1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
|
/* $OpenBSD: pmap.h,v 1.51 2009/02/05 01:13:21 oga Exp $ */
/* $NetBSD: pmap.h,v 1.44 2000/04/24 17:18:18 thorpej Exp $ */
/*
*
* Copyright (c) 1997 Charles D. Cranor and Washington University.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgment:
* This product includes software developed by Charles D. Cranor and
* Washington University.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* pmap.h: see pmap.c for the history of this pmap module.
*/
#ifndef _I386_PMAP_H_
#define _I386_PMAP_H_
#include <machine/cpufunc.h>
#include <machine/pte.h>
#include <machine/segments.h>
#include <uvm/uvm_pglist.h>
#include <uvm/uvm_object.h>
/*
* See pte.h for a description of i386 MMU terminology and hardware
* interface.
*
* A pmap describes a process' 4GB virtual address space. This
* virtual address space can be broken up into 1024 4MB regions which
* are described by PDEs in the PDP. The PDEs are defined as follows:
*
* Ranges are inclusive -> exclusive, just like vm_map_entry start/end.
* The following assumes that KERNBASE is 0xd0000000.
*
* PDE#s VA range Usage
* 0->831 0x0 -> 0xcfc00000 user address space, note that the
* max user address is 0xcfbfe000
* the final two pages in the last 4MB
* used to be reserved for the UAREA
* but now are no longer used.
* 831 0xcfc00000-> recursive mapping of PDP (used for
* 0xd0000000 linear mapping of PTPs).
* 832->1023 0xd0000000-> kernel address space (constant
* 0xffc00000 across all pmaps/processes).
* 1023 0xffc00000-> "alternate" recursive PDP mapping
* <end> (for other pmaps).
*
*
* Note: A recursive PDP mapping provides a way to map all the PTEs for
* a 4GB address space into a linear chunk of virtual memory. In other
* words, the PTE for page 0 is the first int mapped into the 4MB recursive
* area. The PTE for page 1 is the second int. The very last int in the
* 4MB range is the PTE that maps VA 0xffffe000 (the last page in a 4GB
* address).
*
* All pmaps' PDs must have the same values in slots 832->1023 so that
* the kernel is always mapped in every process. These values are loaded
* into the PD at pmap creation time.
*
* At any one time only one pmap can be active on a processor. This is
* the pmap whose PDP is pointed to by processor register %cr3. This pmap
* will have all its PTEs mapped into memory at the recursive mapping
* point (slot #831 as show above). When the pmap code wants to find the
* PTE for a virtual address, all it has to do is the following:
*
* Address of PTE = (831 * 4MB) + (VA / NBPG) * sizeof(pt_entry_t)
* = 0xcfc00000 + (VA / 4096) * 4
*
* What happens if the pmap layer is asked to perform an operation
* on a pmap that is not the one which is currently active? In that
* case we take the PA of the PDP of non-active pmap and put it in
* slot 1023 of the active pmap. This causes the non-active pmap's
* PTEs to get mapped in the final 4MB of the 4GB address space
* (e.g. starting at 0xffc00000).
*
* The following figure shows the effects of the recursive PDP mapping:
*
* PDP (%cr3)
* +----+
* | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
* | |
* | |
* | 831| -> points back to PDP (%cr3) mapping VA 0xcfc00000 -> 0xd0000000
* | 832| -> first kernel PTP (maps 0xd0000000 -> 0xe0400000)
* | |
* |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
* +----+
*
* Note that the PDE#831 VA (0xcfc00000) is defined as "PTE_BASE".
* Note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE".
