summaryrefslogtreecommitdiff
path: root/sys/arch/i386/isa/npx.c
blob: 46d7f3476f89d987f64a1e43f8d346274c8bc301 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
/*	$NetBSD: npx.c,v 1.53 1996/01/07 02:00:31 mycroft Exp $	*/

#if 0
#define iprintf(x)	printf x
#else
#define	iprintf(x)
#endif

/*-
 * Copyright (c) 1994, 1995 Charles M. Hannum.  All rights reserved.
 * Copyright (c) 1990 William Jolitz.
 * Copyright (c) 1991 The Regents of the University of California.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)npx.c	7.2 (Berkeley) 5/12/91
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/ioctl.h>
#include <sys/device.h>

#include <machine/cpu.h>
#include <machine/pio.h>
#include <machine/cpufunc.h>
#include <machine/pcb.h>
#include <machine/trap.h>
#include <machine/specialreg.h>

#include <dev/isa/isareg.h>
#include <dev/isa/isavar.h>
#include <i386/isa/icu.h>

/*
 * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
 *
 * We do lazy initialization and switching using the TS bit in cr0 and the
 * MDP_USEDFPU bit in mdproc.
 *
 * DNA exceptions are handled like this:
 *
 * 1) If there is no NPX, return and go to the emulator.
 * 2) If someone else has used the NPX, save its state into that process's PCB.
 * 3a) If MDP_USEDFPU is not set, set it and initialize the NPX.
 * 3b) Otherwise, reload the process's previous NPX state.
 *
 * When a process is created or exec()s, its saved cr0 image has the TS bit
 * set and the MDP_USEDFPU bit clear.  The MDP_USEDFPU bit is set when the
 * process first gets a DNA and the NPX is initialized.  The TS bit is turned
 * off when the NPX is used, and turned on again later when the process's NPX
 * state is saved.
 */

#define	fldcw(addr)		__asm("fldcw %0" : : "m" (*addr))
#define	fnclex()		__asm("fnclex")
#define	fninit()		__asm("fninit")
#define	fnsave(addr)		__asm("fnsave %0" : "=m" (*addr))
#define	fnstcw(addr)		__asm("fnstcw %0" : "=m" (*addr))
#define	fnstsw(addr)		__asm("fnstsw %0" : "=m" (*addr))
#define	fp_divide_by_0()	__asm("fldz; fld1; fdiv %st,%st(1); fwait")
#define	frstor(addr)		__asm("frstor %0" : : "m" (*addr))
#define	fwait()			__asm("fwait")
#define	read_eflags()		({register u_long ef; \
				  __asm("pushfl; popl %0" : "=r" (ef)); \
				  ef;})
#define	write_eflags(x)		({register u_long ef = (x); \
				  __asm("pushl %0; popfl" : : "r" (ef));})
#define	clts()			__asm("clts")
#define	stts()			lcr0(rcr0() | CR0_TS)

int npxdna __P((struct proc *));
void npxexit __P((void));
int npxintr __P((void *));
static int npxprobe1 __P((struct isa_attach_args *));
void npxsave __P((void));
static void npxsave1 __P((void));

struct npx_softc {
	struct device sc_dev;
	void *sc_ih;
};

int npxprobe __P((struct device *, void *, void *));
void npxattach __P((struct device *, struct device *, void *));

struct cfdriver npxcd = {
	NULL, "npx", npxprobe, npxattach, DV_DULL, sizeof(struct npx_softc)
};

enum npx_type {
	NPX_NONE = 0,
	NPX_INTERRUPT,
	NPX_EXCEPTION,
	NPX_BROKEN,
};

struct proc	*npxproc;

static	enum npx_type		npx_type;
static	int			npx_nointr;
static	volatile u_int		npx_intrs_while_probing;
static	volatile u_int		npx_traps_while_probing;

/*
 * Special interrupt handlers.  Someday intr0-intr15 will be used to count
 * interrupts.  We'll still need a special exception 16 handler.  The busy
 * latch stuff in probintr() can be moved to npxprobe().
 */
void probeintr __P((void));
asm ("
	.text
_probeintr:
	ss
	incl	_npx_intrs_while_probing
	pushl	%eax
	movb	$0x20,%al	# EOI (asm in strings loses cpp features)
	outb	%al,$0xa0	# IO_ICU2
	outb	%al,$0x20	# IO_ICU1
	movb	$0,%al
	outb	%al,$0xf0	# clear BUSY# latch
	popl	%eax
	iret
");

void probetrap __P((void));
asm ("
	.text
_probetrap:
	ss
	incl	_npx_traps_while_probing
	fnclex
	iret
");

static inline int
npxprobe1(ia)
	struct isa_attach_args *ia;
{
	int control;
	int status;

	ia->ia_iosize = 16;
	ia->ia_msize = 0;

