1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
|
/* $OpenBSD: glxsb.c,v 1.36 2020/05/29 04:42:24 deraadt Exp $ */
/*
* Copyright (c) 2006 Tom Cosgrove <tom@openbsd.org>
* Copyright (c) 2003, 2004 Theo de Raadt
* Copyright (c) 2003 Jason Wright
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Driver for the security block on the AMD Geode LX processors
* http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/timeout.h>
#include <machine/bus.h>
#include <machine/cpufunc.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#ifdef CRYPTO
#include <crypto/cryptodev.h>
#include <crypto/aes.h>
#include <crypto/xform.h>
#include <crypto/cryptosoft.h>
#endif
#define SB_GLD_MSR_CAP 0x58002000 /* RO - Capabilities */
#define SB_GLD_MSR_CONFIG 0x58002001 /* RW - Master Config */
#define SB_GLD_MSR_SMI 0x58002002 /* RW - SMI */
#define SB_GLD_MSR_ERROR 0x58002003 /* RW - Error */
#define SB_GLD_MSR_PM 0x58002004 /* RW - Power Mgmt */
#define SB_GLD_MSR_DIAG 0x58002005 /* RW - Diagnostic */
#define SB_GLD_MSR_CTRL 0x58002006 /* RW - Security Block Cntrl */
/* For GLD_MSR_CTRL: */
#define SB_GMC_DIV0 0x0000 /* AES update divisor values */
#define SB_GMC_DIV1 0x0001
#define SB_GMC_DIV2 0x0002
#define SB_GMC_DIV3 0x0003
#define SB_GMC_DIV_MASK 0x0003
#define SB_GMC_SBI 0x0004 /* AES swap bits */
#define SB_GMC_SBY 0x0008 /* AES swap bytes */
#define SB_GMC_TW 0x0010 /* Time write (EEPROM) */
#define SB_GMC_T_SEL0 0x0000 /* RNG post-proc: none */
#define SB_GMC_T_SEL1 0x0100 /* RNG post-proc: LFSR */
#define SB_GMC_T_SEL2 0x0200 /* RNG post-proc: whitener */
#define SB_GMC_T_SEL3 0x0300 /* RNG LFSR+whitener */
#define SB_GMC_T_SEL_MASK 0x0300
#define SB_GMC_T_NE 0x0400 /* Noise (generator) Enable */
#define SB_GMC_T_TM 0x0800 /* RNG test mode */
/* (deterministic) */
/* Security Block configuration/control registers (offsets from base) */
#define SB_CTL_A 0x0000 /* RW - SB Control A */
#define SB_CTL_B 0x0004 /* RW - SB Control B */
#define SB_AES_INT 0x0008 /* RW - SB AES Interrupt */
#define SB_SOURCE_A 0x0010 /* RW - Source A */
#define SB_DEST_A 0x0014 /* RW - Destination A */
#define SB_LENGTH_A 0x0018 /* RW - Length A */
#define SB_SOURCE_B 0x0020 /* RW - Source B */
#define SB_DEST_B 0x0024 /* RW - Destination B */
#define SB_LENGTH_B 0x0028 /* RW - Length B */
#define SB_WKEY 0x0030 /* WO - Writable Key 0-3 */
#define SB_WKEY_0 0x0030 /* WO - Writable Key 0 */
#define SB_WKEY_1 0x0034 /* WO - Writable Key 1 */
#define SB_WKEY_2 0x0038 /* WO - Writable Key 2 */
#define SB_WKEY_3 0x003C /* WO - Writable Key 3 */
#define SB_CBC_IV 0x0040 /* RW - CBC IV 0-3 */
#define SB_CBC_IV_0 0x0040 /* RW - CBC IV 0 */
#define SB_CBC_IV_1 0x0044 /* RW - CBC IV 1 */
#define SB_CBC_IV_2 0x0048 /* RW - CBC IV 2 */
#define SB_CBC_IV_3 0x004C /* RW - CBC IV 3 */
#define SB_RANDOM_NUM 0x0050 /* RW - Random Number */
#define SB_RANDOM_NUM_STATUS 0x0054 /* RW - Random Number Status */
#define SB_EEPROM_COMM 0x0800 /* RW - EEPROM Command */
