summaryrefslogtreecommitdiff
path: root/sys/arch/i386/i386/pmap.c
blob: 81337e8f24b934954f43b5d24d984d41be5312c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
/*	$OpenBSD: pmap.c,v 1.194 2016/09/17 07:37:57 mlarkin Exp $	*/
/*	$NetBSD: pmap.c,v 1.91 2000/06/02 17:46:37 thorpej Exp $	*/

/*
 * Copyright (c) 1997 Charles D. Cranor and Washington University.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * pmap.c: i386 pmap module rewrite
 * Chuck Cranor <chuck@ccrc.wustl.edu>
 * 11-Aug-97
 *
 * history of this pmap module: in addition to my own input, i used
 *    the following references for this rewrite of the i386 pmap:
 *
 * [1] the NetBSD i386 pmap.   this pmap appears to be based on the
 *     BSD hp300 pmap done by Mike Hibler at University of Utah.
 *     it was then ported to the i386 by William Jolitz of UUNET
 *     Technologies, Inc.   Then Charles M. Hannum of the NetBSD
 *     project fixed some bugs and provided some speed ups.
 *
 * [2] the FreeBSD i386 pmap.   this pmap seems to be the
 *     Hibler/Jolitz pmap, as modified for FreeBSD by John S. Dyson
 *     and David Greenman.
 *
 * [3] the Mach pmap.   this pmap, from CMU, seems to have migrated
 *     between several processors.   the VAX version was done by
 *     Avadis Tevanian, Jr., and Michael Wayne Young.    the i386
 *     version was done by Lance Berc, Mike Kupfer, Bob Baron,
 *     David Golub, and Richard Draves.    the alpha version was
 *     done by Alessandro Forin (CMU/Mach) and Chris Demetriou
 *     (NetBSD/alpha).
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/atomic.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/pool.h>
#include <sys/user.h>
#include <sys/kernel.h>
#include <sys/mutex.h>

#include <uvm/uvm.h>

#include <machine/lock.h>
#include <machine/cpu.h>
#include <machine/specialreg.h>
#include <machine/gdt.h>

#include <dev/isa/isareg.h>
#include <sys/msgbuf.h>
#include <stand/boot/bootarg.h>

/*
 * this file contains the code for the "pmap module."   the module's
 * job is to manage the hardware's virtual to physical address mappings.
 * note that there are two levels of mapping in the VM system:
 *
 *  [1] the upper layer of the VM system uses vm_map's and vm_map_entry's
 *      to map ranges of virtual address space to objects/files.  for
 *      example, the vm_map may say: "map VA 0x1000 to 0x22000 read-only
 *      to the file /bin/ls starting at offset zero."   note that
 *      the upper layer mapping is not concerned with how individual
 *      vm_pages are mapped.
 *
 *  [2] the lower layer of the VM system (the pmap) maintains the mappings
 *      from virtual addresses.   it is concerned with which vm_page is
 *      mapped where.   for example, when you run /bin/ls and start
 *      at page 0x1000 the fault routine may lookup the correct page
 *      of the /bin/ls file and then ask the pmap layer to establish
 *      a mapping for it.
 *
 * note that information in the lower layer of the VM system can be
 * thrown away since it can easily be reconstructed from the info
 * in the upper layer.
 *
 * data structures we use include:
 *
 *  - struct pmap: describes the address space of one thread
 *  - struct pv_entry: describes one <PMAP,VA> mapping of a PA
 *  - struct pv_head: there is one pv_head per managed page of
 *	physical memory.   the pv_head points to a list of pv_entry
 *	structures which describe all the <PMAP,VA> pairs that this
 *      page is mapped in.    this is critical for page based operations
 *      such as pmap_page_protect() [change protection on _all_ mappings
 *      of a page]
 */
/*
 * i386 MMU hardware structure:
 *
 * the i386 MMU is a two-level MMU which maps 4GB of virtual memory.
 * the pagesize is 4K (4096 [0x1000] bytes), although newer pentium
 * processors can support a 4MB pagesize as well.
 *
 * the first level table (segment table?) is called a "page directory"
 * and it contains 1024 page directory entries (PDEs).   each PDE is
 * 4 bytes (an int), so a PD fits in a single 4K page.   this page is
 * the page directory page (PDP).  each PDE in a PDP maps 4MB of space
 * (1024 * 4MB = 4GB).   a PDE contains the physical address of the
 * second level table: the page table.   or, if 4MB pages are being used,
 * then the PDE contains the PA of the 4MB page being mapped.
 *
 * a page table consists of 1024 page table entries (PTEs).  each PTE is
 * 4 bytes (an int), so a page table also fits in a single 4K page.  a
 * 4K page being used as a page table is called a page table page (PTP).
 * each PTE in a PTP maps one 4K page (1024 * 4K = 4MB).   a PTE contains
 * the physical address of the page it maps and some flag bits (described
 * below).
 *
 * the processor has a special register, "cr3", which points to the
 * the PDP which is currently controlling the mappings of the virtual
 * address space.
 *
 * the following picture shows the translation process for a 4K page:
 *
 * %cr3 register [PA of PDP]
 *      |
 *      |
 *      |   bits <31-22> of VA         bits <21-12> of VA   bits <11-0>
 *      |   index the PDP (0 - 1023)   index the PTP        are the page offset
 *      |         |                           |                  |
 *      |         v                           |                  |
 *      +--->+----------+                     |                  |
 *           | PD Page  |   PA of             v                  |
 *           |          |---PTP-------->+------------+           |
 *           | 1024 PDE |               | page table |--PTE--+   |
 *           | entries  |               | (aka PTP)  |       |   |
 *           +----------+               | 1024 PTE   |       |   |
 *                                      | entries    |       |   |
 *                                      +------------+       |   |
 *                                                           |   |
 *                                                bits <31-12>   bits <11-0>
 *                                                p h y s i c a l  a d d r
 *
 * the i386 caches PTEs in a TLB.   it is important to flush out old
 * TLB mappings when making a change to a mapping.   writing to the
 * %cr3 will flush the entire TLB.    newer processors also have an
 * instruction that will invalidate the mapping of a single page (which
 * is useful if you are changing a single mapping because it preserves
 * all the cached TLB entries).
 *
 * as shows, bits 31-12 of the PTE contain PA of the page being mapped.
 * the rest of the PTE is defined as follows:
 *   bit#	name	use
 *   11		n/a	available for OS use, hardware ignores it
 *   10		n/a	available for OS use, hardware ignores it
 *   9		n/a	available for OS use, hardware ignores it
 *   8		G	global bit (see discussion below)
 *   7		PS	page size [for PDEs] (0=4k, 1=4M <if supported>)
 *   6		D	dirty (modified) page
 *   5		A	accessed (referenced) page
 *   4		PCD	cache disable
 *   3		PWT	prevent write through (cache)
 *   2		U/S	user/supervisor bit (0=supervisor only, 1=both u&s)
 *   1		R/W	read/write bit (0=read only, 1=read-write)
 *   0		P	present (valid)
 *
 * notes:
 *  - on the i386 the R/W bit is ignored if processor is in supervisor
 *    state (bug!)
 *  - PS is only supported on newer processors
 *  - PTEs with the G bit are global in the sense that they are not
 *    flushed from the TLB when %cr3 is written (to flush, use the
 *    "flush single page" instruction).   this is only supported on
 *    newer processors.    this bit can be used to keep the kernel's
 *    TLB entries around while context switching.   since the kernel
 *    is mapped into all processes at the same place it does not make
 *    sense to flush these entries when switching from one process'
 *    pmap to another.
 */
/*
 * A pmap describes a process' 4GB virtual address space.  This
 * virtual address space can be broken up into 1024 4MB regions which
 * are described by PDEs in the PDP.  The PDEs are defined as follows:
 *
 * Ranges are inclusive -> exclusive, just like vm_map_entry start/end.
 * The following assumes that KERNBASE is 0xd0000000.
 *
 * PDE#s	VA range		Usage
 * 0->831	0x0 -> 0xcfc00000	user address space, note that the
 *					max user address is 0xcfbfe000
 *					the final two pages in the last 4MB
 *					used to be reserved for the UAREA
 *					but now are no longer used.
 * 831		0xcfc00000->		recursive mapping of PDP (used for
 *			0xd0000000	linear mapping of PTPs).
 * 832->1023	0xd0000000->		kernel address space (constant
 *			0xffc00000	across all pmaps/processes).
 * 1023		0xffc00000->		"alternate" recursive PDP mapping
 *			<end>		(for other pmaps).
 *
 *
 * Note: A recursive PDP mapping provides a way to map all the PTEs for
 * a 4GB address space into a linear chunk of virtual memory.  In other
 * words, the PTE for page 0 is the first int mapped into the 4MB recursive
 * area.  The PTE for page 1 is the second int.  The very last int in the
 * 4MB range is the PTE that maps VA 0xffffe000 (the last page in a 4GB
 * address).
 *
 * All pmaps' PDs must have the same values in slots 832->1023 so that
 * the kernel is always mapped in every process.  These values are loaded
 * into the PD at pmap creation time.
 *
 * At any one time only one pmap can be active on a processor.  This is
 * the pmap whose PDP is pointed to by processor register %cr3.  This pmap
 * will have all its PTEs mapped into memory at the recursive mapping
 * point (slot #831 as show above).  When the pmap code wants to find the
 * PTE for a virtual address, all it has to do is the following:
 *
 * Address of PTE = (831 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t)
 *                = 0xcfc00000 + (VA / 4096) * 4
 *
 * What happens if the pmap layer is asked to perform an operation
 * on a pmap that is not the one which is currently active?  In that
 * case we take the PA of the PDP of the non-active pmap and put it in
 * slot 1023 of the active pmap.  This causes the non-active pmap's
 * PTEs to get mapped in the final 4MB of the 4GB address space
 * (e.g. starting at 0xffc00000).
 *
 * The following figure shows the effects of the recursive PDP mapping:
 *
 *   PDP (%cr3)
 *   +----+
 *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
 *   |    |
 *   |    |
 *   | 831| -> points back to PDP (%cr3) mapping VA 0xcfc00000 -> 0xd0000000
 *   | 832| -> first kernel PTP (maps 0xd0000000 -> 0xe0400000)
 *   |    |
 *   |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
 *   +----+
 *
 * Note that the PDE#831 VA (0xcfc00000) is defined as "PTE_BASE".
 * Note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE".
 *
 * Starting at VA 0xcfc00000 the current active PDP (%cr3) acts as a
 * PTP:
 *
 * PTP#831 == PDP(%cr3) => maps VA 0xcfc00000 -> 0xd0000000
 *   +----+
 *   |   0| -> maps the contents of PTP#0 at VA 0xcfc00000->0xcfc01000
 *   |    |
 *   |    |
 *   | 831| -> maps the contents of PTP#831 (the PDP) at VA 0xcff3f000
 *   | 832| -> maps the contents of first kernel PTP
 *   |    |
 *   |1023|
 *   +----+
 *
 * Note that mapping of the PDP at PTP#831's VA (0xcff3f000) is
 * defined as "PDP_BASE".... within that mapping there are two
 * defines:
 *   "PDP_PDE" (0xcff3fcfc) is the VA of the PDE in the PDP
 *      which points back to itself.
 *   "APDP_PDE" (0xcff3fffc) is the VA of the PDE in the PDP which
 *      establishes the recursive mapping of the alternate pmap.
 *      To set the alternate PDP, one just has to put the correct
 *	PA info in *APDP_PDE.
 *
 * Note that in the APTE_BASE space, the APDP appears at VA
 * "APDP_BASE" (0xfffff000).
 */
#define PG_FRAME	0xfffff000	/* page frame mask */
#define PG_LGFRAME	0xffc00000	/* large (4M) page frame mask */

