pmap->pm_flags &= ~PMF_USER_LDT;
}
simple_unlock(&pmap->pm_obj.vmobjlock);
if (old_ldt != NULL)
uvm_km_free(kernel_map, (vaddr_t)old_ldt, len);
}
#endif /* USER_LDT */
/*
* pmap_activate: activate a process' pmap (fill in %cr3 and LDT info)
*
* => called from cpu_switch()
* => if proc is the curproc, then load it into the MMU
*/
void
pmap_activate(p)
struct proc *p;
{
struct pcb *pcb = &p->p_addr->u_pcb;
struct pmap *pmap = p->p_vmspace->vm_map.pmap;
pcb->pcb_pmap = pmap;
pcb->pcb_ldt_sel = pmap->pm_ldt_sel;
pcb->pcb_cr3 = pmap->pm_pdirpa;
if (p == curproc) {
lcr3(pcb->pcb_cr3);
lldt(pcb->pcb_ldt_sel);
/*
* mark the pmap in use by this processor.
*/
i386_atomic_setbits_l(&pmap->pm_cpus, (1U << cpu_number()));
}
}
/*
* pmap_deactivate: deactivate a process' pmap
*/
void
pmap_deactivate(p)
struct proc *p;
{
struct pmap *pmap = p->p_vmspace->vm_map.pmap;
/*
* mark the pmap no longer in use by this processor.
*/
i386_atomic_clearbits_l(&pmap->pm_cpus, (1U << cpu_number()));
}
/*
* end of lifecycle functions
*/
/*
* some misc. functions
*/
/*
* pmap_extract: extract a PA for the given VA
*/
boolean_t
pmap_extract(pmap, va, pap)
struct pmap *pmap;
vaddr_t va;
paddr_t *pap;
{
paddr_t retval;
pt_entry_t *ptes;
if (pmap->pm_pdir[pdei(va)]) {
ptes = pmap_map_ptes(pmap);
retval = (paddr_t)(ptes[atop(va)] & PG_FRAME);
pmap_unmap_ptes(pmap);
if (pap != NULL)
*pap = retval | (va & ~PG_FRAME);
return (TRUE);
}
return (FALSE);
}
/*
* pmap_virtual_space: used during bootup [pmap_steal_memory] to
* determine the bounds of the kernel virtual addess space.
*/
void
pmap_virtual_space(startp, endp)
vaddr_t *startp;
vaddr_t *endp;
{
*startp = virtual_avail;
*endp = virtual_end;
}
/*
* pmap_zero_page: zero a page
*/
void (*pagezero)(void *, size_t) = bzero;
void
pmap_zero_page(struct vm_page *pg)
{
pmap_zero_phys(VM_PAGE_TO_PHYS(pg));
}
/*
* pmap_zero_phys: same as pmap_zero_page, but for use before vm_pages are
* initialized.
*/
void
pmap_zero_phys(paddr_t pa)
{
#ifdef MULTIPROCESSOR
int id = cpu_number();
#endif
pt_entry_t *zpte = PTESLEW(zero_pte, id);
caddr_t zerova = VASLEW(zerop, id);
#ifdef DIAGNOSTIC
if (*zpte)
panic("pmap_zero_phys: lock botch");
#endif
*zpte = (pa & PG_FRAME) | PG_V | PG_RW; /* map in */
pmap_update_pg((vaddr_t)zerova); /* flush TLB */
pagezero(zerova, PAGE_SIZE); /* zero */
*zpte = 0; /* zap! */
}
/*
* pmap_zero_page_uncached: the same, except uncached.
*/
boolean_t
pmap_zero_page_uncached(pa)
paddr_t pa;
{
#ifdef MULTIPROCESSOR
int id = cpu_number();
#endif
pt_entry_t *zpte = PTESLEW(zero_pte, id);
caddr_t zerova = VASLEW(zerop, id);
#ifdef DIAGNOSTIC
if (*zpte)
panic("pmap_zero_page_uncached: lock botch");
#endif
*zpte = (pa & PG_FRAME) | PG_V | PG_RW | /* map in */
((cpu_class != CPUCLASS_386) ? PG_N : 0);
pmap_update_pg((vaddr_t)zerova); /* flush TLB */
pagezero(zerova, PAGE_SIZE); /* zero */
*zpte = 0; /* zap! */
return (TRUE);
}
/*
* pmap_copy_page: copy a page
*/
void
pmap_copy_page(struct vm_page *srcpg, struct vm_page *dstpg)
{
paddr_t srcpa = VM_PAGE_TO_PHYS(srcpg);
paddr_t dstpa = VM_PAGE_TO_PHYS(dstpg);
#ifdef MULTIPROCESSOR
int id = cpu_number();
#endif
pt_entry_t *spte = PTESLEW(csrc_pte,id);
pt_entry_t *dpte = PTESLEW(cdst_pte,id);
caddr_t csrcva = VASLEW(csrcp, id);
caddr_t cdstva = VASLEW(cdstp, id);
#ifdef DIAGNOSTIC
if (*spte || *dpte)
panic("pmap_copy_page: lock botch");
#endif
*spte = (srcpa & PG_FRAME) | PG_V | PG_RW;
*dpte = (dstpa & PG_FRAME) | PG_V | PG_RW;
pmap_update_2pg((vaddr_t)csrcva, (vaddr_t)cdstva);
bcopy(csrcva, cdstva, PAGE_SIZE);
*spte = *dpte = 0; /* zap! */
pmap_update_2pg((vaddr_t)csrcva, (vaddr_t)cdstva);
#ifdef MULTIPROCESSOR
/* Using per-cpu VA; no shootdown required here. */
#endif
}
/*
* p m a p r e m o v e f u n c t i o n s
*
* functions that remove mappings
*/
/*
* pmap_remove_ptes: remove PTEs from a PTP
*
* => must have proper locking on pmap_master_lock
* => caller must hold pmap's lock
* => PTP must be mapped into KVA
* => PTP should be null if pmap == pmap_kernel()
*/
void
pmap_remove_ptes(pmap, ptp, ptpva, startva, endva, cpumaskp)
struct pmap *pmap;
struct vm_page *ptp;
vaddr_t ptpva;
vaddr_t startva, endva;
int32_t *cpumaskp;
{
struct pv_entry *pv_tofree = NULL; /* list of pv_entrys to free */
struct pv_entry *pve;
pt_entry_t *pte = (pt_entry_t *) ptpva;
pt_entry_t opte;
int bank, off;
/*
* note that ptpva points to the PTE that maps startva. this may
* or may not be the first PTE in the PTP.
