1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
|
/* $OpenBSD: clock.c,v 1.67 2023/08/23 01:55:46 cheloha Exp $ */
/* $NetBSD: clock.c,v 1.39 1996/05/12 23:11:54 mycroft Exp $ */
/*-
* Copyright (c) 1993, 1994 Charles Hannum.
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz and Don Ahn.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)clock.c 7.2 (Berkeley) 5/12/91
*/
/*
* Mach Operating System
* Copyright (c) 1991,1990,1989 Carnegie Mellon University
* All Rights Reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
/*
Copyright 1988, 1989 by Intel Corporation, Santa Clara, California.
All Rights Reserved
Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appears in all
copies and that both the copyright notice and this permission notice
appear in supporting documentation, and that the name of Intel
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
INTEL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS,
IN NO EVENT SHALL INTEL BE LIABLE FOR ANY SPECIAL, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT,
NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Primitive clock interrupt routines.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/clockintr.h>
#include <sys/timeout.h>
#include <sys/timetc.h>
#include <sys/mutex.h>
#include <machine/intr.h>
#include <machine/pio.h>
#include <machine/cpufunc.h>
#include <dev/clock_subr.h>
#include <dev/isa/isareg.h>
#include <dev/isa/isavar.h>
#include <dev/ic/mc146818reg.h>
#include <dev/ic/i8253reg.h>
#include <i386/isa/nvram.h>
void spinwait(int);
int clockintr(void *);
int gettick(void);
int rtcget(mc_todregs *);
void rtcput(mc_todregs *);
int rtcintr(void *);
void rtcdrain(void *);
int calibrate_cyclecounter_ctr(void);
u_int mc146818_read(void *, u_int);
void mc146818_write(void *, u_int, u_int);
int cpuspeed;
int clock_broken_latch;
/* Timecounter on the i8254 */
uint32_t i8254_lastcount;
uint32_t i8254_offset;
int i8254_ticked;
u_int i8254_get_timecount(struct timecounter *tc);
u_int i8254_simple_get_timecount(struct timecounter *tc);
static struct timecounter i8254_timecounter = {
.tc_get_timecount = i8254_get_timecount,
.tc_counter_mask = ~0u,
.tc_frequency = TIMER_FREQ,
.tc_name = "i8254",
.tc_quality = 0,
.tc_priv = NULL,
.tc_user = 0,
};
struct mutex timer_mutex = MUTEX_INITIALIZER(IPL_HIGH);
u_long rtclock_tval;
#define SECMIN ((unsigned)60) /* seconds per minute */
#define SECHOUR ((unsigned)(60*SECMIN)) /* seconds per hour */
u_int
mc146818_read(void *sc, u_int reg)
{
int s;
u_char v;
s = splhigh();
outb(IO_RTC, reg);
DELAY(1);
v = inb(IO_RTC+1);
DELAY(1);
splx(s);
return (v);
}
void
mc146818_write(void *sc, u_int reg, u_int datum)
{
int s;
s = splhigh();
outb(IO_RTC, reg);
DELAY(1);
outb(IO_RTC+1, datum);
DELAY(1);
splx(s);
}
void
startclocks(void)
{
int s;
mtx_enter(&timer_mutex);
rtclock_tval = TIMER_DIV(hz);
i8254_startclock();
mtx_leave(&timer_mutex);
/* Check diagnostic status */
if ((s = mc146818_read(NULL, NVRAM_DIAG)) != 0) /* XXX softc */
printf("RTC BIOS diagnostic error %b\n", (unsigned int) s,
NVRAM_DIAG_BITS);
}
void
rtcdrain(void *v)
{
struct timeout *to = (struct timeout *)v;
if (to != NULL)
timeout_del(to);
/* Drain any un-acknowledged RTC interrupts. */
while (mc146818_read(NULL, MC_REGC) & MC_REGC_PF)
; /* Nothing. */
}
int
clockintr(void *frame)
{
if (timecounter->tc_get_timecount == i8254_get_timecount) {
if (i8254_ticked) {
i8254_ticked = 0;
} else {
i8254_offset += rtclock_tval;
i8254_lastcount = 0;
}
}
clockintr_dispatch(frame);
return (1);
}
int
rtcintr(void *frame)
{
u_int stat = 0;
/*
* If rtcintr is 'late', next intr may happen immediately.