/*
 * The following defines give the virtual addresses of various MMU
 * data structures:
 * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
 * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
 */
#define PTE_BASE	((pt_entry_t *) (PDSLOT_PTE * NBPD))
#define APTE_BASE	((pt_entry_t *) (PDSLOT_APTE * NBPD))
#define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * NBPG)))
#define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * NBPG)))
#define PDP_PDE		(PDP_BASE + PDSLOT_PTE)
#define APDP_PDE	(PDP_BASE + PDSLOT_APTE)

/*
 * pdei/ptei: generate index into PDP/PTP from a VA
 */
#define PD_MASK		0xffc00000	/* page directory address bits */
#define PT_MASK		0x003ff000	/* page table address bits */
#define pdei(VA)	(((VA) & PD_MASK) >> PDSHIFT)
#define ptei(VA)	(((VA) & PT_MASK) >> PGSHIFT)

/*
 * Mach derived conversion macros
 */
#define i386_round_pdr(x)	((((unsigned)(x)) + ~PD_MASK) & PD_MASK)

/*
 * various address macros
 *
 *  vtopte: return a pointer to the PTE mapping a VA
 */
#define vtopte(VA)	(PTE_BASE + atop((vaddr_t)VA))

/*
 * PTP macros:
 *   A PTP's index is the PD index of the PDE that points to it.
 *   A PTP's offset is the byte-offset in the PTE space that this PTP is at.
 *   A PTP's VA is the first VA mapped by that PTP.
 *
 * Note that NBPG == number of bytes in a PTP (4096 bytes == 1024 entries)
 *           NBPD == number of bytes a PTP can map (4MB)
 */

#define ptp_i2o(I)	((I) * NBPG)	/* index => offset */
#define ptp_o2i(O)	((O) / NBPG)	/* offset => index */
#define ptp_i2v(I)	((I) * NBPD)	/* index => VA */
#define ptp_v2i(V)	((V) / NBPD)	/* VA => index (same as pdei) */

/*
 * Access PD and PT
 */
#define PDE(pm,i)	(((pd_entry_t *)(pm)->pm_pdir)[(i)])

/*
 * here we define the data types for PDEs and PTEs
 */
typedef u_int32_t pd_entry_t;		/* PDE */
typedef u_int32_t pt_entry_t;		/* PTE */

/*
 * Number of PTEs per cache line. 4 byte pte, 64-byte cache line
 * Used to avoid false sharing of cache lines.
 */
#define NPTECL			16

/*
 * global data structures
 */

/* The kernel's pmap (proc0), 32 byte aligned in case we are using PAE */
struct pmap __attribute__ ((aligned (32))) kernel_pmap_store;

/*
 * nkpde is the number of kernel PTPs allocated for the kernel at
 * boot time (NKPTP is a compile time override).   this number can
 * grow dynamically as needed (but once allocated, we never free
 * kernel PTPs).
 */

int nkpde = NKPTP;
int nkptp_max = 1024 - (KERNBASE / NBPD) - 1;

extern int cpu_pae;

/*
 * pmap_pg_g: if our processor supports PG_G in the PTE then we
 * set pmap_pg_g to PG_G (otherwise it is zero).
 */

int pmap_pg_g = 0;

/*
 * pmap_pg_wc: if our processor supports PAT then we set this
 * to be the pte bits for Write Combining. Else we fall back to
 * UC- so mtrrs can override the cacheability
 */
int pmap_pg_wc = PG_UCMINUS;

/*
 * other data structures
 */

uint32_t protection_codes[8];		/* maps MI prot to i386 prot code */
boolean_t pmap_initialized = FALSE;	/* pmap_init done yet? */

/*
 * MULTIPROCESSOR: special VA's/ PTE's are actually allocated inside a
 * MAXCPUS*NPTECL array of PTE's, to avoid cache line thrashing
 * due to false sharing.
 */

#ifdef MULTIPROCESSOR
#define PTESLEW(pte, id) ((pte)+(id)*NPTECL)
#define VASLEW(va,id) ((va)+(id)*NPTECL*NBPG)
#else
#define PTESLEW(pte, id) (pte)
#define VASLEW(va,id) (va)
#endif

/*
 * pv management structures.
 */
struct pool pmap_pv_pool;

#define PVE_LOWAT (PVE_PER_PVPAGE / 2)	/* free pv_entry low water mark */
#define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
					/* high water mark */

/*
 * the following two vaddr_t's are used during system startup
 * to keep track of how much of the kernel's VM space we have used.
 * once the system is started, the management of the remaining kernel
 * VM space is turned over to the kernel_map vm_map.
 */

static vaddr_t virtual_avail;	/* VA of first free KVA */
static vaddr_t virtual_end;	/* VA of last free KVA */

/*
 * linked list of all non-kernel pmaps
 */

struct pmap_head pmaps;

/*
 * pool that pmap structures are allocated from
 */

struct pool pmap_pmap_pool;

/*
 * special VAs and the PTEs that map them
 */

pt_entry_t *csrc_pte, *cdst_pte, *zero_pte, *ptp_pte, *flsh_pte;
caddr_t pmap_csrcp, pmap_cdstp, pmap_zerop, pmap_ptpp, pmap_flshp;
caddr_t vmmap; /* XXX: used by mem.c... it should really uvm_map_reserve it */

/*
 * local prototypes
 */
struct vm_page	*pmap_alloc_ptp_86(struct pmap *, int, pt_entry_t);
struct vm_page	*pmap_get_ptp_86(struct pmap *, int);
pt_entry_t	*pmap_map_ptes_86(struct pmap *);
void		 pmap_unmap_ptes_86(struct pmap *);
void		 pmap_do_remove_86(struct pmap *, vaddr_t, vaddr_t, int);
void		 pmap_remove_ptes_86(struct pmap *, struct vm_page *, vaddr_t,
		    vaddr_t, vaddr_t, int, struct pv_entry **);
void		*pmap_pv_page_alloc(struct pool *, int, int *);
void		pmap_pv_page_free(struct pool *, void *);

struct pool_allocator pmap_pv_page_allocator = {
	pmap_pv_page_alloc, pmap_pv_page_free,
};

void		 pmap_sync_flags_pte_86(struct vm_page *, pt_entry_t);

void		 pmap_drop_ptp_86(struct pmap *, vaddr_t, struct vm_page *,
    pt_entry_t *);

void		 setcslimit(struct pmap *, struct trapframe *, struct pcb *,
		     vaddr_t);
void		 pmap_pinit_pd_86(struct pmap *);

static __inline u_int
pmap_pte2flags(pt_entry_t pte)
{
	return (((pte & PG_U) ? PG_PMAP_REF : 0) |
	    ((pte & PG_M) ? PG_PMAP_MOD : 0));
}

void
pmap_sync_flags_pte_86(struct vm_page *pg, pt_entry_t pte)
{
	if (pte & (PG_U|PG_M)) {
		atomic_setbits_int(&pg->pg_flags, pmap_pte2flags(pte));
	}
}

void
pmap_apte_flush(void)
{
	pmap_tlb_shoottlb();
	pmap_tlb_shootwait();
}

/*
 * pmap_map_ptes: map a pmap's PTEs into KVM and lock them in
 *
 * => we lock enough pmaps to keep things locked in
 * => must be undone with pmap_unmap_ptes before returning
 */

pt_entry_t *
pmap_map_ptes_86(struct pmap *pmap)
{
	pd_entry_t opde;

	/* the kernel's pmap is always accessible */
	if (pmap == pmap_kernel()) {
		return(PTE_BASE);
	}

	mtx_enter(&pmap->pm_mtx);

	/* if curpmap then we are always mapped */
	if (pmap_is_curpmap(pmap)) {
		return(PTE_BASE);
	}

	mtx_enter(&curcpu()->ci_curpmap->pm_apte_mtx);

	/* need to load a new alternate pt space into curpmap? */
	opde = *APDP_PDE;
#if defined(MULTIPROCESSOR) && defined(DIAGNOSTIC)
	if (pmap_valid_entry(opde))
		panic("pmap_map_ptes_86: APTE valid");
#endif
	if (!pmap_valid_entry(opde) || (opde & PG_FRAME) != pmap->pm_pdirpa) {
		*APDP_PDE = (pd_entry_t) (pmap->pm_pdirpa | PG_RW | PG_V |
		    PG_U | PG_M);
		if (pmap_valid_entry(opde))
			pmap_apte_flush();
	}
	return(APTE_BASE);
}

/*
 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
 */

void
pmap_unmap_ptes_86(struct pmap *pmap)
{
	if (pmap == pmap_kernel())
		return;

	if (!pmap_is_curpmap(pmap)) {
#if defined(MULTIPROCESSOR)
		*APDP_PDE = 0;
		pmap_apte_flush();
#endif
		mtx_leave(&curcpu()->ci_curpmap->pm_apte_mtx);
	}

	mtx_leave(&pmap->pm_mtx);
}

void
pmap_exec_account(struct pmap *pm, vaddr_t va,
    uint32_t opte, uint32_t npte)
{
	if (pm == pmap_kernel())
		return;

	if (curproc->p_vmspace == NULL ||
	    pm != vm_map_pmap(&curproc->p_vmspace->vm_map))
		return;

	if ((opte ^ npte) & PG_X)
		pmap_tlb_shootpage(pm, va);
			
	/*
	 * Executability was removed on the last executable change.
	 * Reset the code segment to something conservative and
	 * let the trap handler deal with setting the right limit.
	 * We can't do that because of locking constraints on the vm map.
	 *
	 * XXX - floating cs - set this _really_ low.
	 */
	if ((opte & PG_X) && (npte & PG_X) == 0 && va == pm->pm_hiexec) {
		struct trapframe *tf = curproc->p_md.md_regs;
		struct pcb *pcb = &curproc->p_addr->u_pcb;

		pm->pm_hiexec = I386_MAX_EXE_ADDR;
		setcslimit(pm, tf, pcb, I386_MAX_EXE_ADDR);
	}
}

#define SEGDESC_LIMIT(sd) (ptoa(((sd).sd_hilimit << 16) | (sd).sd_lolimit))

/*
 * Fixup the code segment to cover all potential executable mappings.
 * Called by kernel SEGV trap handler.
 * returns 0 if no changes to the code segment were made.
 */
int
pmap_exec_fixup(struct vm_map *map, struct trapframe *tf, struct pcb *pcb)
{
	struct vm_map_entry *ent;
	struct pmap *pm = vm_map_pmap(map);
	vaddr_t va = 0;
	vaddr_t pm_cs, gdt_cs;

	vm_map_lock(map);
	RBT_FOREACH_REVERSE(ent, uvm_map_addr, &map->addr) {
		if (ent->protection & PROT_EXEC)
			break;
	}
	/*
	 * This entry has greater va than the entries before.
	 * We need to make it point to the last page, not past it.
	 */
	if (ent)
		va = trunc_page(ent->end - 1);
	vm_map_unlock(map);

	pm_cs = SEGDESC_LIMIT(pm->pm_codeseg);
	gdt_cs = SEGDESC_LIMIT(curcpu()->ci_gdt[GUCODE_SEL].sd);