	/*
	 * Finish resetting the coprocessor, if any.  If there is an error
	 * pending, then we may get a bogus IRQ13, but probeintr() will handle
	 * it OK.  Bogus halts have never been observed, but we enabled
	 * IRQ13 and cleared the BUSY# latch early to handle them anyway.
	 */
	fninit();
	delay(1000);		/* wait for any IRQ13 (fwait might hang) */

	/*
	 * Check for a status of mostly zero.
	 */
	status = 0x5a5a;
	fnstsw(&status);
	if ((status & 0xb8ff) == 0) {
		/*
		 * Good, now check for a proper control word.
		 */
		control = 0x5a5a;	
		fnstcw(&control);
		if ((control & 0x1f3f) == 0x033f) {
			/*
			 * We have an npx, now divide by 0 to see if exception
			 * 16 works.
			 */
			control &= ~(1 << 2);	/* enable divide by 0 trap */
			fldcw(&control);
			npx_traps_while_probing = npx_intrs_while_probing = 0;
			fp_divide_by_0();
			if (npx_traps_while_probing != 0) {
				/*
				 * Good, exception 16 works.
				 */
				npx_type = NPX_EXCEPTION;
				ia->ia_irq = IRQUNK;	/* zap the interrupt */
			} else if (npx_intrs_while_probing != 0) {
				/*
				 * Bad, we are stuck with IRQ13.
				 */
				npx_type = NPX_INTERRUPT;
			} else {
				/*
				 * Worse, even IRQ13 is broken.  Use emulator.
				 */
				npx_type = NPX_BROKEN;
				ia->ia_irq = IRQUNK;
			}
			return 1;
		}
	}
	/*
	 * Probe failed.  There is no usable FPU.
	 */
	npx_type = NPX_NONE;
	return 0;
}

/*
 * Probe routine.  Initialize cr0 to give correct behaviour for [f]wait
 * whether the device exists or not (XXX should be elsewhere).  Set flags
 * to tell npxattach() what to do.  Modify device struct if npx doesn't
 * need to use interrupts.  Return 1 if device exists.
 */
int
npxprobe(parent, match, aux)
	struct device *parent;
	void *match, *aux;
{
	struct	isa_attach_args *ia = aux;
	int	irq;
	int	result;
	u_long	save_eflags;
	unsigned save_imen;
	struct	gate_descriptor save_idt_npxintr;
	struct	gate_descriptor save_idt_npxtrap;

	/*
	 * This routine is now just a wrapper for npxprobe1(), to install
	 * special npx interrupt and trap handlers, to enable npx interrupts
	 * and to disable other interrupts.  Someday isa_configure() will
	 * install suitable handlers and run with interrupts enabled so we
	 * won't need to do so much here.
	 */
	irq = NRSVIDT + ia->ia_irq;
	save_eflags = read_eflags();
	disable_intr();
	save_idt_npxintr = idt[irq];
	save_idt_npxtrap = idt[16];
	setgate(&idt[irq], probeintr, 0, SDT_SYS386IGT, SEL_KPL);
	setgate(&idt[16], probetrap, 0, SDT_SYS386TGT, SEL_KPL);
	save_imen = imen;
	imen = ~((1 << IRQ_SLAVE) | (1 << ia->ia_irq));
	SET_ICUS();

	/*
	 * Partially reset the coprocessor, if any.  Some BIOS's don't reset
	 * it after a warm boot.
	 */
	outb(0xf1, 0);		/* full reset on some systems, NOP on others */
	delay(1000);
	outb(0xf0, 0);		/* clear BUSY# latch */

	/*
	 * We set CR0 in locore to trap all ESC and WAIT instructions.
	 * We have to turn off the CR0_EM bit temporarily while probing.
	 */
	lcr0(rcr0() & ~(CR0_EM|CR0_TS));
	enable_intr();
	result = npxprobe1(ia);
	disable_intr();
	lcr0(rcr0() | (CR0_EM|CR0_TS));

	imen = save_imen;
	SET_ICUS();
	idt[irq] = save_idt_npxintr;
	idt[16] = save_idt_npxtrap;
	write_eflags(save_eflags);
	return (result);
}

int npx586bug1 __P((int, int));
asm ("
	.text
_npx586bug1:
	fildl	4(%esp)		# x
	fildl	8(%esp)		# y
	fld	%st(1)
	fdiv	%st(1),%st	# x/y
	fmulp	%st,%st(1)	# (x/y)*y
	fsubrp	%st,%st(1)	# x-(x/y)*y
	pushl	$0
	fistpl	(%esp)
	popl	%eax
	ret
");