* Get them all. (Also, see comment in cpu_initclocks().)
*/
while (mc146818_read(NULL, MC_REGC) & MC_REGC_PF)
stat = 1;
/* XXX Can rtcintr() run before i8254_initclocks() is complete? */
if (stathz != 0 && stat)
clockintr_dispatch(frame);
return (stat);
}
int
gettick(void)
{
u_long s;
if (clock_broken_latch) {
int v1, v2, v3;
int w1, w2, w3;
/*
* Don't lock the mutex in this case, clock_broken_latch
* CPUs don't do MP anyway.
*/
s = intr_disable();
v1 = inb(IO_TIMER1 + TIMER_CNTR0);
v1 |= inb(IO_TIMER1 + TIMER_CNTR0) << 8;
v2 = inb(IO_TIMER1 + TIMER_CNTR0);
v2 |= inb(IO_TIMER1 + TIMER_CNTR0) << 8;
v3 = inb(IO_TIMER1 + TIMER_CNTR0);
v3 |= inb(IO_TIMER1 + TIMER_CNTR0) << 8;
intr_restore(s);
if (v1 >= v2 && v2 >= v3 && v1 - v3 < 0x200)
return (v2);
#define _swap_val(a, b) do { \
int c = a; \
a = b; \
b = c; \
} while (0)
/* sort v1 v2 v3 */
if (v1 < v2)
_swap_val(v1, v2);
if (v2 < v3)
_swap_val(v2, v3);
if (v1 < v2)
_swap_val(v1, v2);
/* compute the middle value */
if (v1 - v3 < 0x200)
return (v2);
w1 = v2 - v3;
w2 = v3 - v1 + TIMER_DIV(hz);
w3 = v1 - v2;
if (w1 >= w2) {
if (w1 >= w3)
return (v1);
} else {
if (w2 >= w3)
return (v2);
}
return (v3);
} else {
u_char lo, hi;
mtx_enter(&timer_mutex);
s = intr_disable();
/* Select counter 0 and latch it. */
outb(IO_TIMER1 + TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
lo = inb(IO_TIMER1 + TIMER_CNTR0);
hi = inb(IO_TIMER1 + TIMER_CNTR0);
intr_restore(s);
mtx_leave(&timer_mutex);
return ((hi << 8) | lo);
}
}
/*
* Wait "n" microseconds.
* Relies on timer 1 counting down from (TIMER_FREQ / hz) at TIMER_FREQ Hz.
* Note: timer had better have been programmed before this is first used!
* (Note that we use `rate generator' mode, which counts at 1:1; `square
* wave' mode counts at 2:1).
*/
void
i8254_delay(int n)
{
int limit, tick, otick;
/*
* Read the counter first, so that the rest of the setup overhead is
* counted.
*/
otick = gettick();
#ifdef __GNUC__
/*
* Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
* we can take advantage of the intermediate 64-bit quantity to prevent
* loss of significance.
*/
n -= 5;
if (n < 0)
return;
__asm volatile("mul %2\n\tdiv %3"
: "=a" (n)
: "0" (n), "r" (TIMER_FREQ), "r" (1000000)
: "%edx", "cc");
#else
/*
* Calculate ((n * TIMER_FREQ) / 1e6) without using floating point and
* without any avoidable overflows.