	/*
	 * Another thread running on another cpu can change
	 * pm_hiexec and pm_codeseg. If this has happened
	 * during our timeslice, our gdt code segment will
	 * be stale. So only allow the fault through if the
	 * faulting address is less then pm_hiexec and our
	 * gdt code segment is not stale.
	 */
	if (va <= pm->pm_hiexec && pm_cs == pm->pm_hiexec &&
	    gdt_cs == pm->pm_hiexec) {
		return (0);
	}

	pm->pm_hiexec = va;

	/*
	 * We have a new 'highest executable' va, so we need to update
	 * the value for the code segment limit, which is stored in the
	 * PCB.
	 */
	setcslimit(pm, tf, pcb, va);

	return (1);
}

u_int32_t
pmap_pte_set_86(vaddr_t va, paddr_t pa, u_int32_t bits)
{
	pt_entry_t pte, *ptep = vtopte(va);

	pa &= PMAP_PA_MASK;

	pte = i386_atomic_testset_ul(ptep, pa | bits);  /* zap! */
	return (pte & ~PG_FRAME);
}

u_int32_t
pmap_pte_setbits_86(vaddr_t va, u_int32_t set, u_int32_t clr)
{
	pt_entry_t *ptep = vtopte(va);
	pt_entry_t pte = *ptep;

	*ptep = (pte | set) & ~clr;
	return (pte & ~PG_FRAME);
}

u_int32_t
pmap_pte_bits_86(vaddr_t va)
{
	pt_entry_t *ptep = vtopte(va);

	return (*ptep & ~PG_FRAME);
}

paddr_t
pmap_pte_paddr_86(vaddr_t va)
{
	pt_entry_t *ptep = vtopte(va);

	return (*ptep & PG_FRAME);
}

/*
 * pmap_tmpmap_pa: map a page in for tmp usage
 */

vaddr_t
pmap_tmpmap_pa(paddr_t pa)
{
#ifdef MULTIPROCESSOR
	int id = cpu_number();
#endif
	pt_entry_t *ptpte;
	caddr_t ptpva;

	if (cpu_pae)
		return pmap_tmpmap_pa_pae(pa);

	ptpte = PTESLEW(ptp_pte, id);
	ptpva = VASLEW(pmap_ptpp, id);

#if defined(DIAGNOSTIC)
	if (*ptpte)
		panic("pmap_tmpmap_pa: ptp_pte in use?");
#endif
	*ptpte = PG_V | PG_RW | pa;	/* always a new mapping */
	return((vaddr_t)ptpva);
}

/*
 * pmap_tmpunmap_pa: unmap a tmp use page (undoes pmap_tmpmap_pa)
 */

void
pmap_tmpunmap_pa(void)
{
#ifdef MULTIPROCESSOR
	int id = cpu_number();
#endif
	pt_entry_t *ptpte;
	caddr_t ptpva;

	if (cpu_pae) {
		pmap_tmpunmap_pa_pae();
		return;
	}

	ptpte = PTESLEW(ptp_pte, id);
	ptpva = VASLEW(pmap_ptpp, id);

#if defined(DIAGNOSTIC)
	if (!pmap_valid_entry(*ptpte))
		panic("pmap_tmpunmap_pa: our pte invalid?");
#endif

	*ptpte = 0;
	pmap_update_pg((vaddr_t)ptpva);
#ifdef MULTIPROCESSOR
	/*
	 * No need for tlb shootdown here, since ptp_pte is per-CPU.
	 */
#endif
}

paddr_t
vtophys(vaddr_t va)
{
	if (cpu_pae)
		return vtophys_pae(va);
	else
		return ((*vtopte(va) & PG_FRAME) | (va & ~PG_FRAME));
}

void
setcslimit(struct pmap *pm, struct trapframe *tf, struct pcb *pcb,
    vaddr_t limit)
{
	/*
	 * Called when we have a new 'highest executable' va, so we need
	 * to update the value for the code segment limit, which is stored
	 * in the PCB.
	 *
	 * There are no caching issues to be concerned with: the
	 * processor reads the whole descriptor from the GDT when the
	 * appropriate selector is loaded into a segment register, and
	 * this only happens on the return to userland.
	 *
	 * This also works in the MP case, since whichever CPU gets to
	 * run the process will pick up the right descriptor value from
	 * the PCB.
	 */
	limit = min(limit, VM_MAXUSER_ADDRESS - 1);

	setsegment(&pm->pm_codeseg, 0, atop(limit),
	    SDT_MEMERA, SEL_UPL, 1, 1);

	/* And update the GDT since we may be called by the
	 * trap handler (cpu_switch won't get a chance).
	 */
	curcpu()->ci_gdt[GUCODE_SEL].sd = pm->pm_codeseg;

	pcb->pcb_cs = tf->tf_cs = GSEL(GUCODE_SEL, SEL_UPL);
}

/*
 * p m a p   k e n t e r   f u n c t i o n s
 *
 * functions to quickly enter/remove pages from the kernel address
 * space.   pmap_kremove is exported to MI kernel.  we make use of
 * the recursive PTE mappings.
 */

/*
 * pmap_kenter_pa: enter a kernel mapping without R/M (pv_entry) tracking
 *
 * => no need to lock anything, assume va is already allocated
 * => should be faster than normal pmap enter function
 */

void
pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
{
	uint32_t bits;
	uint32_t global = 0;

	/* special 1:1 mappings in the first large page must not be global */
	if (!cpu_pae) {
		if (va >= (vaddr_t)NBPD)	/* 4MB pages on non-PAE */
			global = pmap_pg_g;
	} else {
		if (va >= (vaddr_t)NBPD / 2)	/* 2MB pages on PAE */
			global = pmap_pg_g;
	}

	bits = pmap_pte_set(va, pa, ((prot & PROT_WRITE) ? PG_RW : PG_RO) |
		PG_V | global | PG_U | PG_M |
		((prot & PROT_EXEC) ? PG_X : 0) |
		((pa & PMAP_NOCACHE) ? PG_N : 0) |
		((pa & PMAP_WC) ? pmap_pg_wc : 0));
	if (pmap_valid_entry(bits)) {
		if (pa & PMAP_NOCACHE && (bits & PG_N) == 0)
			wbinvd();
		/* NB. - this should not happen. */
		pmap_tlb_shootpage(pmap_kernel(), va);
		pmap_tlb_shootwait();
	}
}

/*
 * pmap_kremove: remove a kernel mapping(s) without R/M (pv_entry) tracking
 *
 * => no need to lock anything
 * => caller must dispose of any vm_page mapped in the va range
 * => note: not an inline function
 * => we assume the va is page aligned and the len is a multiple of PAGE_SIZE
 */

void
pmap_kremove(vaddr_t sva, vsize_t len)
{
	uint32_t bits;
	vaddr_t va, eva;

	eva = sva + len;

	for (va = sva; va != eva; va += PAGE_SIZE) {
		bits = pmap_pte_set(va, 0, 0);
#ifdef DIAGNOSTIC
		if (bits & PG_PVLIST)
			panic("pmap_kremove: PG_PVLIST mapping for 0x%lx", va);
#endif
	}
	pmap_tlb_shootrange(pmap_kernel(), sva, eva);
	pmap_tlb_shootwait();
}

/*
 * p m a p   i n i t   f u n c t i o n s
 *
 * pmap_bootstrap and pmap_init are called during system startup
 * to init the pmap module.   pmap_bootstrap() does a low level
 * init just to get things rolling.   pmap_init() finishes the job.
 */

/*
 * pmap_bootstrap: get the system in a state where it can run with VM
 *	properly enabled (called before main()).   the VM system is
 *      fully init'd later...
 *
 * => on i386, locore.s has already enabled the MMU by allocating
 *	a PDP for the kernel, and nkpde PTPs for the kernel.
 * => kva_start is the first free virtual address in kernel space
 */

void
pmap_bootstrap(vaddr_t kva_start)
{
	struct pmap *kpm;
	vaddr_t kva;
	pt_entry_t *pte;

	/*
	 * set the page size (default value is 4K which is ok)
	 */

	uvm_setpagesize();

	/*
	 * a quick sanity check
	 */

	if (PAGE_SIZE != NBPG)
		panic("pmap_bootstrap: PAGE_SIZE != NBPG");

	/*
	 * set up our local static global vars that keep track of the
	 * usage of KVM before kernel_map is set up
	 */

	virtual_avail = kva_start;		/* first free KVA */
	virtual_end = VM_MAX_KERNEL_ADDRESS;	/* last KVA */

	/*
	 * set up protection_codes: we need to be able to convert from
	 * a MI protection code (some combo of VM_PROT...) to something
	 * we can jam into a i386 PTE.
	 */

	protection_codes[PROT_NONE] = 0;  			/* --- */
	protection_codes[PROT_EXEC] = PG_X;			/* --x */
	protection_codes[PROT_READ] = PG_RO;			/* -r- */
	protection_codes[PROT_READ | PROT_EXEC] = PG_X;		/* -rx */
	protection_codes[PROT_WRITE] = PG_RW;			/* w-- */
	protection_codes[PROT_WRITE | PROT_EXEC] = PG_RW|PG_X;	/* w-x */
	protection_codes[PROT_READ | PROT_WRITE] = PG_RW;	/* wr- */
	protection_codes[PROT_READ | PROT_WRITE | PROT_EXEC] = PG_RW|PG_X; /* wrx */

	/*
	 * now we init the kernel's pmap
	 *
	 * the kernel pmap's pm_obj is not used for much.   however, in
	 * user pmaps the pm_obj contains the list of active PTPs.
	 * the pm_obj currently does not have a pager.   it might be possible
	 * to add a pager that would allow a process to read-only mmap its
	 * own page tables (fast user level vtophys?).   this may or may not
	 * be useful.
	 */

	kpm = pmap_kernel();
	uvm_objinit(&kpm->pm_obj, NULL, 1);
	bzero(&kpm->pm_list, sizeof(kpm->pm_list));  /* pm_list not used */
	kpm->pm_pdir = (vaddr_t)(proc0.p_addr->u_pcb.pcb_cr3 + KERNBASE);
	kpm->pm_pdirpa = proc0.p_addr->u_pcb.pcb_cr3;
	kpm->pm_stats.wired_count = kpm->pm_stats.resident_count =
		atop(kva_start - VM_MIN_KERNEL_ADDRESS);

	/*
	 * the above is just a rough estimate and not critical to the proper
	 * operation of the system.
	 */

	/*
	 * enable global TLB entries if they are supported
	 */

	if (cpu_feature & CPUID_PGE) {
		lcr4(rcr4() | CR4_PGE);	/* enable hardware (via %cr4) */
		pmap_pg_g = PG_G;		/* enable software */

		/* add PG_G attribute to already mapped kernel pages */
		for (kva = VM_MIN_KERNEL_ADDRESS; kva < virtual_avail;
		     kva += PAGE_SIZE)
			if (pmap_valid_entry(PTE_BASE[atop(kva)]))
				PTE_BASE[atop(kva)] |= PG_G;
	}