*
* we loop through the PTP while there are still PTEs to look at
* and the wire_count is greater than 1 (because we use the wire_count
* to keep track of the number of real PTEs in the PTP).
*/
for (/*null*/; startva < endva && (ptp == NULL || ptp->wire_count > 1)
; pte++, startva += NBPG) {
if (!pmap_valid_entry(*pte))
continue; /* VA not mapped */
/* atomically save the old PTE and zap! it */
opte = i386_atomic_testset_ul(pte, 0);
if (opte & PG_W)
pmap->pm_stats.wired_count--;
pmap->pm_stats.resident_count--;
if (opte & PG_U)
pmap_tlb_shootdown(pmap, startva, opte, cpumaskp);
if (ptp) {
ptp->wire_count--; /* dropping a PTE */
/* Make sure that the PDE is flushed */
if ((ptp->wire_count <= 1) && !(opte & PG_U))
pmap_tlb_shootdown(pmap, startva, opte,
cpumaskp);
}
/*
* if we are not on a pv_head list we are done.
*/
if ((opte & PG_PVLIST) == 0) {
#ifdef DIAGNOSTIC
if (vm_physseg_find(atop(opte & PG_FRAME), &off)
!= -1)
panic("pmap_remove_ptes: managed page without "
"PG_PVLIST for 0x%lx", startva);
#endif
continue;
}
bank = vm_physseg_find(atop(opte & PG_FRAME), &off);
#ifdef DIAGNOSTIC
if (bank == -1)
panic("pmap_remove_ptes: unmanaged page marked "
"PG_PVLIST, va = 0x%lx, pa = 0x%lx",
startva, (u_long)(opte & PG_FRAME));
#endif
/* sync R/M bits */
simple_lock(&vm_physmem[bank].pmseg.pvhead[off].pvh_lock);
vm_physmem[bank].pmseg.attrs[off] |= (opte & (PG_U|PG_M));
pve = pmap_remove_pv(&vm_physmem[bank].pmseg.pvhead[off], pmap,
startva);
simple_unlock(&vm_physmem[bank].pmseg.pvhead[off].pvh_lock);
if (pve) {
pve->pv_next = pv_tofree;
pv_tofree = pve;
}
/* end of "for" loop: time for next pte */
}
if (pv_tofree)
pmap_free_pvs(pmap, pv_tofree);
}
/*
* pmap_remove_pte: remove a single PTE from a PTP
*
* => must have proper locking on pmap_master_lock
* => caller must hold pmap's lock
* => PTP must be mapped into KVA
* => PTP should be null if pmap == pmap_kernel()
* => returns true if we removed a mapping
*/
boolean_t
pmap_remove_pte(pmap, ptp, pte, va, cpumaskp)
struct pmap *pmap;
struct vm_page *ptp;
pt_entry_t *pte;
vaddr_t va;
int32_t *cpumaskp;
{
pt_entry_t opte;
int bank, off;
struct pv_entry *pve;
if (!pmap_valid_entry(*pte))
return(FALSE); /* VA not mapped */
opte = *pte; /* save the old PTE */
*pte = 0; /* zap! */
pmap_exec_account(pmap, va, opte, 0);
if (opte & PG_W)
pmap->pm_stats.wired_count--;
pmap->pm_stats.resident_count--;
if (opte & PG_U)
pmap_tlb_shootdown(pmap, va, opte, cpumaskp);
if (ptp) {
ptp->wire_count--; /* dropping a PTE */
/* Make sure that the PDE is flushed */
if ((ptp->wire_count <= 1) && !(opte & PG_U))
pmap_tlb_shootdown(pmap, va, opte, cpumaskp);
}
/*
* if we are not on a pv_head list we are done.
*/
if ((opte & PG_PVLIST) == 0) {
#ifdef DIAGNOSTIC
if (vm_physseg_find(atop(opte & PG_FRAME), &off) != -1)
panic("pmap_remove_pte: managed page without "
"PG_PVLIST for 0x%lx", va);
#endif
return(TRUE);
}
bank = vm_physseg_find(atop(opte & PG_FRAME), &off);
#ifdef DIAGNOSTIC
if (bank == -1)
panic("pmap_remove_pte: unmanaged page marked "
"PG_PVLIST, va = 0x%lx, pa = 0x%lx", va,
(u_long)(opte & PG_FRAME));
#endif
/* sync R/M bits */
simple_lock(&vm_physmem[bank].pmseg.pvhead[off].pvh_lock);
vm_physmem[bank].pmseg.attrs[off] |= (opte & (PG_U|PG_M));
pve = pmap_remove_pv(&vm_physmem[bank].pmseg.pvhead[off], pmap, va);
simple_unlock(&vm_physmem[bank].pmseg.pvhead[off].pvh_lock);
if (pve)
pmap_free_pv(pmap, pve);
return(TRUE);
}
/*
* pmap_remove: top level mapping removal function
*
* => caller should not be holding any pmap locks
*/
void
pmap_remove(pmap, sva, eva)
struct pmap *pmap;
vaddr_t sva, eva;
{
pt_entry_t *ptes, opte;
boolean_t result;
paddr_t ptppa;
vaddr_t blkendva;
struct vm_page *ptp;
int32_t cpumask = 0;
/*
* we lock in the pmap => pv_head direction
*/
PMAP_MAP_TO_HEAD_LOCK();
ptes = pmap_map_ptes(pmap); /* locks pmap */
/*
* removing one page? take shortcut function.