*/
n -= 20;
{
int sec = n / 1000000,
usec = n % 1000000;
n = sec * TIMER_FREQ +
usec * (TIMER_FREQ / 1000000) +
usec * ((TIMER_FREQ % 1000000) / 1000) / 1000 +
usec * (TIMER_FREQ % 1000) / 1000000;
}
#endif
limit = TIMER_FREQ / hz;
while (n > 0) {
tick = gettick();
if (tick > otick)
n -= limit - (tick - otick);
else
n -= otick - tick;
otick = tick;
}
}
int
calibrate_cyclecounter_ctr(void)
{
struct cpu_info *ci = curcpu();
unsigned long long count, last_count, msr;
if ((ci->ci_flags & CPUF_CONST_TSC) == 0 ||
(cpu_perf_eax & CPUIDEAX_VERID) <= 1 ||
CPUIDEDX_NUM_FC(cpu_perf_edx) <= 1)
return (-1);
msr = rdmsr(MSR_PERF_FIXED_CTR_CTRL);
if (msr & MSR_PERF_FIXED_CTR_FC(1, MSR_PERF_FIXED_CTR_FC_MASK)) {
/* some hypervisor is dicking us around */
return (-1);
}
msr |= MSR_PERF_FIXED_CTR_FC(1, MSR_PERF_FIXED_CTR_FC_1);
wrmsr(MSR_PERF_FIXED_CTR_CTRL, msr);
msr = rdmsr(MSR_PERF_GLOBAL_CTRL) | MSR_PERF_GLOBAL_CTR1_EN;
wrmsr(MSR_PERF_GLOBAL_CTRL, msr);
last_count = rdmsr(MSR_PERF_FIXED_CTR1);
delay(1000000);
count = rdmsr(MSR_PERF_FIXED_CTR1);
msr = rdmsr(MSR_PERF_FIXED_CTR_CTRL);
msr &= MSR_PERF_FIXED_CTR_FC(1, MSR_PERF_FIXED_CTR_FC_MASK);
wrmsr(MSR_PERF_FIXED_CTR_CTRL, msr);
msr = rdmsr(MSR_PERF_GLOBAL_CTRL);
msr &= ~MSR_PERF_GLOBAL_CTR1_EN;
wrmsr(MSR_PERF_GLOBAL_CTRL, msr);
cpuspeed = ((count - last_count) + 999999) / 1000000;
return (cpuspeed == 0 ? -1 : 0);
}
void
calibrate_cyclecounter(void)
{
unsigned long long count, last_count;
if (calibrate_cyclecounter_ctr() == 0)
return;
__asm volatile("rdtsc" : "=A" (last_count));
delay(1000000);
__asm volatile("rdtsc" : "=A" (count));
cpuspeed = ((count - last_count) + 999999) / 1000000;
}
void
i8254_initclocks(void)
{
i8254_inittimecounter(); /* hook the interrupt-based i8254 tc */
stathz = 128;
profhz = 1024; /* XXX does not divide into 1 billion */
clockintr_init(0);
}
void
i8254_start_both_clocks(void)
{
clockintr_cpu_init(NULL);
/*
* When using i8254 for clock, we also use the rtc for profclock.
*
* These IRQs are not MP-safe, but it is harmless to lie about it
* because we cannot reach this point unless we are only booting
* a single CPU.
*/
(void)isa_intr_establish(NULL, 0, IST_PULSE, IPL_CLOCK | IPL_MPSAFE,
clockintr, 0, "clock");
(void)isa_intr_establish(NULL, 8, IST_PULSE, IPL_STATCLOCK | IPL_MPSAFE,
rtcintr, 0, "rtc");
rtcstart(); /* start the mc146818 clock */
}
void
rtcstart(void)
{
static struct timeout rtcdrain_timeout;
mc146818_write(NULL, MC_REGA, MC_BASE_32_KHz | MC_RATE_128_Hz);
mc146818_write(NULL, MC_REGB, MC_REGB_24HR | MC_REGB_PIE);
/*
* On a number of i386 systems, the rtc will fail to start when booting
* the system. This is due to us missing to acknowledge an interrupt
* during early stages of the boot process. If we do not acknowledge
* the interrupt, the rtc clock will not generate further interrupts.
* To solve this, once interrupts are enabled, use a timeout (once)
* to drain any un-acknowledged rtc interrupt(s).