	/*
	 * now we allocate the "special" VAs which are used for tmp mappings
	 * by the pmap (and other modules).    we allocate the VAs by advancing
	 * virtual_avail (note that there are no pages mapped at these VAs).
	 * we find the PTE that maps the allocated VA via the linear PTE
	 * mapping.
	 */

	pte = PTE_BASE + atop(virtual_avail);

#ifdef MULTIPROCESSOR
	/*
	 * Waste some VA space to avoid false sharing of cache lines
	 * for page table pages: Give each possible CPU a cache line
	 * of PTE's (16) to play with, though we only need 4.  We could
	 * recycle some of this waste by putting the idle stacks here
	 * as well; we could waste less space if we knew the largest
	 * CPU ID beforehand.
	 */
	pmap_csrcp = (caddr_t) virtual_avail;  csrc_pte = pte;

	pmap_cdstp = (caddr_t) virtual_avail+PAGE_SIZE;  cdst_pte = pte+1;

	pmap_zerop = (caddr_t) virtual_avail+PAGE_SIZE*2;  zero_pte = pte+2;

	pmap_ptpp = (caddr_t) virtual_avail+PAGE_SIZE*3;  ptp_pte = pte+3;

	pmap_flshp = (caddr_t) virtual_avail+PAGE_SIZE*4;  flsh_pte = pte+4;

	virtual_avail += PAGE_SIZE * MAXCPUS * NPTECL;
	pte += MAXCPUS * NPTECL;
#else
	pmap_csrcp = (caddr_t) virtual_avail;  csrc_pte = pte;	/* allocate */
	virtual_avail += PAGE_SIZE; pte++;			/* advance */

	pmap_cdstp = (caddr_t) virtual_avail;  cdst_pte = pte;
	virtual_avail += PAGE_SIZE; pte++;

	pmap_zerop = (caddr_t) virtual_avail;  zero_pte = pte;
	virtual_avail += PAGE_SIZE; pte++;

	pmap_ptpp = (caddr_t) virtual_avail;  ptp_pte = pte;
	virtual_avail += PAGE_SIZE; pte++;

	pmap_flshp = (caddr_t) virtual_avail;  flsh_pte = pte;
	virtual_avail += PAGE_SIZE; pte++;
#endif

	/* XXX: vmmap used by mem.c... should be uvm_map_reserve */
	vmmap = (char *)virtual_avail;			/* don't need pte */
	virtual_avail += PAGE_SIZE;

	msgbufp = (struct msgbuf *)virtual_avail;	/* don't need pte */
	virtual_avail += round_page(MSGBUFSIZE); pte++;

	bootargp = (bootarg_t *)virtual_avail;
	virtual_avail += round_page(bootargc); pte++;

	/*
	 * now we reserve some VM for mapping pages when doing a crash dump
	 */

	virtual_avail = reserve_dumppages(virtual_avail);

	/*
	 * init the static-global locks and global lists.
	 */

	LIST_INIT(&pmaps);

	/*
	 * initialize the pmap pool.
	 */

	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 32, IPL_NONE, 0,
	    "pmappl", NULL);
	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, IPL_VM, 0,
	    "pvpl", &pmap_pv_page_allocator);

	/*
	 * ensure the TLB is sync'd with reality by flushing it...
	 */

	tlbflush();
}

/*
 * Pre-allocate PTP 0 for low memory, so that 1:1 mappings for various
 * trampoline code can be entered.
 */
void
pmap_prealloc_lowmem_ptp(void)
{
	pt_entry_t *pte, npte;
	vaddr_t ptpva = (vaddr_t)vtopte(0);

	/* If PAE, use the PAE-specific preallocator */
	if (cpu_pae) {
		pmap_prealloc_lowmem_ptp_pae();
		return;
	}

	/* enter pa for pte 0 into recursive map */
	pte = vtopte(ptpva);
	npte = PTP0_PA | PG_RW | PG_V | PG_U | PG_M;

	i386_atomic_testset_ul(pte, npte);

	/* make sure it is clean before using */
	memset((void *)ptpva, 0, NBPG);
}

/*
 * pmap_init: called from uvm_init, our job is to get the pmap
 * system ready to manage mappings... this mainly means initing
 * the pv_entry stuff.
 */

void
pmap_init(void)
{
	/*
	 * prime the pool with pv_entry structures to allow us to get
	 * the kmem_map allocated and inited (done after this function
	 * is finished).  we do this by setting a low water mark such
	 * that we are more likely to have these around in extreme
	 * memory starvation.
	 */

	pool_setlowat(&pmap_pv_pool, PVE_LOWAT);
	pool_sethiwat(&pmap_pv_pool, PVE_HIWAT);

	/*
	 * done: pmap module is up (and ready for business)
	 */

	pmap_initialized = TRUE;
}

/*
 * p v _ e n t r y   f u n c t i o n s
 */

void *
pmap_pv_page_alloc(struct pool *pp, int flags, int *slowdown)
{
	struct kmem_dyn_mode kd = KMEM_DYN_INITIALIZER;

	kd.kd_waitok = ISSET(flags, PR_WAITOK);
	kd.kd_slowdown = slowdown;

	return (km_alloc(pp->pr_pgsize,
	    pmap_initialized ? &kv_page : &kv_any, pp->pr_crange, &kd));
}

void
pmap_pv_page_free(struct pool *pp, void *v)
{
	km_free(v, pp->pr_pgsize, &kv_page, pp->pr_crange);
}

/*
 * main pv_entry manipulation functions:
 *   pmap_enter_pv: enter a mapping onto a pv list
 *   pmap_remove_pv: remove a mappiing from a pv list
 */

/*
 * pmap_enter_pv: enter a mapping onto a pv list
 *
 * => caller should have pmap locked
 * => we will gain the lock on the pv and allocate the new pv_entry
 * => caller should adjust ptp's wire_count before calling
 *
 * pve: preallocated pve for us to use
 * ptp: PTP in pmap that maps this VA
 */

void
pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
    vaddr_t va, struct vm_page *ptp)
{
	pve->pv_pmap = pmap;
	pve->pv_va = va;
	pve->pv_ptp = ptp;			/* NULL for kernel pmap */
	mtx_enter(&pg->mdpage.pv_mtx);
	pve->pv_next = pg->mdpage.pv_list;	/* add to ... */
	pg->mdpage.pv_list = pve;		/* ... locked list */
	mtx_leave(&pg->mdpage.pv_mtx);
}

/*
 * pmap_remove_pv: try to remove a mapping from a pv_list
 *
 * => pmap should be locked
 * => caller should hold lock on pv [so that attrs can be adjusted]
 * => caller should adjust ptp's wire_count and free PTP if needed
 * => we return the removed pve
 */

struct pv_entry *
pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
{
	struct pv_entry *pve, **prevptr;

	mtx_enter(&pg->mdpage.pv_mtx);
	prevptr = &pg->mdpage.pv_list;		/* previous pv_entry pointer */
	while ((pve = *prevptr) != NULL) {
		if (pve->pv_pmap == pmap && pve->pv_va == va) {	/* match? */
			*prevptr = pve->pv_next;		/* remove it! */
			break;
		}
		prevptr = &pve->pv_next;		/* previous pointer */
	}
	mtx_leave(&pg->mdpage.pv_mtx);
	return(pve);				/* return removed pve */
}

/*
 * p t p   f u n c t i o n s
 */

/*
 * pmap_alloc_ptp: allocate a PTP for a PMAP
 *
 * => pmap should already be locked by caller
 * => we use the ptp's wire_count to count the number of active mappings
 *	in the PTP (we start it at one to prevent any chance this PTP
 *	will ever leak onto the active/inactive queues)
 */

struct vm_page *
pmap_alloc_ptp_86(struct pmap *pmap, int pde_index, pt_entry_t pde_flags)
{
	struct vm_page *ptp;

	ptp = uvm_pagealloc(&pmap->pm_obj, ptp_i2o(pde_index), NULL,
			    UVM_PGA_USERESERVE|UVM_PGA_ZERO);
	if (ptp == NULL)
		return (NULL);

	/* got one! */
	atomic_clearbits_int(&ptp->pg_flags, PG_BUSY);
	ptp->wire_count = 1;	/* no mappings yet */
	PDE(pmap, pde_index) = (pd_entry_t)(VM_PAGE_TO_PHYS(ptp) |
	    PG_RW | PG_V | PG_M | PG_U | pde_flags);
	pmap->pm_stats.resident_count++;	/* count PTP as resident */
	pmap->pm_ptphint = ptp;
	return(ptp);
}

/*
 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
 *
 * => pmap should NOT be pmap_kernel()
 * => pmap should be locked
 */

struct vm_page *
pmap_get_ptp_86(struct pmap *pmap, int pde_index)
{
	struct vm_page *ptp;

	if (pmap_valid_entry(PDE(pmap, pde_index))) {
		/* valid... check hint (saves us a PA->PG lookup) */
		if (pmap->pm_ptphint &&
		    (PDE(pmap, pde_index) & PG_FRAME) ==
		    VM_PAGE_TO_PHYS(pmap->pm_ptphint))
			return(pmap->pm_ptphint);

		ptp = uvm_pagelookup(&pmap->pm_obj, ptp_i2o(pde_index));
#ifdef DIAGNOSTIC
		if (ptp == NULL)
			panic("pmap_get_ptp_86: unmanaged user PTP");
#endif
		pmap->pm_ptphint = ptp;
		return(ptp);
	}

	/* allocate a new PTP (updates ptphint) */
	return (pmap_alloc_ptp_86(pmap, pde_index, PG_u));
}

void
pmap_drop_ptp_86(struct pmap *pm, vaddr_t va, struct vm_page *ptp,
    pt_entry_t *ptes)
{
	i386_atomic_testset_ul(&PDE(pm, pdei(va)), 0);
	pmap_tlb_shootpage(curcpu()->ci_curpmap, ((vaddr_t)ptes) + ptp->offset);
#ifdef MULTIPROCESSOR
	/*
	 * Always shoot down the other pmap's
	 * self-mapping of the PTP.
	 */
	pmap_tlb_shootpage(pm, ((vaddr_t)PTE_BASE) + ptp->offset);
#endif
	pm->pm_stats.resident_count--;
	/* update hint */
	if (pm->pm_ptphint == ptp)
		pm->pm_ptphint = RBT_ROOT(uvm_objtree, &pm->pm_obj.memt);
	ptp->wire_count = 0;
	/* Postpone free to after shootdown. */
	uvm_pagerealloc(ptp, NULL, 0);
}

/*
 * p m a p  l i f e c y c l e   f u n c t i o n s
 */

/*
 * pmap_create: create a pmap
 *
 * => note: old pmap interface took a "size" args which allowed for
 *	the creation of "software only" pmaps (not in bsd).
 */

struct pmap *
pmap_create(void)
{
	struct pmap *pmap;

	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);

	mtx_init(&pmap->pm_mtx, IPL_VM);
	mtx_init(&pmap->pm_apte_mtx, IPL_VM);