*
* Starting at VA 0xcfc00000 the current active PDP (%cr3) acts as a
* PTP:
*
* PTP#831 == PDP(%cr3) => maps VA 0xcfc00000 -> 0xd0000000
* +----+
* | 0| -> maps the contents of PTP#0 at VA 0xcfc00000->0xcfc01000
* | |
* | |
* | 831| -> maps the contents of PTP#831 (the PDP) at VA 0xcff3f000
* | 832| -> maps the contents of first kernel PTP
* | |
* |1023|
* +----+
*
* Note that mapping of the PDP at PTP#831's VA (0xcff3f000) is
* defined as "PDP_BASE".... within that mapping there are two
* defines:
* "PDP_PDE" (0xcff3fcfc) is the VA of the PDE in the PDP
* which points back to itself.
* "APDP_PDE" (0xcff3fffc) is the VA of the PDE in the PDP which
* establishes the recursive mapping of the alternate pmap.
* To set the alternate PDP, one just has to put the correct
* PA info in *APDP_PDE.
*
* Note that in the APTE_BASE space, the APDP appears at VA
* "APDP_BASE" (0xfffff000).
*/
/*
* The following defines identify the slots used as described above.
*/
#define PDSLOT_PTE ((KERNBASE/NBPD)-1) /* 831: for recursive PDP map */
#define PDSLOT_KERN (KERNBASE/NBPD) /* 832: start of kernel space */
#define PDSLOT_APTE ((unsigned)1023) /* 1023: alternative recursive slot */
/*
* The following defines give the virtual addresses of various MMU
* data structures:
* PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
* PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD
* PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
*/
#define PTE_BASE ((pt_entry_t *) (PDSLOT_PTE * NBPD) )
#define APTE_BASE ((pt_entry_t *) (PDSLOT_APTE * NBPD) )
#define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * NBPG)))
#define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * NBPG)))
#define PDP_PDE (PDP_BASE + PDSLOT_PTE)
#define APDP_PDE (PDP_BASE + PDSLOT_APTE)
/*
* The following define determines how many PTPs should be set up for the
* kernel by locore.s at boot time. This should be large enough to
* get the VM system running. Once the VM system is running, the
* pmap module can add more PTPs to the kernel area on demand.
*/
#ifndef NKPTP
#define NKPTP 4 /* 16MB to start */
#endif
#define NKPTP_MIN 4 /* smallest value we allow */
#define NKPTP_MAX (1024 - (KERNBASE/NBPD) - 1)
/* largest value (-1 for APTP space) */
/*
* various address macros
*
* vtopte: return a pointer to the PTE mapping a VA
* kvtopte: same as above (takes a KVA, but doesn't matter with this pmap)
* ptetov: given a pointer to a PTE, return the VA that it maps
* vtophys: translate a VA to the PA mapped to it
*
* plus alternative versions of the above
*/
#define vtopte(VA) (PTE_BASE + atop(VA))
#define kvtopte(VA) vtopte(VA)
#define ptetov(PT) (ptoa(PT - PTE_BASE))
#define vtophys(VA) ((*vtopte(VA) & PG_FRAME) | \
((unsigned)(VA) & ~PG_FRAME))
#define avtopte(VA) (APTE_BASE + atop(VA))
#define ptetoav(PT) (ptoa(PT - APTE_BASE))
#define avtophys(VA) ((*avtopte(VA) & PG_FRAME) | \
((unsigned)(VA) & ~PG_FRAME))
/*
* pdei/ptei: generate index into PDP/PTP from a VA
*/
#define pdei(VA) (((VA) & PD_MASK) >> PDSHIFT)
#define ptei(VA) (((VA) & PT_MASK) >> PGSHIFT)
/*
* PTP macros:
* A PTP's index is the PD index of the PDE that points to it.
* A PTP's offset is the byte-offset in the PTE space that this PTP is at.
* A PTP's VA is the first VA mapped by that PTP.