*/
if (sva + PAGE_SIZE == eva) {
if (pmap_valid_entry(pmap->pm_pdir[pdei(sva)])) {
/* PA of the PTP */
ptppa = pmap->pm_pdir[pdei(sva)] & PG_FRAME;
/* get PTP if non-kernel mapping */
if (pmap == pmap_kernel()) {
/* we never free kernel PTPs */
ptp = NULL;
} else {
if (pmap->pm_ptphint &&
VM_PAGE_TO_PHYS(pmap->pm_ptphint) ==
ptppa) {
ptp = pmap->pm_ptphint;
} else {
ptp = PHYS_TO_VM_PAGE(ptppa);
#ifdef DIAGNOSTIC
if (ptp == NULL)
panic("pmap_remove: unmanaged "
"PTP detected");
#endif
}
}
/* do it! */
result = pmap_remove_pte(pmap, ptp,
&ptes[atop(sva)], sva, &cpumask);
/*
* if mapping removed and the PTP is no longer
* being used, free it!
*/
if (result && ptp && ptp->wire_count <= 1) {
/* zap! */
opte = i386_atomic_testset_ul(
&pmap->pm_pdir[pdei(sva)], 0);
#ifdef MULTIPROCESSOR
/*
* XXXthorpej Redundant shootdown can happen
* here if we're using APTE space.
*/
#endif
pmap_tlb_shootdown(curpcb->pcb_pmap,
((vaddr_t)ptes) + ptp->offset, opte,
&cpumask);
#ifdef MULTIPROCESSOR
/*
* Always shoot down the pmap's self-mapping
* of the PTP.
* XXXthorpej Redundant shootdown can happen
* here if pmap == curpcb->pcb_pmap (not APTE
* space).
*/
pmap_tlb_shootdown(pmap,
((vaddr_t)PTE_BASE) + ptp->offset, opte,
&cpumask);
#endif
pmap->pm_stats.resident_count--;
if (pmap->pm_ptphint == ptp)
pmap->pm_ptphint =
TAILQ_FIRST(&pmap->pm_obj.memq);
ptp->wire_count = 0;
uvm_pagefree(ptp);
}
}
pmap_tlb_shootnow(cpumask);
pmap_unmap_ptes(pmap); /* unlock pmap */
PMAP_MAP_TO_HEAD_UNLOCK();
return;
}
for (/* null */ ; sva < eva ; sva = blkendva) {
/* determine range of block */
blkendva = i386_round_pdr(sva+1);
if (blkendva > eva)
blkendva = eva;
/*
* XXXCDC: our PTE mappings should never be removed
* with pmap_remove! if we allow this (and why would
* we?) then we end up freeing the pmap's page
* directory page (PDP) before we are finished using
* it when we hit in in the recursive mapping. this
* is BAD.
*
* long term solution is to move the PTEs out of user
* address space. and into kernel address space (up
* with APTE). then we can set VM_MAXUSER_ADDRESS to
* be VM_MAX_ADDRESS.
*/
if (pdei(sva) == PDSLOT_PTE)
/* XXXCDC: ugly hack to avoid freeing PDP here */
continue;
if (!pmap_valid_entry(pmap->pm_pdir[pdei(sva)]))
/* valid block? */
continue;
/* PA of the PTP */
ptppa = (pmap->pm_pdir[pdei(sva)] & PG_FRAME);
/* get PTP if non-kernel mapping */
if (pmap == pmap_kernel()) {
/* we never free kernel PTPs */
ptp = NULL;
} else {
if (pmap->pm_ptphint &&
VM_PAGE_TO_PHYS(pmap->pm_ptphint) == ptppa) {
ptp = pmap->pm_ptphint;
} else {
ptp = PHYS_TO_VM_PAGE(ptppa);
#ifdef DIAGNOSTIC
if (ptp == NULL)
panic("pmap_remove: unmanaged PTP "
"detected");
#endif
}
}
pmap_remove_ptes(pmap, ptp, (vaddr_t)&ptes[atop(sva)],
sva, blkendva, &cpumask);
/* if PTP is no longer being used, free it! */
if (ptp && ptp->wire_count <= 1) {
/* zap! */
opte = i386_atomic_testset_ul(
&pmap->pm_pdir[pdei(sva)], 0);
#if defined(MULTIPROCESSOR)
/*
* XXXthorpej Redundant shootdown can happen here
* if we're using APTE space.
*/
#endif
pmap_tlb_shootdown(curpcb->pcb_pmap,
((vaddr_t)ptes) + ptp->offset, opte, &cpumask);
#if defined(MULTIPROCESSOR)
/*
* Always shoot down the pmap's self-mapping
* of the PTP.
* XXXthorpej Redundant shootdown can happen here
* if pmap == curpcb->pcb_pmap (not APTE space).