/*
 * Attach routine - announce which it is, and wire into system
 */
void
npxattach(parent, self, aux)
	struct device *parent, *self;
	void *aux;
{
	struct npx_softc *sc = (void *)self;
	struct isa_attach_args *ia = aux;

	switch (npx_type) {
	case NPX_INTERRUPT:
		printf("\n");
		lcr0(rcr0() & ~CR0_NE);
		sc->sc_ih = isa_intr_establish(ia->ia_irq, IST_EDGE, IPL_NONE,
		    npxintr, 0, sc->sc_dev.dv_xname);
		break;
	case NPX_EXCEPTION:
		printf(": using exception 16\n");
		break;
	case NPX_BROKEN:
		printf(": error reporting broken; not using\n");
		npx_type = NPX_NONE;
		return;
	}

	lcr0(rcr0() & ~(CR0_EM|CR0_TS));
	fninit();
	if (npx586bug1(4195835, 3145727) != 0)
		printf("WARNING: Pentium FDIV bug detected!\n");
	lcr0(rcr0() | (CR0_TS));
}

/*
 * Record the FPU state and reinitialize it all except for the control word.
 * Then generate a SIGFPE.
 *
 * Reinitializing the state allows naive SIGFPE handlers to longjmp without
 * doing any fixups.
 *
 * XXX there is currently no way to pass the full error state to signal
 * handlers, and if this is a nested interrupt there is no way to pass even
 * a status code!  So there is no way to have a non-naive SIGFPE handler.  At
 * best a handler could do an fninit followed by an fldcw of a static value.
 * fnclex would be of little use because it would leave junk on the FPU stack.
 * Returning from the handler would be even less safe than usual because
 * IRQ13 exception handling makes exceptions even less precise than usual.
 */
int
npxintr(arg)
	void *arg;
{
	register struct proc *p = npxproc;
	register struct save87 *addr;
	struct intrframe *frame = arg;
	int code;

	cnt.v_trap++;
	iprintf(("Intr"));

	if (p == 0 || npx_type == NPX_NONE) {
		/* XXX no %p in stand/printf.c.  Cast to quiet gcc -Wall. */
		printf("npxintr: p = %lx, curproc = %lx, npx_type = %d\n",
		       (u_long) p, (u_long) curproc, npx_type);
		panic("npxintr from nowhere");
	}
	/*
	 * Clear the interrupt latch.
	 */
	outb(0xf0, 0);
	/*
	 * If we're saving, ignore the interrupt.  The FPU will happily
	 * generate another one when we restore the state later.
	 */
	if (npx_nointr != 0)
		return (1);
	/*
	 * Find the address of npxproc's savefpu.  This is not necessarily
	 * the one in curpcb.
	 */
	addr = &p->p_addr->u_pcb.pcb_savefpu;
	/*
	 * Save state.  This does an implied fninit.  It had better not halt
	 * the cpu or we'll hang.
	 */
	fnsave(addr);
	fwait();
	/*
	 * Restore control word (was clobbered by fnsave).
	 */
	fldcw(&addr->sv_env.en_cw);
	fwait();
	/*
	 * Remember the exception status word and tag word.  The current
	 * (almost fninit'ed) fpu state is in the fpu and the exception
	 * state just saved will soon be junk.  However, the implied fninit
	 * doesn't change the error pointers or register contents, and we
	 * preserved the control word and will copy the status and tag
	 * words, so the complete exception state can be recovered.
	 */
	addr->sv_ex_sw = addr->sv_env.en_sw;
	addr->sv_ex_tw = addr->sv_env.en_tw;