*
* Note that NBPG == number of bytes in a PTP (4096 bytes == 1024 entries)
* NBPD == number of bytes a PTP can map (4MB)
*/
#define ptp_i2o(I) ((I) * NBPG) /* index => offset */
#define ptp_o2i(O) ((O) / NBPG) /* offset => index */
#define ptp_i2v(I) ((I) * NBPD) /* index => VA */
#define ptp_v2i(V) ((V) / NBPD) /* VA => index (same as pdei) */
/*
* PG_AVAIL usage: we make use of the ignored bits of the PTE
*/
#define PG_W PG_AVAIL1 /* "wired" mapping */
#define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
#define PG_X PG_AVAIL3 /* executable mapping */
/*
* Number of PTE's per cache line. 4 byte pte, 32-byte cache line
* Used to avoid false sharing of cache lines.
*/
#define NPTECL 8
#ifdef _KERNEL
/*
* pmap data structures: see pmap.c for details of locking.
*/
struct pmap;
typedef struct pmap *pmap_t;
/*
* We maintain a list of all non-kernel pmaps.
*/
LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
/*
* The pmap structure
*
* Note that the pm_obj contains the simple_lock, the reference count,
* page list, and number of PTPs within the pmap.
*/
struct pmap {
struct uvm_object pm_obj; /* object (lck by object lock) */
#define pm_lock pm_obj.vmobjlock
LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */
paddr_t pm_pdirpa; /* PA of PD (read-only after create) */
struct vm_page *pm_ptphint; /* pointer to a PTP in our pmap */
struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */
vaddr_t pm_hiexec; /* highest executable mapping */
int pm_flags; /* see below */
struct segment_descriptor pm_codeseg; /* cs descriptor for process */
union descriptor *pm_ldt; /* user-set LDT */
int pm_ldt_len; /* number of LDT entries */
int pm_ldt_sel; /* LDT selector */
uint32_t pm_cpus; /* mask of CPUs using map */
};
/* pm_flags */
#define PMF_USER_LDT 0x01 /* pmap has user-set LDT */
/*
* For each managed physical page we maintain a list of <PMAP,VA>s
* which it is mapped at. The list is headed by a pv_head structure.
* there is one pv_head per managed phys page (allocated at boot time).
* The pv_head structure points to a list of pv_entry structures (each
* describes one mapping).
*/
struct pv_entry { /* locked by its list's pvh_lock */
struct pv_entry *pv_next; /* next entry */
struct pmap *pv_pmap; /* the pmap */
vaddr_t pv_va; /* the virtual address */
struct vm_page *pv_ptp; /* the vm_page of the PTP */
};
/*
* MD flags to pmap_enter:
*/
#define PMAP_NOCACHE PMAP_MD0
/*
* We keep mod/ref flags in struct vm_page->pg_flags.
*/
#define PG_PMAP_MOD PG_PMAP0
#define PG_PMAP_REF PG_PMAP1
/*
* pv_entrys are dynamically allocated in chunks from a single page.
* we keep track of how many pv_entrys are in use for each page and
* we can free pv_entry pages if needed. There is one lock for the
* entire allocation system.