*/
pmap_tlb_shootdown(pmap,
((vaddr_t)PTE_BASE) + ptp->offset, opte, &cpumask);
#endif
pmap->pm_stats.resident_count--;
if (pmap->pm_ptphint == ptp) /* update hint? */
pmap->pm_ptphint =
TAILQ_FIRST(&pmap->pm_obj.memq);
ptp->wire_count = 0;
uvm_pagefree(ptp);
}
}
pmap_tlb_shootnow(cpumask);
pmap_unmap_ptes(pmap);
PMAP_MAP_TO_HEAD_UNLOCK();
}
/*
* pmap_page_remove: remove a managed vm_page from all pmaps that map it
*
* => we set pv_head => pmap locking
* => R/M bits are sync'd back to attrs
*/
void
pmap_page_remove(pg)
struct vm_page *pg;
{
int bank, off;
struct pv_head *pvh;
struct pv_entry *pve;
pt_entry_t *ptes, opte;
int32_t cpumask = 0;
/* XXX: vm_page should either contain pv_head or have a pointer to it */
bank = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), &off);
if (bank == -1) {
printf("pmap_page_remove: unmanaged page?\n");
return;
}
pvh = &vm_physmem[bank].pmseg.pvhead[off];
if (pvh->pvh_list == NULL) {
return;
}
/* set pv_head => pmap locking */
PMAP_HEAD_TO_MAP_LOCK();
/* XXX: needed if we hold head->map lock? */
simple_lock(&pvh->pvh_lock);
for (pve = pvh->pvh_list ; pve != NULL ; pve = pve->pv_next) {
ptes = pmap_map_ptes(pve->pv_pmap); /* locks pmap */
#ifdef DIAGNOSTIC
if (pve->pv_va >= uvm.pager_sva && pve->pv_va < uvm.pager_eva) {
printf("pmap_page_remove: found pager VA on pv_list\n");
}
if (pve->pv_ptp && (pve->pv_pmap->pm_pdir[pdei(pve->pv_va)] &
PG_FRAME)
!= VM_PAGE_TO_PHYS(pve->pv_ptp)) {
printf("pmap_page_remove: pg=%p: va=%lx, pv_ptp=%p\n",
pg, pve->pv_va, pve->pv_ptp);
printf("pmap_page_remove: PTP's phys addr: "
"actual=%x, recorded=%lx\n",
(pve->pv_pmap->pm_pdir[pdei(pve->pv_va)] &
PG_FRAME), VM_PAGE_TO_PHYS(pve->pv_ptp));
panic("pmap_page_remove: mapped managed page has "
"invalid pv_ptp field");
}
#endif
opte = ptes[atop(pve->pv_va)];
ptes[atop(pve->pv_va)] = 0; /* zap! */
if (opte & PG_W)
pve->pv_pmap->pm_stats.wired_count--;
pve->pv_pmap->pm_stats.resident_count--;
/* Shootdown only if referenced */
if (opte & PG_U)
pmap_tlb_shootdown(pve->pv_pmap, pve->pv_va, opte,
&cpumask);
/* sync R/M bits */
vm_physmem[bank].pmseg.attrs[off] |= (opte & (PG_U|PG_M));
/* update the PTP reference count. free if last reference. */
if (pve->pv_ptp) {
pve->pv_ptp->wire_count--;
if (pve->pv_ptp->wire_count <= 1) {
/*
* Do we have to shootdown the page just to
* get the pte out of the TLB ?
*/
if(!(opte & PG_U))
pmap_tlb_shootdown(pve->pv_pmap,
pve->pv_va, opte, &cpumask);
/* zap! */
opte = i386_atomic_testset_ul(
&pve->pv_pmap->pm_pdir[pdei(pve->pv_va)],
0);
pmap_tlb_shootdown(curpcb->pcb_pmap,
((vaddr_t)ptes) + pve->pv_ptp->offset,
opte, &cpumask);
#if defined(MULTIPROCESSOR)
/*
* Always shoot down the other pmap's
* self-mapping of the PTP.
*/
pmap_tlb_shootdown(pve->pv_pmap,
((vaddr_t)PTE_BASE) + pve->pv_ptp->offset,
opte, &cpumask);
#endif
pve->pv_pmap->pm_stats.resident_count--;
/* update hint? */
if (pve->pv_pmap->pm_ptphint == pve->pv_ptp)
pve->pv_pmap->pm_ptphint =
TAILQ_FIRST(&pve->pv_pmap->pm_obj.memq);
pve->pv_ptp->wire_count = 0;
uvm_pagefree(pve->pv_ptp);
}
}
pmap_unmap_ptes(pve->pv_pmap); /* unlocks pmap */
}
pmap_free_pvs(NULL, pvh->pvh_list);
pvh->pvh_list = NULL;
simple_unlock(&pvh->pvh_lock);
PMAP_HEAD_TO_MAP_UNLOCK();
pmap_tlb_shootnow(cpumask);
}
/*
* p m a p a t t r i b u t e f u n c t i o n s
* functions that test/change managed page's attributes
* since a page can be mapped multiple times we must check each PTE that
* maps it by going down the pv lists.
*/
/*
* pmap_test_attrs: test a page's attributes
*
* => we set pv_head => pmap locking
*/
boolean_t
pmap_test_attrs(pg, testbits)
struct vm_page *pg;
int testbits;
{
int bank, off;
char *myattrs;
struct pv_head *pvh;
struct pv_entry *pve;
pt_entry_t *ptes, pte;
/* XXX: vm_page should either contain pv_head or have a pointer to it */
bank = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), &off);
if (bank == -1) {
printf("pmap_test_attrs: unmanaged page?\n");
return(FALSE);
}
/*
* before locking: see if attributes are already set and if so,
* return!
*/
myattrs = &vm_physmem[bank].pmseg.attrs[off];
if (*myattrs & testbits)
return(TRUE);
/* test to see if there is a list before bothering to lock */
pvh = &vm_physmem[bank].pmseg.pvhead[off];
if (pvh->pvh_list == NULL) {
return(FALSE);
}
/* nope, gonna have to do it the hard way */
PMAP_HEAD_TO_MAP_LOCK();
/* XXX: needed if we hold head->map lock? */
simple_lock(&pvh->pvh_lock);
for (pve = pvh->pvh_list; pve != NULL && (*myattrs & testbits) == 0;
pve = pve->pv_next) {
ptes = pmap_map_ptes(pve->pv_pmap);
pte = ptes[atop(pve->pv_va)];
pmap_unmap_ptes(pve->pv_pmap);
*myattrs |= pte;
}
/*
* note that we will exit the for loop with a non-null pve if
* we have found the bits we are testing for.