	/* init uvm_object */
	uvm_objinit(&pmap->pm_obj, NULL, 1);
	pmap->pm_stats.wired_count = 0;
	pmap->pm_stats.resident_count = 1;	/* count the PDP allocd below */
	pmap->pm_ptphint = NULL;
	pmap->pm_hiexec = 0;
	pmap->pm_flags = 0;

	setsegment(&pmap->pm_codeseg, 0, atop(I386_MAX_EXE_ADDR) - 1,
	    SDT_MEMERA, SEL_UPL, 1, 1);

	pmap_pinit_pd(pmap);
	return (pmap);
}

void
pmap_pinit_pd_86(struct pmap *pmap)
{
	/* allocate PDP */
	pmap->pm_pdir = uvm_km_alloc(kernel_map, NBPG);
	if (pmap->pm_pdir == 0)
		panic("pmap_pinit_pd_86: kernel_map out of virtual space!");
	pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
			    &pmap->pm_pdirpa);
	pmap->pm_pdirsize = NBPG;

	/* init PDP */
	/* zero init area */
	bzero((void *)pmap->pm_pdir, PDSLOT_PTE * sizeof(pd_entry_t));
	/* put in recursive PDE to map the PTEs */
	PDE(pmap, PDSLOT_PTE) = pmap->pm_pdirpa | PG_V | PG_KW | PG_U | PG_M;
	PDE(pmap, PDSLOT_PTE + 1) = 0;

	/*
	 * we need to lock pmaps_lock to prevent nkpde from changing on
	 * us.   note that there is no need to splvm to protect us from
	 * malloc since malloc allocates out of a submap and we should have
	 * already allocated kernel PTPs to cover the range...
	 */
	/* put in kernel VM PDEs */
	bcopy(&PDP_BASE[PDSLOT_KERN], &PDE(pmap, PDSLOT_KERN),
	       nkpde * sizeof(pd_entry_t));
	/* zero the rest */
	bzero(&PDE(pmap, PDSLOT_KERN + nkpde),
	       NBPG - ((PDSLOT_KERN + nkpde) * sizeof(pd_entry_t)));
	LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
}

/*
 * pmap_destroy: drop reference count on pmap.   free pmap if
 *	reference count goes to zero.
 */

void
pmap_destroy(struct pmap *pmap)
{
	struct vm_page *pg;
	int refs;

	refs = atomic_dec_int_nv(&pmap->pm_obj.uo_refs);
	if (refs > 0)
		return;

#ifdef MULTIPROCESSOR
	pmap_tlb_droppmap(pmap);	
#endif

	LIST_REMOVE(pmap, pm_list);

	/* Free any remaining PTPs. */
	while ((pg = RBT_ROOT(uvm_objtree, &pmap->pm_obj.memt)) != NULL) {
		pg->wire_count = 0;
		uvm_pagefree(pg);
	}

	uvm_km_free(kernel_map, pmap->pm_pdir, pmap->pm_pdirsize);
	pmap->pm_pdir = 0;

	pool_put(&pmap_pmap_pool, pmap);
}


/*
 *	Add a reference to the specified pmap.
 */

void
pmap_reference(struct pmap *pmap)
{
	atomic_inc_int(&pmap->pm_obj.uo_refs);
}

void
pmap_activate(struct proc *p)
{
	KASSERT(curproc == p);
	KASSERT(&p->p_addr->u_pcb == curpcb);
	pmap_switch(NULL, p);
}

int nlazy_cr3_hit;
int nlazy_cr3;

void
pmap_switch(struct proc *o, struct proc *p)
{
	struct pcb *pcb = &p->p_addr->u_pcb;
	struct pmap *pmap, *opmap;
	struct cpu_info *self = curcpu();

	pmap = p->p_vmspace->vm_map.pmap;
	opmap = self->ci_curpmap;

	pcb->pcb_pmap = pmap;
	pcb->pcb_cr3 = pmap->pm_pdirpa;

	if (opmap == pmap) {
		if (pmap != pmap_kernel())
			nlazy_cr3_hit++;
	} else if (o != NULL && pmap == pmap_kernel()) {
		nlazy_cr3++;
	} else {
		curcpu()->ci_curpmap = pmap;
		lcr3(pmap->pm_pdirpa);
	}

	/*
	 * Set the correct descriptor value (i.e. with the
	 * correct code segment X limit) in the GDT.
	 */
	self->ci_gdt[GUCODE_SEL].sd = pmap->pm_codeseg;
	self->ci_gdt[GUFS_SEL].sd = pcb->pcb_threadsegs[TSEG_FS];
	self->ci_gdt[GUGS_SEL].sd = pcb->pcb_threadsegs[TSEG_GS];
}

void
pmap_deactivate(struct proc *p)
{
}

/*
 * pmap_extract: extract a PA for the given VA
 */

boolean_t
pmap_extract_86(struct pmap *pmap, vaddr_t va, paddr_t *pap)
{
	pt_entry_t *ptes, pte;

	if (pmap_valid_entry(PDE(pmap, pdei(va)))) {
		ptes = pmap_map_ptes_86(pmap);
		pte = ptes[atop(va)];
		pmap_unmap_ptes_86(pmap);
		if (!pmap_valid_entry(pte))
			return (FALSE);
		if (pap != NULL)
			*pap = (pte & PG_FRAME) | (va & ~PG_FRAME);
		return (TRUE);
	}
	return (FALSE);
}

/*
 * pmap_virtual_space: used during bootup [pmap_steal_memory] to
 *	determine the bounds of the kernel virtual address space.
 */

void
pmap_virtual_space(vaddr_t *startp, vaddr_t *endp)
{
	*startp = virtual_avail;
	*endp = virtual_end;
}

/*
 * pmap_zero_page: zero a page
 */
void (*pagezero)(void *, size_t) = bzero;

void
pmap_zero_page(struct vm_page *pg)
{
	pmap_zero_phys(VM_PAGE_TO_PHYS(pg));
}

/*
 * pmap_zero_phys: same as pmap_zero_page, but for use before vm_pages are
 * initialized.
 */
void
pmap_zero_phys_86(paddr_t pa)
{
#ifdef MULTIPROCESSOR
	int id = cpu_number();
#endif
	pt_entry_t *zpte = PTESLEW(zero_pte, id);
	caddr_t zerova = VASLEW(pmap_zerop, id);

#ifdef DIAGNOSTIC
	if (*zpte)
		panic("pmap_zero_phys_86: lock botch");
#endif

	*zpte = (pa & PG_FRAME) | PG_V | PG_RW;	/* map in */
	pmap_update_pg((vaddr_t)zerova);	/* flush TLB */
	pagezero(zerova, PAGE_SIZE);		/* zero */
	*zpte = 0;
}

/*
 * pmap_zero_page_uncached: the same, except uncached.
 */

boolean_t
pmap_zero_page_uncached_86(paddr_t pa)
{
#ifdef MULTIPROCESSOR
	int id = cpu_number();
#endif
	pt_entry_t *zpte = PTESLEW(zero_pte, id);
	caddr_t zerova = VASLEW(pmap_zerop, id);

#ifdef DIAGNOSTIC
	if (*zpte)
		panic("pmap_zero_page_uncached_86: lock botch");
#endif

	*zpte = (pa & PG_FRAME) | PG_V | PG_RW | PG_N;	/* map in */
	pmap_update_pg((vaddr_t)zerova);		/* flush TLB */
	pagezero(zerova, PAGE_SIZE);		/* zero */
	*zpte = 0;

	return (TRUE);
}

/*
 * pmap_flush_cache: flush the cache for a virtual address.
 */
void
pmap_flush_cache(vaddr_t addr, vsize_t len)
{
	vaddr_t i;

	if (curcpu()->ci_cflushsz == 0) {
		wbinvd();
		return;
	}
	
	mfence();
	for (i = addr; i < addr + len; i += curcpu()->ci_cflushsz)
		clflush(i);
	mfence();
}

void
pmap_flush_page(paddr_t pa)
{
#ifdef MULTIPROCESSOR
	int id = cpu_number();
#endif
	pt_entry_t *pte;
	caddr_t va;

	KDASSERT(PHYS_TO_VM_PAGE(pa) != NULL);

	if (cpu_pae) {
		pmap_flush_page_pae(pa);
		return;
	}	

	pte = PTESLEW(flsh_pte, id);
	va = VASLEW(pmap_flshp, id);

#ifdef DIAGNOSTIC
	if (*pte)
		panic("pmap_flush_page: lock botch");
#endif

	*pte = (pa & PG_FRAME) | PG_V | PG_RW;
	pmap_update_pg(va);
	pmap_flush_cache((vaddr_t)va, PAGE_SIZE);
	*pte = 0;
	pmap_update_pg(va);
}

/*
 * pmap_copy_page: copy a page
 */

void
pmap_copy_page_86(struct vm_page *srcpg, struct vm_page *dstpg)
{
	paddr_t srcpa = VM_PAGE_TO_PHYS(srcpg);
	paddr_t dstpa = VM_PAGE_TO_PHYS(dstpg);
#ifdef MULTIPROCESSOR
	int id = cpu_number();
#endif
	pt_entry_t *spte = PTESLEW(csrc_pte, id);
	pt_entry_t *dpte = PTESLEW(cdst_pte, id);
	caddr_t csrcva = VASLEW(pmap_csrcp, id);
	caddr_t cdstva = VASLEW(pmap_cdstp, id);

#ifdef DIAGNOSTIC
	if (*spte || *dpte)
		panic("pmap_copy_page_86: lock botch");
#endif

	*spte = (srcpa & PG_FRAME) | PG_V | PG_RW;
	*dpte = (dstpa & PG_FRAME) | PG_V | PG_RW;
	pmap_update_2pg((vaddr_t)csrcva, (vaddr_t)cdstva);
	bcopy(csrcva, cdstva, PAGE_SIZE);
	*spte = *dpte = 0;
	pmap_update_2pg((vaddr_t)csrcva, (vaddr_t)cdstva);
}

/*
 * p m a p   r e m o v e   f u n c t i o n s
 *
 * functions that remove mappings
 */

/*
 * pmap_remove_ptes: remove PTEs from a PTP
 *
 * => must have proper locking on pmap_master_lock
 * => caller must hold pmap's lock
 * => PTP must be mapped into KVA
 * => PTP should be null if pmap == pmap_kernel()
 */

void
pmap_remove_ptes_86(struct pmap *pmap, struct vm_page *ptp, vaddr_t ptpva,
    vaddr_t startva, vaddr_t endva, int flags, struct pv_entry **free_pvs)
{
	struct pv_entry *pve;
	pt_entry_t *pte = (pt_entry_t *) ptpva;
	struct vm_page *pg;
	pt_entry_t opte;

	/*
	 * note that ptpva points to the PTE that maps startva.   this may
	 * or may not be the first PTE in the PTP.
	 *
	 * we loop through the PTP while there are still PTEs to look at
	 * and the wire_count is greater than 1 (because we use the wire_count
	 * to keep track of the number of real PTEs in the PTP).
	 */

	for (/*null*/; startva < endva && (ptp == NULL || ptp->wire_count > 1)
			     ; pte++, startva += NBPG) {
		if (!pmap_valid_entry(*pte))
			continue;			/* VA not mapped */

		if ((flags & PMAP_REMOVE_SKIPWIRED) && (*pte & PG_W))
			continue;

		/* atomically save the old PTE and zero it */
		opte = i386_atomic_testset_ul(pte, 0);

		if (opte & PG_W)
			pmap->pm_stats.wired_count--;
		pmap->pm_stats.resident_count--;

		if (ptp)
			ptp->wire_count--;		/* dropping a PTE */

		/*
		 * Unnecessary work if not PG_PVLIST.
		 */
		pg = PHYS_TO_VM_PAGE(opte & PG_FRAME);