*/
struct pv_page_info {
TAILQ_ENTRY(pv_page) pvpi_list;
struct pv_entry *pvpi_pvfree;
int pvpi_nfree;
};
/*
* number of pv_entries in a pv_page
* (note: won't work on systems where NPBG isn't a constant)
*/
#define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
sizeof(struct pv_entry))
/*
* a pv_page: where pv_entrys are allocated from
*/
struct pv_page {
struct pv_page_info pvinfo;
struct pv_entry pvents[PVE_PER_PVPAGE];
};
/*
* global kernel variables
*/
extern pd_entry_t PTD[];
/* PTDpaddr: is the physical address of the kernel's PDP */
extern u_int32_t PTDpaddr;
extern struct pmap kernel_pmap_store; /* kernel pmap */
extern int nkpde; /* current # of PDEs for kernel */
extern int pmap_pg_g; /* do we support PG_G? */
/*
* Macros
*/
#define pmap_kernel() (&kernel_pmap_store)
#define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
#define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
#define pmap_update(pm) /* nada */
#define pmap_clear_modify(pg) pmap_clear_attrs(pg, PG_M)
#define pmap_clear_reference(pg) pmap_clear_attrs(pg, PG_U)
#define pmap_copy(DP,SP,D,L,S)
#define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M)
#define pmap_is_referenced(pg) pmap_test_attrs(pg, PG_U)
#define pmap_phys_address(ppn) ptoa(ppn)
#define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */
#define pmap_proc_iflush(p,va,len) /* nothing */
#define pmap_unuse_final(p) /* nothing */
#define pmap_remove_holes(map) do { /* nothing */ } while (0)
/*
* Prototypes
*/
void pmap_bootstrap(vaddr_t);
boolean_t pmap_clear_attrs(struct vm_page *, int);
static void pmap_page_protect(struct vm_page *, vm_prot_t);
void pmap_page_remove(struct vm_page *);
static void pmap_protect(struct pmap *, vaddr_t,
vaddr_t, vm_prot_t);
void pmap_remove(struct pmap *, vaddr_t, vaddr_t);
boolean_t pmap_test_attrs(struct vm_page *, int);
void pmap_write_protect(struct pmap *, vaddr_t,
vaddr_t, vm_prot_t);
int pmap_exec_fixup(struct vm_map *, struct trapframe *,
struct pcb *);
vaddr_t reserve_dumppages(vaddr_t); /* XXX: not a pmap fn */
void pmap_tlb_shootpage(struct pmap *, vaddr_t);
void pmap_tlb_shootrange(struct pmap *, vaddr_t, vaddr_t);
void pmap_tlb_shoottlb(void);
#ifdef MULTIPROCESSOR
void pmap_tlb_shootwait(void);
#else
#define pmap_tlb_shootwait()
#endif
void pmap_prealloc_lowmem_ptp(paddr_t);
#define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
/*
* Do idle page zero'ing uncached to avoid polluting the cache.
*/
boolean_t pmap_zero_page_uncached(paddr_t);
#define PMAP_PAGEIDLEZERO(pg) pmap_zero_page_uncached(VM_PAGE_TO_PHYS(pg))
/*
* Inline functions
*/
/*
* pmap_update_pg: flush one page from the TLB (or flush the whole thing
* if hardware doesn't support one-page flushing)
*/
#define pmap_update_pg(va) invlpg((u_int)(va))
/*
* pmap_update_2pg: flush two pages from the TLB
*/
#define pmap_update_2pg(va, vb) { invlpg((u_int)(va)); invlpg((u_int)(vb)); }
/*
* pmap_page_protect: change the protection of all recorded mappings
* of a managed page
*
* => This function is a front end for pmap_page_remove/pmap_clear_attrs
* => We only have to worry about making the page more protected.
* Unprotecting a page is done on-demand at fault time.
*/
__inline static void
pmap_page_protect(pg, prot)
struct vm_page *pg;
vm_prot_t prot;
{
if ((prot & VM_PROT_WRITE) == 0) {
if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
(void) pmap_clear_attrs(pg, PG_RW);
} else {
pmap_page_remove(pg);
}
}
}
/*
* pmap_protect: change the protection of pages in a pmap
*
* => This function is a front end for pmap_remove/pmap_write_protect.
* => We only have to worry about making the page more protected.
* Unprotecting a page is done on-demand at fault time.
*/
__inline static void
pmap_protect(pmap, sva, eva, prot)
struct pmap *pmap;
vaddr_t sva, eva;
vm_prot_t prot;
{
if ((prot & VM_PROT_WRITE) == 0) {
if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
pmap_write_protect(pmap, sva, eva, prot);
} else {
pmap_remove(pmap, sva, eva);
}
}
}
#if defined(USER_LDT)
void pmap_ldt_cleanup(struct proc *);
#define PMAP_FORK
#endif /* USER_LDT */
#endif /* _KERNEL */
#endif /* _I386_PMAP_H_ */
|