*/
timeout_set(&rtcdrain_timeout, rtcdrain, (void *)&rtcdrain_timeout);
timeout_add(&rtcdrain_timeout, 1);
}
void
rtcstop(void)
{
mc146818_write(NULL, MC_REGB, MC_REGB_24HR);
}
int
rtcget(mc_todregs *regs)
{
if ((mc146818_read(NULL, MC_REGD) & MC_REGD_VRT) == 0) /* XXX softc */
return (-1);
MC146818_GETTOD(NULL, regs); /* XXX softc */
return (0);
}
void
rtcput(mc_todregs *regs)
{
MC146818_PUTTOD(NULL, regs); /* XXX softc */
}
int
bcdtobin(int n)
{
return (((n >> 4) & 0x0f) * 10 + (n & 0x0f));
}
int
bintobcd(int n)
{
return ((u_char)(((n / 10) << 4) & 0xf0) | ((n % 10) & 0x0f));
}
/*
* check whether the CMOS layout is "standard"-like (ie, not PS/2-like),
* to be called at splclock()
*/
int cmoscheck(void);
int
cmoscheck(void)
{
int i;
unsigned short cksum = 0;
for (i = 0x10; i <= 0x2d; i++)
cksum += mc146818_read(NULL, i); /* XXX softc */
return (cksum == (mc146818_read(NULL, 0x2e) << 8)
+ mc146818_read(NULL, 0x2f));
}
/*
* patchable to control century byte handling:
* 1: always update
* -1: never touch
* 0: try to figure out itself
*/
int rtc_update_century = 0;
/*
* Expand a two-digit year as read from the clock chip
* into full width.
* Being here, deal with the CMOS century byte.
*/
int clock_expandyear(int);
int
clock_expandyear(int clockyear)
{
int s, clockcentury, cmoscentury;
clockcentury = (clockyear < 70) ? 20 : 19;
clockyear += 100 * clockcentury;
if (rtc_update_century < 0)
return (clockyear);
s = splclock();
if (cmoscheck())
cmoscentury = mc146818_read(NULL, NVRAM_CENTURY);
else
cmoscentury = 0;
splx(s);
if (!cmoscentury) {
#ifdef DIAGNOSTIC
printf("clock: unknown CMOS layout\n");
#endif
return (clockyear);
}
cmoscentury = bcdtobin(cmoscentury);
if (cmoscentury != clockcentury) {
/* XXX note: saying "century is 20" might confuse the naive. */
printf("WARNING: NVRAM century is %d but RTC year is %d\n",
cmoscentury, clockyear);
/* Kludge to roll over century. */
if ((rtc_update_century > 0) ||
((cmoscentury == 19) && (clockcentury == 20) &&
(clockyear == 2000))) {
printf("WARNING: Setting NVRAM century to %d\n",
clockcentury);
s = splclock();
mc146818_write(NULL, NVRAM_CENTURY,
bintobcd(clockcentury));
splx(s);
}
} else if (cmoscentury == 19 && rtc_update_century == 0)
rtc_update_century = 1; /* will update later in resettodr() */
return (clockyear);
}
int
rtcgettime(struct todr_chip_handle *handle, struct timeval *tv)
{
mc_todregs rtclk;
struct clock_ymdhms dt;
int s;
s = splclock();
if (rtcget(&rtclk)) {
splx(s);
return EINVAL;
}
splx(s);
#ifdef CLOCK_DEBUG
printf("readclock: %x/%x/%x %x:%x:%x\n", rtclk[MC_YEAR],
rtclk[MC_MONTH], rtclk[MC_DOM], rtclk[MC_HOUR], rtclk[MC_MIN],
rtclk[MC_SEC]);
#endif
dt.dt_sec = bcdtobin(rtclk[MC_SEC]);
dt.dt_min = bcdtobin(rtclk[MC_MIN]);
dt.dt_hour = bcdtobin(rtclk[MC_HOUR]);