		/*
		 * if we are not on a pv list we are done.
		 */
		if ((opte & PG_PVLIST) == 0) {
#ifdef DIAGNOSTIC
			if (pg != NULL)
				panic("pmap_remove_ptes_86: managed page "
				     "without PG_PVLIST for 0x%lx", startva);
#endif
			continue;
		}

#ifdef DIAGNOSTIC
		if (pg == NULL)
			panic("pmap_remove_ptes_86: unmanaged page marked "
			      "PG_PVLIST, va = 0x%lx, pa = 0x%lx",
			      startva, (u_long)(opte & PG_FRAME));
#endif

		/* sync R/M bits */
		pmap_sync_flags_pte_86(pg, opte);
		pve = pmap_remove_pv(pg, pmap, startva);
		if (pve) {
			pve->pv_next = *free_pvs;
			*free_pvs = pve;
		}

		/* end of "for" loop: time for next pte */
	}
}

/*
 * pmap_remove: top level mapping removal function
 *
 * => caller should not be holding any pmap locks
 */

void
pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
{
	pmap_do_remove(pmap, sva, eva, PMAP_REMOVE_ALL);
}

void
pmap_do_remove_86(struct pmap *pmap, vaddr_t sva, vaddr_t eva, int flags)
{
	pt_entry_t *ptes;
	paddr_t ptppa;
	vaddr_t blkendva;
	struct vm_page *ptp;
	struct pv_entry *pve;
	struct pv_entry *free_pvs = NULL;
	TAILQ_HEAD(, vm_page) empty_ptps;
	int shootall;
	vaddr_t va;

	TAILQ_INIT(&empty_ptps);

	ptes = pmap_map_ptes_86(pmap);	/* locks pmap */

	/*
	 * Decide if we want to shoot the whole tlb or just the range.
	 * Right now, we simply shoot everything when we remove more
	 * than 32 pages, but never in the kernel pmap. XXX - tune.
	 */
	if ((eva - sva > 32 * PAGE_SIZE) && pmap != pmap_kernel())
		shootall = 1;
	else
		shootall = 0;

	for (va = sva ; va < eva ; va = blkendva) {
		/* determine range of block */
		blkendva = i386_round_pdr(va + 1);
		if (blkendva > eva)
			blkendva = eva;

		/*
		 * XXXCDC: our PTE mappings should never be removed
		 * with pmap_remove!  if we allow this (and why would
		 * we?) then we end up freeing the pmap's page
		 * directory page (PDP) before we are finished using
		 * it when we hit in in the recursive mapping.  this
		 * is BAD.
		 *
		 * long term solution is to move the PTEs out of user
		 * address space.  and into kernel address space (up
		 * with APTE).  then we can set VM_MAXUSER_ADDRESS to
		 * be VM_MAX_ADDRESS.
		 */

		if (pdei(va) == PDSLOT_PTE)
			/* XXXCDC: ugly hack to avoid freeing PDP here */
			continue;

		if (!pmap_valid_entry(PDE(pmap, pdei(va))))
			/* valid block? */
			continue;

		/* PA of the PTP */
		ptppa = PDE(pmap, pdei(va)) & PG_FRAME;

		/* get PTP if non-kernel mapping */
		if (pmap == pmap_kernel()) {
			/* we never free kernel PTPs */
			ptp = NULL;
		} else {
			if (pmap->pm_ptphint &&
			    VM_PAGE_TO_PHYS(pmap->pm_ptphint) == ptppa) {
				ptp = pmap->pm_ptphint;
			} else {
				ptp = PHYS_TO_VM_PAGE(ptppa);
#ifdef DIAGNOSTIC
				if (ptp == NULL)
					panic("pmap_do_remove_86: unmanaged "
					      "PTP detected");
#endif
			}
		}
		pmap_remove_ptes_86(pmap, ptp, (vaddr_t)&ptes[atop(va)],
		    va, blkendva, flags, &free_pvs);

		/* If PTP is no longer being used, free it. */
		if (ptp && ptp->wire_count <= 1) {
			pmap_drop_ptp_86(pmap, va, ptp, ptes);
			TAILQ_INSERT_TAIL(&empty_ptps, ptp, pageq);
		}

		if (!shootall)
			pmap_tlb_shootrange(pmap, va, blkendva);
	}

	if (shootall)
		pmap_tlb_shoottlb();

	pmap_unmap_ptes_86(pmap);
	pmap_tlb_shootwait();

	while ((pve = free_pvs) != NULL) {
		free_pvs = pve->pv_next;
		pool_put(&pmap_pv_pool, pve);
	}

	while ((ptp = TAILQ_FIRST(&empty_ptps)) != NULL) {
		TAILQ_REMOVE(&empty_ptps, ptp, pageq);
		uvm_pagefree(ptp);
	}
}

/*
 * pmap_page_remove: remove a managed vm_page from all pmaps that map it
 *
 * => R/M bits are sync'd back to attrs
 */

void
pmap_page_remove_86(struct vm_page *pg)
{
	struct pv_entry *pve;
	struct pmap *pm;
	pt_entry_t *ptes, opte;
	TAILQ_HEAD(, vm_page) empty_ptps;
	struct vm_page *ptp;

	if (pg->mdpage.pv_list == NULL)
		return;

	TAILQ_INIT(&empty_ptps);

	mtx_enter(&pg->mdpage.pv_mtx);
	while ((pve = pg->mdpage.pv_list) != NULL) {
		pmap_reference(pve->pv_pmap);
		pm = pve->pv_pmap;
		mtx_leave(&pg->mdpage.pv_mtx);

		ptes = pmap_map_ptes_86(pm);		/* locks pmap */

		/*
		 * We dropped the pvlist lock before grabbing the pmap
		 * lock to avoid lock ordering problems.  This means
		 * we have to check the pvlist again since somebody
		 * else might have modified it.  All we care about is
		 * that the pvlist entry matches the pmap we just
		 * locked.  If it doesn't, unlock the pmap and try
		 * again.
		 */
		mtx_enter(&pg->mdpage.pv_mtx);
		if ((pve = pg->mdpage.pv_list) == NULL ||
		    pve->pv_pmap != pm) {
			mtx_leave(&pg->mdpage.pv_mtx);
			pmap_unmap_ptes_86(pm);		/* unlocks pmap */
			pmap_destroy(pm);
			mtx_enter(&pg->mdpage.pv_mtx);
			continue;
		}

		pg->mdpage.pv_list = pve->pv_next;
		mtx_leave(&pg->mdpage.pv_mtx);

#ifdef DIAGNOSTIC
		if (pve->pv_ptp && (PDE(pve->pv_pmap, pdei(pve->pv_va)) &
				    PG_FRAME)
		    != VM_PAGE_TO_PHYS(pve->pv_ptp)) {
			printf("pmap_page_remove_86: pg=%p: va=%lx, "
				"pv_ptp=%p\n",
				pg, pve->pv_va, pve->pv_ptp);
			printf("pmap_page_remove_86: PTP's phys addr: "
				"actual=%x, recorded=%lx\n",
				(PDE(pve->pv_pmap, pdei(pve->pv_va)) &
				PG_FRAME), VM_PAGE_TO_PHYS(pve->pv_ptp));
			panic("pmap_page_remove_86: mapped managed page has "
				"invalid pv_ptp field");
}
#endif
		opte = i386_atomic_testset_ul(&ptes[atop(pve->pv_va)], 0);

		if (opte & PG_W)
			pve->pv_pmap->pm_stats.wired_count--;
		pve->pv_pmap->pm_stats.resident_count--;

		/* sync R/M bits */
		pmap_sync_flags_pte_86(pg, opte);

		/* update the PTP reference count.  free if last reference. */
		if (pve->pv_ptp && --pve->pv_ptp->wire_count <= 1) {
			pmap_drop_ptp_86(pve->pv_pmap, pve->pv_va,
			    pve->pv_ptp, ptes);
			TAILQ_INSERT_TAIL(&empty_ptps, pve->pv_ptp, pageq);
		}

		pmap_tlb_shootpage(pve->pv_pmap, pve->pv_va);

		pmap_unmap_ptes_86(pve->pv_pmap);	/* unlocks pmap */
		pmap_destroy(pve->pv_pmap);
		pool_put(&pmap_pv_pool, pve);
		mtx_enter(&pg->mdpage.pv_mtx);
	}
	mtx_leave(&pg->mdpage.pv_mtx);

	pmap_tlb_shootwait();

	while ((ptp = TAILQ_FIRST(&empty_ptps)) != NULL) {
		TAILQ_REMOVE(&empty_ptps, ptp, pageq);
		uvm_pagefree(ptp);
	}
}

/*
 * p m a p   a t t r i b u t e  f u n c t i o n s
 * functions that test/change managed page's attributes
 * since a page can be mapped multiple times we must check each PTE that
 * maps it by going down the pv lists.
 */

/*
 * pmap_test_attrs: test a page's attributes
 */

boolean_t
pmap_test_attrs_86(struct vm_page *pg, int testbits)
{
	struct pv_entry *pve;
	pt_entry_t *ptes, pte;
	u_long mybits, testflags;
	paddr_t ptppa;

	testflags = pmap_pte2flags(testbits);

	if (pg->pg_flags & testflags)
		return (TRUE);

	mybits = 0;
	mtx_enter(&pg->mdpage.pv_mtx);
	for (pve = pg->mdpage.pv_list; pve != NULL && mybits == 0;
	    pve = pve->pv_next) {
		ptppa = PDE(pve->pv_pmap, pdei(pve->pv_va)) & PG_FRAME;
		ptes = (pt_entry_t *)pmap_tmpmap_pa(ptppa);
		pte = ptes[ptei(pve->pv_va)];
		pmap_tmpunmap_pa();
		mybits |= (pte & testbits);
	}
	mtx_leave(&pg->mdpage.pv_mtx);

	if (mybits == 0)
		return (FALSE);

	atomic_setbits_int(&pg->pg_flags, pmap_pte2flags(mybits));

	return (TRUE);
}

/*
 * pmap_clear_attrs: change a page's attributes
 *
 * => we return TRUE if we cleared one of the bits we were asked to
 */

boolean_t
pmap_clear_attrs_86(struct vm_page *pg, int clearbits)
{
	struct pv_entry *pve;
	pt_entry_t *ptes, opte;
	u_long clearflags;
	paddr_t ptppa;
	int result;

	clearflags = pmap_pte2flags(clearbits);

	result = pg->pg_flags & clearflags;
	if (result)
		atomic_clearbits_int(&pg->pg_flags, clearflags);

	mtx_enter(&pg->mdpage.pv_mtx);
	for (pve = pg->mdpage.pv_list; pve != NULL; pve = pve->pv_next) {
		ptppa = PDE(pve->pv_pmap, pdei(pve->pv_va)) & PG_FRAME;
		ptes = (pt_entry_t *)pmap_tmpmap_pa(ptppa);
#ifdef DIAGNOSTIC
		if (!pmap_valid_entry(PDE(pve->pv_pmap, pdei(pve->pv_va))))
			panic("pmap_clear_attrs_86: mapping without PTP "
			      "detected");
#endif

		opte = ptes[ptei(pve->pv_va)];
		if (opte & clearbits) {
			result = TRUE;
			i386_atomic_clearbits_l(&ptes[ptei(pve->pv_va)],
			    (opte & clearbits));
			pmap_tlb_shootpage(pve->pv_pmap, pve->pv_va);
		}
		pmap_tmpunmap_pa();
	}
	mtx_leave(&pg->mdpage.pv_mtx);

	pmap_tlb_shootwait();

	return (result != 0);
}

/*
 * p m a p   p r o t e c t i o n   f u n c t i o n s
 */

/*
 * pmap_page_protect: change the protection of all recorded mappings
 *	of a managed page
 *
 * => NOTE: this is an inline function in pmap.h
 */