	/*
	 * Pass exception to process.  If it's the current process, try to do
	 * it immediately.
	 */
	if (p == curproc && USERMODE(frame->if_cs, frame->if_eflags)) {
		/*
		 * Interrupt is essentially a trap, so we can afford to call
		 * the SIGFPE handler (if any) as soon as the interrupt
		 * returns.
		 *
		 * XXX little or nothing is gained from this, and plenty is
		 * lost - the interrupt frame has to contain the trap frame
		 * (this is otherwise only necessary for the rescheduling trap
		 * in doreti, and the frame for that could easily be set up
		 * just before it is used).
		 */
		p->p_md.md_regs = (struct trapframe *)&frame->if_es;
#ifdef notyet
		/*
		 * Encode the appropriate code for detailed information on
		 * this exception.
		 */
		code = XXX_ENCODE(addr->sv_ex_sw);
#else
		code = 0;	/* XXX */
#endif
		trapsignal(p, SIGFPE, code);
	} else {
		/*
		 * Nested interrupt.  These losers occur when:
		 *	o an IRQ13 is bogusly generated at a bogus time, e.g.:
		 *		o immediately after an fnsave or frstor of an
		 *		  error state.
		 *		o a couple of 386 instructions after
		 *		  "fstpl _memvar" causes a stack overflow.
		 *	  These are especially nasty when combined with a
		 *	  trace trap.
		 *	o an IRQ13 occurs at the same time as another higher-
		 *	  priority interrupt.
		 *
		 * Treat them like a true async interrupt.
		 */
		psignal(p, SIGFPE);
	}

	return (1);
}

/*
 * Wrapper for fnsave instruction to handle h/w bugs.  If there is an error
 * pending, then fnsave generates a bogus IRQ13 on some systems.  Force any
 * IRQ13 to be handled immediately, and then ignore it.
 *
 * This routine is always called at spl0.  If it might called with the NPX
 * interrupt masked, it would be necessary to forcibly unmask the NPX interrupt
 * so that it could succeed.
 */
static inline void
npxsave1()
{
	register struct pcb *pcb;

	npx_nointr = 1;
	pcb = &npxproc->p_addr->u_pcb;
	fnsave(&pcb->pcb_savefpu);
	pcb->pcb_cr0 |= CR0_TS;
	fwait();
	npx_nointr = 0;
}

/*
 * Implement device not available (DNA) exception
 *
 * If the we were the last process to use the FPU, we can simply return.
 * Otherwise, we save the previous state, if necessary, and restore our last
 * saved state.
 */
int
npxdna(p)
	struct proc *p;
{
	static u_short control = __INITIAL_NPXCW__;

	if (npx_type == NPX_NONE) {
		iprintf(("Emul"));
		return (0);
	}

#ifdef DIAGNOSTIC
	if (cpl != 0 || npx_nointr != 0)
		panic("npxdna: masked");
#endif

	p->p_addr->u_pcb.pcb_cr0 &= ~CR0_TS;
	clts();

	if ((p->p_md.md_flags & MDP_USEDFPU) == 0) {
		p->p_md.md_flags |= MDP_USEDFPU;
		iprintf(("Init"));
		if (npxproc != 0 && npxproc != p)
			npxsave1();
		else {
			npx_nointr = 1;
			fninit();
			fwait();
			npx_nointr = 0;
		}
		npxproc = p;
		fldcw(&control);
	} else {
		if (npxproc != 0) {
#ifdef DIAGNOSTIC
			if (npxproc == p)
				panic("npxdna: same process");
#endif
			iprintf(("Save"));
			npxsave1();
		}
		npxproc = p;
		/*
		 * The following frstor may cause an IRQ13 when the state being
		 * restored has a pending error.  The error will appear to have
		 * been triggered by the current (npx) user instruction even
		 * when that instruction is a no-wait instruction that should
		 * not trigger an error (e.g., fnclex).  On at least one 486
		 * system all of the no-wait instructions are broken the same
		 * as frstor, so our treatment does not amplify the breakage.
		 * On at least one 386/Cyrix 387 system, fnclex works correctly
		 * while frstor and fnsave are broken, so our treatment breaks
		 * fnclex if it is the first FPU instruction after a context
		 * switch.
		 */
		frstor(&p->p_addr->u_pcb.pcb_savefpu);
	}

	return (1);
}

/*
 * Drop the current FPU state on the floor.
 */
void
npxdrop()
{

	stts();
	npxproc->p_addr->u_pcb.pcb_cr0 |= CR0_TS;
	npxproc = 0;
}

/*
 * Save npxproc's FPU state.
 *
 * The FNSAVE instruction clears the FPU state.  Rather than reloading the FPU
 * immediately, we clear npxproc and turn on CR0_TS to force a DNA and a reload
 * of the FPU state the next time we try to use it.  This routine is only
 * called when forking or core dump, so this algorithm at worst forces us to
 * trap once per fork(), and at best saves us a reload once per fork().
 */
void
npxsave()
{

#ifdef DIAGNOSTIC
	if (cpl != 0 || npx_nointr != 0)
		panic("npxsave: masked");
#endif
	iprintf(("Fork"));
	clts();
	npxsave1();
	stts();
	npxproc = 0;
}