dt.dt_day = bcdtobin(rtclk[MC_DOM]);
dt.dt_mon = bcdtobin(rtclk[MC_MONTH]);
dt.dt_year = clock_expandyear(bcdtobin(rtclk[MC_YEAR]));
tv->tv_sec = clock_ymdhms_to_secs(&dt) - utc_offset;
tv->tv_usec = 0;
return 0;
}
int
rtcsettime(struct todr_chip_handle *handle, struct timeval *tv)
{
mc_todregs rtclk;
struct clock_ymdhms dt;
int century, s;
s = splclock();
if (rtcget(&rtclk))
memset(&rtclk, 0, sizeof(rtclk));
splx(s);
clock_secs_to_ymdhms(tv->tv_sec + utc_offset, &dt);
rtclk[MC_SEC] = bintobcd(dt.dt_sec);
rtclk[MC_MIN] = bintobcd(dt.dt_min);
rtclk[MC_HOUR] = bintobcd(dt.dt_hour);
rtclk[MC_DOW] = dt.dt_wday + 1;
rtclk[MC_YEAR] = bintobcd(dt.dt_year % 100);
rtclk[MC_MONTH] = bintobcd(dt.dt_mon);
rtclk[MC_DOM] = bintobcd(dt.dt_day);
#ifdef CLOCK_DEBUG
printf("setclock: %x/%x/%x %x:%x:%x\n", rtclk[MC_YEAR], rtclk[MC_MONTH],
rtclk[MC_DOM], rtclk[MC_HOUR], rtclk[MC_MIN], rtclk[MC_SEC]);
#endif
s = splclock();
rtcput(&rtclk);
if (rtc_update_century > 0) {
century = bintobcd(dt.dt_year / 100);
mc146818_write(NULL, NVRAM_CENTURY, century); /* XXX softc */
}
splx(s);
return 0;
}
struct todr_chip_handle rtc_todr;
void
rtcinit(void)
{
rtc_todr.todr_gettime = rtcgettime;
rtc_todr.todr_settime = rtcsettime;
rtc_todr.todr_quality = 0;
todr_attach(&rtc_todr);
}
void
setstatclockrate(int arg)
{
if (initclock_func == i8254_initclocks) {
if (arg == stathz)
mc146818_write(NULL, MC_REGA,
MC_BASE_32_KHz | MC_RATE_128_Hz);
else
mc146818_write(NULL, MC_REGA,
MC_BASE_32_KHz | MC_RATE_1024_Hz);
}
}
void
i8254_inittimecounter(void)
{
tc_init(&i8254_timecounter);
}
/*
* If we're using lapic to drive hardclock, we can use a simpler
* algorithm for the i8254 timecounters.
*/
void
i8254_inittimecounter_simple(void)
{
i8254_timecounter.tc_get_timecount = i8254_simple_get_timecount;
i8254_timecounter.tc_counter_mask = 0x7fff;
i8254_timecounter.tc_frequency = TIMER_FREQ;
mtx_enter(&timer_mutex);
rtclock_tval = 0x8000;
i8254_startclock();
mtx_leave(&timer_mutex);
tc_init(&i8254_timecounter);
}
void
i8254_startclock(void)
{
u_long tval = rtclock_tval;
outb(IO_TIMER1 + TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
outb(IO_TIMER1 + TIMER_CNTR0, tval & 0xff);
outb(IO_TIMER1 + TIMER_CNTR0, tval >> 8);
}
u_int
i8254_simple_get_timecount(struct timecounter *tc)
{
return (rtclock_tval - gettick());
}
u_int
i8254_get_timecount(struct timecounter *tc)
{
u_char hi, lo;
u_int count;
u_long s;
s = intr_disable();
outb(IO_TIMER1 + TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
lo = inb(IO_TIMER1 + TIMER_CNTR0);
hi = inb(IO_TIMER1 + TIMER_CNTR0);
count = rtclock_tval - ((hi << 8) | lo);
if (count < i8254_lastcount) {
i8254_ticked = 1;
i8254_offset += rtclock_tval;
}
i8254_lastcount = count;
count += i8254_offset;
intr_restore(s);
return (count);
}
|