*/
simple_unlock(&pvh->pvh_lock);
PMAP_HEAD_TO_MAP_UNLOCK();
return((*myattrs & testbits) != 0);
}
/*
* pmap_change_attrs: change a page's attributes
*
* => we set pv_head => pmap locking
* => we return TRUE if we cleared one of the bits we were asked to
*/
boolean_t
pmap_change_attrs(pg, setbits, clearbits)
struct vm_page *pg;
int setbits, clearbits;
{
u_int32_t result;
int bank, off;
struct pv_head *pvh;
struct pv_entry *pve;
pt_entry_t *ptes, npte, opte;
char *myattrs;
int32_t cpumask = 0;
/* XXX: vm_page should either contain pv_head or have a pointer to it */
bank = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), &off);
if (bank == -1) {
printf("pmap_change_attrs: unmanaged page?\n");
return(FALSE);
}
PMAP_HEAD_TO_MAP_LOCK();
pvh = &vm_physmem[bank].pmseg.pvhead[off];
/* XXX: needed if we hold head->map lock? */
simple_lock(&pvh->pvh_lock);
myattrs = &vm_physmem[bank].pmseg.attrs[off];
result = *myattrs & clearbits;
*myattrs = (*myattrs | setbits) & ~clearbits;
for (pve = pvh->pvh_list; pve != NULL; pve = pve->pv_next) {
#ifdef DIAGNOSTIC
if (!pmap_valid_entry(pve->pv_pmap->pm_pdir[pdei(pve->pv_va)]))
panic("pmap_change_attrs: mapping without PTP "
"detected");
#endif
ptes = pmap_map_ptes(pve->pv_pmap); /* locks pmap */
npte = ptes[atop(pve->pv_va)];
result |= (npte & clearbits);
npte = (npte | setbits) & ~clearbits;
if (ptes[atop(pve->pv_va)] != npte) {
opte = i386_atomic_testset_ul(
&ptes[atop(pve->pv_va)], npte);
pmap_tlb_shootdown(pve->pv_pmap,
atop(pve->pv_va), opte, &cpumask);
}
pmap_unmap_ptes(pve->pv_pmap); /* unlocks pmap */
}
simple_unlock(&pvh->pvh_lock);
PMAP_HEAD_TO_MAP_UNLOCK();
pmap_tlb_shootnow(cpumask);
return(result != 0);
}
/*
* p m a p p r o t e c t i o n f u n c t i o n s
*/
/*
* pmap_page_protect: change the protection of all recorded mappings
* of a managed page
*
* => NOTE: this is an inline function in pmap.h
*/
/* see pmap.h */
/*
* pmap_protect: set the protection in of the pages in a pmap
*
* => NOTE: this is an inline function in pmap.h
*/
/* see pmap.h */
/*
* pmap_write_protect: write-protect pages in a pmap
*/
void
pmap_write_protect(pmap, sva, eva, prot)
struct pmap *pmap;
vaddr_t sva, eva;
vm_prot_t prot;
{
pt_entry_t *ptes, *spte, *epte, npte;
vaddr_t blockend;
u_int32_t md_prot;
int32_t cpumask = 0;
ptes = pmap_map_ptes(pmap); /* locks pmap */
/* should be ok, but just in case ... */
sva &= PG_FRAME;
eva &= PG_FRAME;
for (/* null */ ; sva < eva ; sva = blockend) {
blockend = (sva & PD_MASK) + NBPD;
if (blockend > eva)
blockend = eva;
/*
* XXXCDC: our PTE mappings should never be write-protected!
*
* long term solution is to move the PTEs out of user
* address space. and into kernel address space (up
* with APTE). then we can set VM_MAXUSER_ADDRESS to
* be VM_MAX_ADDRESS.
*/
/* XXXCDC: ugly hack to avoid freeing PDP here */
if (pdei(sva) == PDSLOT_PTE)
continue;
/* empty block? */
if (!pmap_valid_entry(pmap->pm_pdir[pdei(sva)]))
continue;
md_prot = protection_codes[prot];
if (sva < VM_MAXUSER_ADDRESS)
md_prot |= PG_u;
else if (sva < VM_MAX_ADDRESS)
/* XXX: write-prot our PTES? never! */
md_prot |= (PG_u | PG_RW);
spte = &ptes[atop(sva)];
epte = &ptes[atop(blockend)];
for (/*null */; spte < epte ; spte++, sva += PAGE_SIZE) {
if (!pmap_valid_entry(*spte)) /* no mapping? */
continue;
npte = (*spte & ~PG_PROT) | md_prot;
if (npte != *spte) {
pmap_exec_account(pmap, sva, *spte, npte);
i386_atomic_testset_ul(spte, npte); /* zap! */
pmap_tlb_shootdown(pmap, sva, *spte, &cpumask);
}
}
}
pmap_tlb_shootnow(cpumask);
pmap_unmap_ptes(pmap); /* unlocks pmap */
}
/*
* end of protection functions
*/
/*
* pmap_unwire: clear the wired bit in the PTE
*
* => mapping should already be in map
*/
void
pmap_unwire(pmap, va)
struct pmap *pmap;
vaddr_t va;
{
pt_entry_t *ptes;
if (pmap_valid_entry(pmap->pm_pdir[pdei(va)])) {
ptes = pmap_map_ptes(pmap); /* locks pmap */
#ifdef DIAGNOSTIC
if (!pmap_valid_entry(ptes[atop(va)]))
panic("pmap_unwire: invalid (unmapped) va 0x%lx", va);
#endif
if ((ptes[atop(va)] & PG_W) != 0) {
ptes[atop(va)] &= ~PG_W;
pmap->pm_stats.wired_count--;
}
#ifdef DIAGNOSTIC
else {
printf("pmap_unwire: wiring for pmap %p va 0x%lx "
"didn't change!\n", pmap, va);
}
#endif
pmap_unmap_ptes(pmap); /* unlocks map */
}
#ifdef DIAGNOSTIC
else {
panic("pmap_unwire: invalid PDE");
}
#endif
}
/*
* pmap_collect: free resources held by a pmap
*
* => optional function.
* => called when a process is swapped out to free memory.
*/
void
pmap_collect(pmap)
struct pmap *pmap;
{
/*
* free all of the pt pages by removing the physical mappings
* for its entire address space.