/* see pmap.h */

/*
 * pmap_protect: set the protection in of the pages in a pmap
 *
 * => NOTE: this is an inline function in pmap.h
 */

/* see pmap.h */

/*
 * pmap_write_protect: write-protect pages in a pmap
 */

void
pmap_write_protect_86(struct pmap *pmap, vaddr_t sva, vaddr_t eva,
    vm_prot_t prot)
{
	pt_entry_t *ptes, *spte, *epte, npte, opte;
	vaddr_t blockend;
	u_int32_t md_prot;
	vaddr_t va;
	int shootall = 0;

	ptes = pmap_map_ptes_86(pmap);		/* locks pmap */

	/* should be ok, but just in case ... */
	sva &= PG_FRAME;
	eva &= PG_FRAME;

	if ((eva - sva > 32 * PAGE_SIZE) && pmap != pmap_kernel())
		shootall = 1;

	for (va = sva; va < eva; va = blockend) {
		blockend = (va & PD_MASK) + NBPD;
		if (blockend > eva)
			blockend = eva;

		/*
		 * XXXCDC: our PTE mappings should never be write-protected!
		 *
		 * long term solution is to move the PTEs out of user
		 * address space.  and into kernel address space (up
		 * with APTE).  then we can set VM_MAXUSER_ADDRESS to
		 * be VM_MAX_ADDRESS.
		 */

		/* XXXCDC: ugly hack to avoid freeing PDP here */
		if (pdei(va) == PDSLOT_PTE)
			continue;

		/* empty block? */
		if (!pmap_valid_entry(PDE(pmap, pdei(va))))
			continue;

		md_prot = protection_codes[prot];
		if (va < VM_MAXUSER_ADDRESS)
			md_prot |= PG_u;
		else if (va < VM_MAX_ADDRESS)
			/* XXX: write-prot our PTES? never! */
			md_prot |= PG_RW;

		spte = &ptes[atop(va)];
		epte = &ptes[atop(blockend)];

		for (/*null */; spte < epte ; spte++, va += PAGE_SIZE) {

			if (!pmap_valid_entry(*spte))	/* no mapping? */
				continue;

			opte = *spte;
			npte = (opte & ~PG_PROT) | md_prot;

			if (npte != opte) {
				pmap_exec_account(pmap, va, *spte, npte);
				i386_atomic_clearbits_l(spte,
				    (~md_prot & opte) & PG_PROT);
				i386_atomic_setbits_l(spte, md_prot);
			}
		}
	}
	if (shootall)
		pmap_tlb_shoottlb();
	else
		pmap_tlb_shootrange(pmap, sva, eva);

	pmap_unmap_ptes_86(pmap);		/* unlocks pmap */
	pmap_tlb_shootwait();
}

/*
 * end of protection functions
 */

/*
 * pmap_unwire: clear the wired bit in the PTE
 *
 * => mapping should already be in map
 */

void
pmap_unwire_86(struct pmap *pmap, vaddr_t va)
{
	pt_entry_t *ptes;

	if (pmap_valid_entry(PDE(pmap, pdei(va)))) {
		ptes = pmap_map_ptes_86(pmap);		/* locks pmap */

#ifdef DIAGNOSTIC
		if (!pmap_valid_entry(ptes[atop(va)]))
			panic("pmap_unwire_86: invalid (unmapped) va "
			      "0x%lx", va);
#endif

		if ((ptes[atop(va)] & PG_W) != 0) {
			i386_atomic_clearbits_l(&ptes[atop(va)], PG_W);
			pmap->pm_stats.wired_count--;
		}
#ifdef DIAGNOSTIC
		else {
			printf("pmap_unwire_86: wiring for pmap %p va 0x%lx "
			       "didn't change!\n", pmap, va);
		}
#endif
		pmap_unmap_ptes_86(pmap);		/* unlocks map */
	}
#ifdef DIAGNOSTIC
	else {
		panic("pmap_unwire_86: invalid PDE");
	}
#endif
}

/*
 * pmap_collect: free resources held by a pmap
 *
 * => optional function.
 * => called when a process is swapped out to free memory.
 */

void
pmap_collect(struct pmap *pmap)
{
	/*
	 * free all of the pt pages by removing the physical mappings
	 * for its entire address space.
	 */

	pmap_do_remove(pmap, VM_MIN_ADDRESS, VM_MAX_ADDRESS,
	    PMAP_REMOVE_SKIPWIRED);
}

/*
 * pmap_copy: copy mappings from one pmap to another
 *
 * => optional function
 * void pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
 */

/*
 * defined as macro in pmap.h
 */

/*
 * pmap_enter: enter a mapping into a pmap
 *
 * => must be done "now" ... no lazy-evaluation
 */

int
pmap_enter_86(struct pmap *pmap, vaddr_t va, paddr_t pa,
    vm_prot_t prot, int flags)
{
	pt_entry_t *ptes, opte, npte;
	struct vm_page *ptp;
	struct pv_entry *pve, *opve = NULL;
	boolean_t wired = (flags & PMAP_WIRED) != 0;
	boolean_t nocache = (pa & PMAP_NOCACHE) != 0;
	boolean_t wc = (pa & PMAP_WC) != 0;
	struct vm_page *pg = NULL;
	int error, wired_count, resident_count, ptp_count;

	KASSERT(!(wc && nocache));
	pa &= PMAP_PA_MASK;	/* nuke flags from pa */

#ifdef DIAGNOSTIC
	/* sanity check: totally out of range? */
	if (va >= VM_MAX_KERNEL_ADDRESS)
		panic("pmap_enter_86: too big");

	if (va == (vaddr_t) PDP_BASE || va == (vaddr_t) APDP_BASE)
		panic("pmap_enter_86: trying to map over PDP/APDP!");

	/* sanity check: kernel PTPs should already have been pre-allocated */
	if (va >= VM_MIN_KERNEL_ADDRESS &&
	    !pmap_valid_entry(PDE(pmap, pdei(va))))
		panic("pmap_enter: missing kernel PTP!");
#endif
	if (pmap_initialized)
		pve = pool_get(&pmap_pv_pool, PR_NOWAIT);
	else
		pve = NULL;
	wired_count = resident_count = ptp_count = 0;

	/*
	 * map in ptes and get a pointer to our PTP (unless we are the kernel)
	 */

	ptes = pmap_map_ptes_86(pmap);		/* locks pmap */
	if (pmap == pmap_kernel()) {
		ptp = NULL;
	} else {
		ptp = pmap_get_ptp_86(pmap, pdei(va));
		if (ptp == NULL) {
			if (flags & PMAP_CANFAIL) {
				pmap_unmap_ptes_86(pmap);
				error = ENOMEM;
				goto out;
			}
			panic("pmap_enter_86: get ptp failed");
		}
	}
	/*
	 * not allowed to sleep after here!
	 */
	opte = ptes[atop(va)];			/* old PTE */

	/*
	 * is there currently a valid mapping at our VA?
	 */

	if (pmap_valid_entry(opte)) {

		/*
		 * first, calculate pm_stats updates.  resident count will not
		 * change since we are replacing/changing a valid
		 * mapping.  wired count might change...
		 */

		if (wired && (opte & PG_W) == 0)
			wired_count++;
		else if (!wired && (opte & PG_W) != 0)
			wired_count--;

		/*
		 * is the currently mapped PA the same as the one we
		 * want to map?
		 */

		if ((opte & PG_FRAME) == pa) {

			/* if this is on the PVLIST, sync R/M bit */
			if (opte & PG_PVLIST) {
				pg = PHYS_TO_VM_PAGE(pa);
#ifdef DIAGNOSTIC
				if (pg == NULL)
					panic("pmap_enter_86: same pa "
					     "PG_PVLIST mapping with "
					     "unmanaged page "
					     "pa = 0x%lx (0x%lx)", pa,
					     atop(pa));
#endif
				pmap_sync_flags_pte_86(pg, opte);
			}
			goto enter_now;
		}

		/*
		 * changing PAs: we must remove the old one first
		 */

		/*
		 * if current mapping is on a pvlist,
		 * remove it (sync R/M bits)
		 */

		if (opte & PG_PVLIST) {
			pg = PHYS_TO_VM_PAGE(opte & PG_FRAME);
#ifdef DIAGNOSTIC
			if (pg == NULL)
				panic("pmap_enter_86: PG_PVLIST mapping with "
				      "unmanaged page "
				      "pa = 0x%lx (0x%lx)", pa, atop(pa));
#endif
			pmap_sync_flags_pte_86(pg, opte);
			opve = pmap_remove_pv(pg, pmap, va);
			pg = NULL; /* This is not the page we are looking for */
		}
	} else {	/* opte not valid */
		resident_count++;
		if (wired)
			wired_count++;
		if (ptp)
			ptp_count++;	/* count # of valid entries */
	}

	/*
	 * pve is either NULL or points to a now-free pv_entry structure
	 * (the latter case is if we called pmap_remove_pv above).
	 *
	 * if this entry is to be on a pvlist, enter it now.
	 */

	if (pmap_initialized && pg == NULL)
		pg = PHYS_TO_VM_PAGE(pa);

	if (pg != NULL) {
		if (pve == NULL) {
			pve = opve;
			opve = NULL;
		}
		if (pve == NULL) {
			if (flags & PMAP_CANFAIL) {
				pmap_unmap_ptes_86(pmap);
				error = ENOMEM;
				goto out;
			}
			panic("pmap_enter_86: no pv entries available");
		}
		/* lock pg when adding */
		pmap_enter_pv(pg, pve, pmap, va, ptp);
		pve = NULL;
	}

enter_now:
	/*
	 * at this point pg is !NULL if we want the PG_PVLIST bit set
	 */

	npte = pa | protection_codes[prot] | PG_V;
	pmap_exec_account(pmap, va, opte, npte);
	if (wired)
		npte |= PG_W;
	if (nocache)
		npte |= PG_N;
	if (va < VM_MAXUSER_ADDRESS)
		npte |= PG_u;
	else if (va < VM_MAX_ADDRESS)
		npte |= PG_RW;	/* XXXCDC: no longer needed? */
	if (pmap == pmap_kernel())
		npte |= pmap_pg_g;
	if (flags & PROT_READ)
		npte |= PG_U;
	if (flags & PROT_WRITE)
		npte |= PG_M;
	if (pg) {
		npte |= PG_PVLIST;
		if (pg->pg_flags & PG_PMAP_WC) {
			KASSERT(nocache == 0);
			wc = TRUE;
		}
		pmap_sync_flags_pte_86(pg, npte);
	}
	if (wc)
		npte |= pmap_pg_wc;

	opte = i386_atomic_testset_ul(&ptes[atop(va)], npte);
	if (ptp)
		ptp->wire_count += ptp_count;
	pmap->pm_stats.resident_count += resident_count;
	pmap->pm_stats.wired_count += wired_count;

	if (pmap_valid_entry(opte)) {
		if (nocache && (opte & PG_N) == 0)
			wbinvd(); /* XXX clflush before we enter? */
		pmap_tlb_shootpage(pmap, va);
	}

	pmap_unmap_ptes_86(pmap);
	pmap_tlb_shootwait();

	error = 0;

out:
	if (pve)
		pool_put(&pmap_pv_pool, pve);
	if (opve)
		pool_put(&pmap_pv_pool, opve);

	return error;
}

/*
 * pmap_growkernel: increase usage of KVM space
 *
 * => we allocate new PTPs for the kernel and install them in all
 *	the pmaps on the system.
 */

vaddr_t
pmap_growkernel_86(vaddr_t maxkvaddr)
{
	struct pmap *kpm = pmap_kernel(), *pm;
	int needed_kpde;   /* needed number of kernel PTPs */
	int s;
	paddr_t ptaddr;

	needed_kpde = (int)(maxkvaddr - VM_MIN_KERNEL_ADDRESS + (NBPD-1))
		/ NBPD;
	if (needed_kpde <= nkpde)
		goto out;		/* we are OK */

	/*
	 * whoops!   we need to add kernel PTPs
	 */

	s = splhigh();	/* to be safe */

	for (/*null*/ ; nkpde < needed_kpde ; nkpde++) {

		if (uvm.page_init_done == FALSE) {

			/*
			 * we're growing the kernel pmap early (from
			 * uvm_pageboot_alloc()).  this case must be
			 * handled a little differently.
			 */

			if (uvm_page_physget(&ptaddr) == FALSE)
				panic("pmap_growkernel: out of memory");
			pmap_zero_phys_86(ptaddr);

			PDE(kpm, PDSLOT_KERN + nkpde) =
				ptaddr | PG_RW | PG_V | PG_U | PG_M;

			/* count PTP as resident */
			kpm->pm_stats.resident_count++;
			continue;
		}

		/*
		 * THIS *MUST* BE CODED SO AS TO WORK IN THE
		 * pmap_initialized == FALSE CASE!  WE MAY BE
		 * INVOKED WHILE pmap_init() IS RUNNING!
		 */

		while (!pmap_alloc_ptp_86(kpm, PDSLOT_KERN + nkpde, 0))
			uvm_wait("pmap_growkernel");

		/* distribute new kernel PTP to all active pmaps */
		LIST_FOREACH(pm, &pmaps, pm_list) {
			PDE(pm, PDSLOT_KERN + nkpde) =
				PDE(kpm, PDSLOT_KERN + nkpde);
		}
	}

	splx(s);

out:
	return (VM_MIN_KERNEL_ADDRESS + (nkpde * NBPD));
}

#ifdef MULTIPROCESSOR
/*
 * Locking for tlb shootdown.
 *
 * We lock by setting tlb_shoot_wait to the number of cpus that will
 * receive our tlb shootdown. After sending the IPIs, we don't need to
 * worry about locking order or interrupts spinning for the lock because
 * the call that grabs the "lock" isn't the one that releases it. And
 * there is nothing that can block the IPI that releases the lock.
 *
 * The functions are organized so that we first count the number of
 * cpus we need to send the IPI to, then we grab the counter, then
 * we send the IPIs, then we finally do our own shootdown.
 *
 * Our shootdown is last to make it parallel with the other cpus
 * to shorten the spin time.
 *
 * Notice that we depend on failures to send IPIs only being able to
 * happen during boot. If they happen later, the above assumption
 * doesn't hold since we can end up in situations where noone will
 * release the lock if we get an interrupt in a bad moment.
 */

volatile int tlb_shoot_wait;

volatile vaddr_t tlb_shoot_addr1;
volatile vaddr_t tlb_shoot_addr2;

void
pmap_tlb_shootpage(struct pmap *pm, vaddr_t va)
{
	struct cpu_info *ci, *self = curcpu();
	CPU_INFO_ITERATOR cii;
	int wait = 0;
	u_int64_t mask = 0;

	CPU_INFO_FOREACH(cii, ci) {
		if (ci == self || !pmap_is_active(pm, ci) ||
		    !(ci->ci_flags & CPUF_RUNNING))
			continue;
		mask |= (1ULL << ci->ci_cpuid);
		wait++;
	}

	if (wait > 0) {
		int s = splvm();

		while (atomic_cas_uint(&tlb_shoot_wait, 0, wait) != 0) {
			while (tlb_shoot_wait != 0)
				SPINLOCK_SPIN_HOOK;
		}
		tlb_shoot_addr1 = va;
		CPU_INFO_FOREACH(cii, ci) {
			if ((mask & (1ULL << ci->ci_cpuid)) == 0)
				continue;
			if (i386_fast_ipi(ci, LAPIC_IPI_INVLPG) != 0)
				panic("pmap_tlb_shootpage: ipi failed");
		}
		splx(s);
	}

	if (pmap_is_curpmap(pm))
		pmap_update_pg(va);
}

void
pmap_tlb_shootrange(struct pmap *pm, vaddr_t sva, vaddr_t eva)
{
	struct cpu_info *ci, *self = curcpu();
	CPU_INFO_ITERATOR cii;
	int wait = 0;
	u_int64_t mask = 0;
	vaddr_t va;

	CPU_INFO_FOREACH(cii, ci) {
		if (ci == self || !pmap_is_active(pm, ci) ||
		    !(ci->ci_flags & CPUF_RUNNING))
			continue;
		mask |= (1ULL << ci->ci_cpuid);
		wait++;
	}

	if (wait > 0) {
		int s = splvm();

		while (atomic_cas_uint(&tlb_shoot_wait, 0, wait) != 0) {
			while (tlb_shoot_wait != 0)
				SPINLOCK_SPIN_HOOK;
		}
		tlb_shoot_addr1 = sva;
		tlb_shoot_addr2 = eva;
		CPU_INFO_FOREACH(cii, ci) {
			if ((mask & (1ULL << ci->ci_cpuid)) == 0)
				continue;
			if (i386_fast_ipi(ci, LAPIC_IPI_INVLRANGE) != 0)
				panic("pmap_tlb_shootrange: ipi failed");
		}
		splx(s);
	}

	if (pmap_is_curpmap(pm))
		for (va = sva; va < eva; va += PAGE_SIZE)
			pmap_update_pg(va);
}

void
pmap_tlb_shoottlb(void)
{
	struct cpu_info *ci, *self = curcpu();
	CPU_INFO_ITERATOR cii;
	int wait = 0;
	u_int64_t mask = 0;

	CPU_INFO_FOREACH(cii, ci) {
		if (ci == self || !(ci->ci_flags & CPUF_RUNNING))
			continue;
		mask |= (1ULL << ci->ci_cpuid);
		wait++;
	}

	if (wait) {
		int s = splvm();

		while (atomic_cas_uint(&tlb_shoot_wait, 0, wait) != 0) {
			while (tlb_shoot_wait != 0)
				SPINLOCK_SPIN_HOOK;
		}

		CPU_INFO_FOREACH(cii, ci) {
			if ((mask & (1ULL << ci->ci_cpuid)) == 0)
				continue;
			if (i386_fast_ipi(ci, LAPIC_IPI_INVLTLB) != 0)
				panic("pmap_tlb_shoottlb: ipi failed");
		}
		splx(s);
	}

	tlbflush();
}

void
pmap_tlb_droppmap(struct pmap *pm)
{
	struct cpu_info *ci, *self = curcpu();
	CPU_INFO_ITERATOR cii;
	int wait = 0;
	u_int64_t mask = 0;

	CPU_INFO_FOREACH(cii, ci) {
		if (ci == self || !(ci->ci_flags & CPUF_RUNNING) ||
		    ci->ci_curpmap != pm)
			continue;
		mask |= (1ULL << ci->ci_cpuid);
		wait++;
	}

	if (wait) {
		int s = splvm();

		while (atomic_cas_uint(&tlb_shoot_wait, 0, wait) != 0) {
			while (tlb_shoot_wait != 0)
				SPINLOCK_SPIN_HOOK;
		}

		CPU_INFO_FOREACH(cii, ci) {
			if ((mask & (1ULL << ci->ci_cpuid)) == 0)
				continue;
			if (i386_fast_ipi(ci, LAPIC_IPI_RELOADCR3) != 0)
				panic("pmap_tlb_droppmap: ipi failed");
		}
		splx(s);
	}

	if (self->ci_curpmap == pm)
		pmap_activate(curproc);

	pmap_tlb_shootwait();
}

void
pmap_tlb_shootwait(void)
{
	while (tlb_shoot_wait != 0)
		SPINLOCK_SPIN_HOOK;
}

#else

void
pmap_tlb_shootpage(struct pmap *pm, vaddr_t va)
{
	if (pmap_is_curpmap(pm))
		pmap_update_pg(va);

}

void
pmap_tlb_shootrange(struct pmap *pm, vaddr_t sva, vaddr_t eva)
{
	vaddr_t va;

	for (va = sva; va < eva; va += PAGE_SIZE)
		pmap_update_pg(va);	
}

void
pmap_tlb_shoottlb(void)
{
	tlbflush();
}
#endif /* MULTIPROCESSOR */

u_int32_t	(*pmap_pte_set_p)(vaddr_t, paddr_t, u_int32_t) =
    pmap_pte_set_86;
u_int32_t	(*pmap_pte_setbits_p)(vaddr_t, u_int32_t, u_int32_t) =
    pmap_pte_setbits_86;
u_int32_t	(*pmap_pte_bits_p)(vaddr_t) = pmap_pte_bits_86;
paddr_t		(*pmap_pte_paddr_p)(vaddr_t) = pmap_pte_paddr_86;
boolean_t	(*pmap_clear_attrs_p)(struct vm_page *, int) =
    pmap_clear_attrs_86;
int		(*pmap_enter_p)(pmap_t, vaddr_t, paddr_t, vm_prot_t, int) =
    pmap_enter_86;
boolean_t	(*pmap_extract_p)(pmap_t, vaddr_t, paddr_t *) =
    pmap_extract_86;
vaddr_t		(*pmap_growkernel_p)(vaddr_t) = pmap_growkernel_86;
void		(*pmap_page_remove_p)(struct vm_page *) = pmap_page_remove_86;
void		(*pmap_do_remove_p)(struct pmap *, vaddr_t, vaddr_t, int) =
    pmap_do_remove_86;
boolean_t	 (*pmap_test_attrs_p)(struct vm_page *, int) =
    pmap_test_attrs_86;
void		(*pmap_unwire_p)(struct pmap *, vaddr_t) = pmap_unwire_86;
void		(*pmap_write_protect_p)(struct pmap *, vaddr_t, vaddr_t,
    vm_prot_t) = pmap_write_protect_86;
void		(*pmap_pinit_pd_p)(pmap_t) = pmap_pinit_pd_86;
void		(*pmap_zero_phys_p)(paddr_t) = pmap_zero_phys_86;
boolean_t	(*pmap_zero_page_uncached_p)(paddr_t) =
    pmap_zero_page_uncached_86;
void		(*pmap_copy_page_p)(struct vm_page *, struct vm_page *) =
    pmap_copy_page_86;