*/
pmap_remove(pmap, VM_MIN_ADDRESS, VM_MAX_ADDRESS);
}
/*
* pmap_copy: copy mappings from one pmap to another
*
* => optional function
* void pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
*/
/*
* defined as macro in pmap.h
*/
/*
* pmap_enter: enter a mapping into a pmap
*
* => must be done "now" ... no lazy-evaluation
* => we set pmap => pv_head locking
*/
int
pmap_enter(pmap, va, pa, prot, flags)
struct pmap *pmap;
vaddr_t va;
paddr_t pa;
vm_prot_t prot;
int flags;
{
pt_entry_t *ptes, opte, npte;
struct vm_page *ptp;
struct pv_head *pvh;
struct pv_entry *pve;
int bank, off, error;
boolean_t wired = (flags & PMAP_WIRED) != 0;
#ifdef DIAGNOSTIC
/* sanity check: totally out of range? */
if (va >= VM_MAX_KERNEL_ADDRESS)
panic("pmap_enter: too big");
if (va == (vaddr_t) PDP_BASE || va == (vaddr_t) APDP_BASE)
panic("pmap_enter: trying to map over PDP/APDP!");
/* sanity check: kernel PTPs should already have been pre-allocated */
if (va >= VM_MIN_KERNEL_ADDRESS &&
!pmap_valid_entry(pmap->pm_pdir[pdei(va)]))
panic("pmap_enter: missing kernel PTP!");
#endif
/* get lock */
PMAP_MAP_TO_HEAD_LOCK();
/*
* map in ptes and get a pointer to our PTP (unless we are the kernel)
*/
ptes = pmap_map_ptes(pmap); /* locks pmap */
if (pmap == pmap_kernel()) {
ptp = NULL;
} else {
ptp = pmap_get_ptp(pmap, pdei(va), FALSE);
if (ptp == NULL) {
if (flags & PMAP_CANFAIL) {
error = ENOMEM;
goto out;
}
panic("pmap_enter: get ptp failed");
}
}
opte = ptes[atop(va)]; /* old PTE */
/*
* is there currently a valid mapping at our VA?
*/
if (pmap_valid_entry(opte)) {
/*
* first, update pm_stats. resident count will not
* change since we are replacing/changing a valid
* mapping. wired count might change...
*/
if (wired && (opte & PG_W) == 0)
pmap->pm_stats.wired_count++;
else if (!wired && (opte & PG_W) != 0)
pmap->pm_stats.wired_count--;
/*
* is the currently mapped PA the same as the one we
* want to map?
*/
if ((opte & PG_FRAME) == pa) {
/* if this is on the PVLIST, sync R/M bit */
if (opte & PG_PVLIST) {
bank = vm_physseg_find(atop(pa), &off);
#ifdef DIAGNOSTIC
if (bank == -1)
panic("pmap_enter: same pa PG_PVLIST "
"mapping with unmanaged page "
"pa = 0x%lx (0x%lx)", pa,
atop(pa));
#endif
pvh = &vm_physmem[bank].pmseg.pvhead[off];
simple_lock(&pvh->pvh_lock);
vm_physmem[bank].pmseg.attrs[off] |= opte;
simple_unlock(&pvh->pvh_lock);
} else {
pvh = NULL; /* ensure !PG_PVLIST */
}
goto enter_now;
}
/*
* changing PAs: we must remove the old one first
*/
/*
* if current mapping is on a pvlist,
* remove it (sync R/M bits)
*/
if (opte & PG_PVLIST) {
bank = vm_physseg_find(atop(opte & PG_FRAME), &off);
#ifdef DIAGNOSTIC
if (bank == -1)
panic("pmap_enter: PG_PVLIST mapping with "
"unmanaged page "
"pa = 0x%lx (0x%lx)", pa, atop(pa));
#endif
pvh = &vm_physmem[bank].pmseg.pvhead[off];
simple_lock(&pvh->pvh_lock);
pve = pmap_remove_pv(pvh, pmap, va);
vm_physmem[bank].pmseg.attrs[off] |= opte;
simple_unlock(&pvh->pvh_lock);
} else {
pve = NULL;
}
} else { /* opte not valid */
pve = NULL;
pmap->pm_stats.resident_count++;
if (wired)
pmap->pm_stats.wired_count++;
if (ptp)
ptp->wire_count++; /* count # of valid entries */
}
/*
* at this point pm_stats has been updated. pve is either NULL
* or points to a now-free pv_entry structure (the latter case is
* if we called pmap_remove_pv above).
*
* if this entry is to be on a pvlist, enter it now.
*/
bank = vm_physseg_find(atop(pa), &off);
if (pmap_initialized && bank != -1) {
pvh = &vm_physmem[bank].pmseg.pvhead[off];
if (pve == NULL) {
pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
if (pve == NULL) {
if (flags & PMAP_CANFAIL) {
error = ENOMEM;
goto out;
}
panic("pmap_enter: no pv entries available");
}
}
/* lock pvh when adding */
pmap_enter_pv(pvh, pve, pmap, va, ptp);
} else {
/* new mapping is not PG_PVLIST. free pve if we've got one */
pvh = NULL; /* ensure !PG_PVLIST */
if (pve)
pmap_free_pv(pmap, pve);
}
enter_now:
/*
* at this point pvh is !NULL if we want the PG_PVLIST bit set
*/
npte = pa | protection_codes[prot] | PG_V;
pmap_exec_account(pmap, va, opte, npte);
if (pvh)
npte |= PG_PVLIST;
if (wired)
npte |= PG_W;
if (va < VM_MAXUSER_ADDRESS)
npte |= PG_u;
else if (va < VM_MAX_ADDRESS)
npte |= (PG_u | PG_RW); /* XXXCDC: no longer needed? */
if (pmap == pmap_kernel())
npte |= pmap_pg_g;
ptes[atop(va)] = npte; /* zap! */
if ((opte & ~(PG_M|PG_U)) != npte) {
#ifdef MULTIPROCESSOR
int32_t cpumask = 0;
pmap_tlb_shootdown(pmap, va, opte, &cpumask);
pmap_tlb_shootnow(cpumask);
#else
/* Don't bother deferring in the single CPU case. */
if (pmap_is_curpmap(pmap))
pmap_update_pg(va);
#endif
}
error = 0;
out:
pmap_unmap_ptes(pmap);
PMAP_MAP_TO_HEAD_UNLOCK();
return error;
}
/*
* pmap_growkernel: increase usage of KVM space
*
* => we allocate new PTPs for the kernel and install them in all
* the pmaps on the system.
*/
vaddr_t
pmap_growkernel(maxkvaddr)
vaddr_t maxkvaddr;
{
struct pmap *kpm = pmap_kernel(), *pm;
int needed_kpde; /* needed number of kernel PTPs */
int s;
paddr_t ptaddr;
needed_kpde = (int)(maxkvaddr - VM_MIN_KERNEL_ADDRESS + (NBPD-1))
/ NBPD;
if (needed_kpde <= nkpde)
goto out; /* we are OK */
/*
* whoops! we need to add kernel PTPs
*/
s = splhigh(); /* to be safe */
simple_lock(&kpm->pm_obj.vmobjlock);
for (/*null*/ ; nkpde < needed_kpde ; nkpde++) {
if (uvm.page_init_done == FALSE) {
/*
* we're growing the kernel pmap early (from
* uvm_pageboot_alloc()). this case must be
* handled a little differently.
*/
if (uvm_page_physget(&ptaddr) == FALSE)
panic("pmap_growkernel: out of memory");
pmap_zero_phys(ptaddr);
kpm->pm_pdir[PDSLOT_KERN + nkpde] =
ptaddr | PG_RW | PG_V;
/* count PTP as resident */
kpm->pm_stats.resident_count++;
continue;
}
/*
* THIS *MUST* BE CODED SO AS TO WORK IN THE
* pmap_initialized == FALSE CASE! WE MAY BE
* INVOKED WHILE pmap_init() IS RUNNING!
*/
if (pmap_alloc_ptp(kpm, PDSLOT_KERN + nkpde, FALSE) == NULL) {
panic("pmap_growkernel: alloc ptp failed");
}
/* PG_u not for kernel */
kpm->pm_pdir[PDSLOT_KERN + nkpde] &= ~PG_u;
/* distribute new kernel PTP to all active pmaps */
simple_lock(&pmaps_lock);
LIST_FOREACH(pm, &pmaps, pm_list) {
pm->pm_pdir[PDSLOT_KERN + nkpde] =
kpm->pm_pdir[PDSLOT_KERN + nkpde];
}
simple_unlock(&pmaps_lock);
}
simple_unlock(&kpm->pm_obj.vmobjlock);
splx(s);
out:
return (VM_MIN_KERNEL_ADDRESS + (nkpde * NBPD));
}
#ifdef DEBUG
void pmap_dump(struct pmap *, vaddr_t, vaddr_t);
/*
* pmap_dump: dump all the mappings from a pmap
*
* => caller should not be holding any pmap locks
*/
void
pmap_dump(pmap, sva, eva)
struct pmap *pmap;
vaddr_t sva, eva;
{
pt_entry_t *ptes, *pte;
vaddr_t blkendva;
/*
* if end is out of range truncate.
* if (end == start) update to max.
*/
if (eva > VM_MAXUSER_ADDRESS || eva <= sva)
eva = VM_MAXUSER_ADDRESS;
/*
* we lock in the pmap => pv_head direction
*/
PMAP_MAP_TO_HEAD_LOCK();
ptes = pmap_map_ptes(pmap); /* locks pmap */
/*
* dumping a range of pages: we dump in PTP sized blocks (4MB)
*/
for (/* null */ ; sva < eva ; sva = blkendva) {
/* determine range of block */
blkendva = i386_round_pdr(sva+1);
if (blkendva > eva)
blkendva = eva;
/* valid block? */
if (!pmap_valid_entry(pmap->pm_pdir[pdei(sva)]))
continue;
pte = &ptes[atop(sva)];
for (/* null */; sva < blkendva ; sva += NBPG, pte++) {
if (!pmap_valid_entry(*pte))
continue;
printf("va %#lx -> pa %#x (pte=%#x)\n",
sva, *pte, *pte & PG_FRAME);
}
}
pmap_unmap_ptes(pmap);
PMAP_MAP_TO_HEAD_UNLOCK();
}
#endif
/******************** TLB shootdown code ********************/
void
pmap_tlb_shootnow(int32_t cpumask)
{
#ifdef MULTIPROCESSOR
struct cpu_info *ci, *self;
CPU_INFO_ITERATOR cii;
int s;
#ifdef DIAGNOSTIC
int count = 0;
#endif
#endif
if (cpumask == 0)
return;
#ifdef MULTIPROCESSOR
self = curcpu();
s = splipi();
self->ci_tlb_ipi_mask = cpumask;
#endif
pmap_do_tlb_shootdown(0); /* do *our* work. */
#ifdef MULTIPROCESSOR
splx(s);
if (cold)
return;
/*
* Send the TLB IPI to other CPUs pending shootdowns.
*/
CPU_INFO_FOREACH(cii, ci) {
if (ci == self)
continue;
if (cpumask & (1U << ci->ci_cpuid))
if (i386_send_ipi(ci, I386_IPI_TLB) != 0)
i386_atomic_clearbits_l(&self->ci_tlb_ipi_mask,
(1U << ci->ci_cpuid));
}
while (self->ci_tlb_ipi_mask != 0)
#ifdef DIAGNOSTIC
if (count++ > 100000000)
panic("TLB IPI rendezvous failed (mask %x)",
self->ci_tlb_ipi_mask);
#else
/* XXX insert pause instruction */
;
#endif
#endif
}
/*
* pmap_tlb_shootdown:
*
* Cause the TLB entry for pmap/va to be shot down.
*/
void
pmap_tlb_shootdown(pmap, va, pte, cpumaskp)
pmap_t pmap;
vaddr_t va;
pt_entry_t pte;
int32_t *cpumaskp;
{
struct cpu_info *ci, *self;
struct pmap_tlb_shootdown_q *pq;
struct pmap_tlb_shootdown_job *pj;
CPU_INFO_ITERATOR cii;
int s;
if (pmap_initialized == FALSE) {
pmap_update_pg(va);
return;
}
self = curcpu();
s = splipi();
#if 0
printf("dshootdown %lx\n", va);
#endif
CPU_INFO_FOREACH(cii, ci) {
/* Note: we queue shootdown events for ourselves here! */
if (pmap_is_active(pmap, ci->ci_cpuid) == 0)
continue;
if (ci != self && !(ci->ci_flags & CPUF_RUNNING))
continue;
pq = &pmap_tlb_shootdown_q[ci->ci_cpuid];
mtx_enter(&pq->pq_mutex);
/*
* If there's a global flush already queued, or a
* non-global flush, and this pte doesn't have the G
* bit set, don't bother.
*/
if (pq->pq_flushg > 0 ||
(pq->pq_flushu > 0 && (pte & pmap_pg_g) == 0)) {
mtx_leave(&pq->pq_mutex);
continue;
}
#ifdef I386_CPU
/*
* i386 CPUs can't invalidate a single VA, only
* flush the entire TLB, so don't bother allocating
* jobs for them -- just queue a `flushu'.
*
* XXX note that this can be executed for non-i386
* when called early (before identifycpu() has set
* cpu_class)
*/
if (cpu_class == CPUCLASS_386) {
pq->pq_flushu++;
*cpumaskp |= 1U << ci->ci_cpuid;
mtx_leave(&pq->pq_mutex);
continue;
}
#endif
pj = pmap_tlb_shootdown_job_get(pq);
pq->pq_pte |= pte;
if (pj == NULL) {
/*
* Couldn't allocate a job entry.
* Kill it now for this cpu, unless the failure
* was due to too many pending flushes; otherwise,
* tell other cpus to kill everything..
*/
if (ci == self && pq->pq_count < PMAP_TLB_MAXJOBS) {
pmap_update_pg(va);
mtx_leave(&pq->pq_mutex);
continue;
} else {
if (pq->pq_pte & pmap_pg_g)
pq->pq_flushg++;
else
pq->pq_flushu++;
/*
* Since we've nailed the whole thing,
* drain the job entries pending for that
* processor.
*/
pmap_tlb_shootdown_q_drain(pq);
*cpumaskp |= 1U << ci->ci_cpuid;
}
} else {
pj->pj_pmap = pmap;
pj->pj_va = va;
pj->pj_pte = pte;
TAILQ_INSERT_TAIL(&pq->pq_head, pj, pj_list);
*cpumaskp |= 1U << ci->ci_cpuid;
}
mtx_leave(&pq->pq_mutex);
}
splx(s);
}
/*
* pmap_do_tlb_shootdown:
*
* Process pending TLB shootdown operations for this processor.
*/
void
pmap_do_tlb_shootdown(struct cpu_info *self)
{
u_long cpu_id = cpu_number();
struct pmap_tlb_shootdown_q *pq = &pmap_tlb_shootdown_q[cpu_id];
struct pmap_tlb_shootdown_job *pj;
#ifdef MULTIPROCESSOR
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
#endif
mtx_enter(&pq->pq_mutex);
if (pq->pq_flushg) {
tlbflushg();
pq->pq_flushg = 0;
pq->pq_flushu = 0;
pmap_tlb_shootdown_q_drain(pq);
} else {
/*
* TLB flushes for PTEs with PG_G set may be in the queue
* after a flushu, they need to be dealt with.
*/
if (pq->pq_flushu) {
tlbflush();
}
while ((pj = TAILQ_FIRST(&pq->pq_head)) != NULL) {
TAILQ_REMOVE(&pq->pq_head, pj, pj_list);
if ((!pq->pq_flushu && pmap_is_curpmap(pj->pj_pmap)) ||
(pj->pj_pte & pmap_pg_g))
pmap_update_pg(pj->pj_va);
pmap_tlb_shootdown_job_put(pq, pj);
}
pq->pq_flushu = pq->pq_pte = 0;
}
#ifdef MULTIPROCESSOR
CPU_INFO_FOREACH(cii, ci)
i386_atomic_clearbits_l(&ci->ci_tlb_ipi_mask,
(1U << cpu_id));
#endif
mtx_leave(&pq->pq_mutex);
}
/*
* pmap_tlb_shootdown_q_drain:
*
* Drain a processor's TLB shootdown queue. We do not perform
* the shootdown operations. This is merely a convenience
* function.
*
* Note: We expect the queue to be locked.
*/
void
pmap_tlb_shootdown_q_drain(pq)
struct pmap_tlb_shootdown_q *pq;
{
struct pmap_tlb_shootdown_job *pj;
while ((pj = TAILQ_FIRST(&pq->pq_head)) != NULL) {
TAILQ_REMOVE(&pq->pq_head, pj, pj_list);
pmap_tlb_shootdown_job_put(pq, pj);
}
pq->pq_pte = 0;
}
/*
* pmap_tlb_shootdown_job_get:
*
* Get a TLB shootdown job queue entry. This places a limit on
* the number of outstanding jobs a processor may have.
*
* Note: We expect the queue to be locked.
*/
struct pmap_tlb_shootdown_job *
pmap_tlb_shootdown_job_get(pq)
struct pmap_tlb_shootdown_q *pq;
{
struct pmap_tlb_shootdown_job *pj;
if (pq->pq_count >= PMAP_TLB_MAXJOBS)
return (NULL);
mtx_enter(&pmap_tlb_shootdown_job_mutex);
if (pj_free == NULL) {
mtx_leave(&pmap_tlb_shootdown_job_mutex);
return NULL;
}
pj = pj_free;
pj_free = pj_free->pj_nextfree;
mtx_leave(&pmap_tlb_shootdown_job_mutex);
pq->pq_count++;
return (pj);
}
/*
* pmap_tlb_shootdown_job_put:
*
* Put a TLB shootdown job queue entry onto the free list.
*
* Note: We expect the queue to be locked.
*/
void
pmap_tlb_shootdown_job_put(pq, pj)
struct pmap_tlb_shootdown_q *pq;
struct pmap_tlb_shootdown_job *pj;
{
#ifdef DIAGNOSTIC
if (pq->pq_count == 0)
panic("pmap_tlb_shootdown_job_put: queue length inconsistency");
#endif
mtx_enter(&pmap_tlb_shootdown_job_mutex);
pj->pj_nextfree = pj_free;
pj_free = pj;
mtx_leave(&pmap_tlb_shootdown_job_mutex);
pq->pq_count--;
}
|