#define SB_EEPROM_ADDR 0x0804 /* RW - EEPROM Address */
#define SB_EEPROM_DATA 0x0808 /* RW - EEPROM Data */
#define SB_EEPROM_SEC_STATE 0x080C /* RW - EEPROM Security State */
/* For SB_CTL_A and _B */
#define SB_CTL_ST 0x0001 /* Start operation (enc/dec) */
#define SB_CTL_ENC 0x0002 /* Encrypt (0 is decrypt) */
#define SB_CTL_DEC 0x0000 /* Decrypt */
#define SB_CTL_WK 0x0004 /* Use writable key (we set) */
#define SB_CTL_DC 0x0008 /* Destination coherent */
#define SB_CTL_SC 0x0010 /* Source coherent */
#define SB_CTL_CBC 0x0020 /* CBC (0 is ECB) */
/* For SB_AES_INT */
#define SB_AI_DISABLE_AES_A 0x00001 /* Disable AES A compl int */
#define SB_AI_ENABLE_AES_A 0x00000 /* Enable AES A compl int */
#define SB_AI_DISABLE_AES_B 0x00002 /* Disable AES B compl int */
#define SB_AI_ENABLE_AES_B 0x00000 /* Enable AES B compl int */
#define SB_AI_DISABLE_EEPROM 0x00004 /* Disable EEPROM op comp int */
#define SB_AI_ENABLE_EEPROM 0x00000 /* Enable EEPROM op compl int */
#define SB_AI_AES_A_COMPLETE 0x10000 /* AES A operation complete */
#define SB_AI_AES_B_COMPLETE 0x20000 /* AES B operation complete */
#define SB_AI_EEPROM_COMPLETE 0x40000 /* EEPROM operation complete */
#define SB_RNS_TRNG_VALID 0x0001 /* in SB_RANDOM_NUM_STATUS */
#define SB_MEM_SIZE 0x0810 /* Size of memory block */
#define SB_AES_ALIGN 0x0010 /* Source and dest buffers */
/* must be 16-byte aligned */
#define SB_AES_BLOCK_SIZE 0x0010
/*
* The Geode LX security block AES acceleration doesn't perform scatter-
* gather: it just takes source and destination addresses. Therefore the
* plain- and ciphertexts need to be contiguous. To this end, we allocate
* a buffer for both, and accept the overhead of copying in and out. If
* the number of bytes in one operation is bigger than allowed for by the
* buffer (buffer is twice the size of the max length, as it has both input
* and output) then we have to perform multiple encryptions/decryptions.
*/
#define GLXSB_MAX_AES_LEN 16384
#ifdef CRYPTO
struct glxsb_dma_map {
bus_dmamap_t dma_map;
bus_dma_segment_t dma_seg;
int dma_nsegs;
int dma_size;
caddr_t dma_vaddr;
uint32_t dma_paddr;
};
struct glxsb_session {
uint32_t ses_key[4];
int ses_klen;
int ses_used;
struct swcr_data *ses_swd_auth;
struct swcr_data *ses_swd_enc;
};
#endif /* CRYPTO */
struct glxsb_softc {
struct device sc_dev;
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh;
struct timeout sc_to;
#ifdef CRYPTO
bus_dma_tag_t sc_dmat;
struct glxsb_dma_map sc_dma;
int32_t sc_cid;
int sc_nsessions;
struct glxsb_session *sc_sessions;
#endif /* CRYPTO */
uint64_t save_gld_msr;
};
int glxsb_match(struct device *, void *, void *);
void glxsb_attach(struct device *, struct device *, void *);
int glxsb_activate(struct device *, int);
void glxsb_rnd(void *);
struct cfattach glxsb_ca = {
sizeof(struct glxsb_softc), glxsb_match, glxsb_attach, NULL,
glxsb_activate
};
struct cfdriver glxsb_cd = {
NULL, "glxsb", DV_DULL
};
#ifdef CRYPTO
#define GLXSB_SESSION(sid) ((sid) & 0x0fffffff)
#define GLXSB_SID(crd,ses) (((crd) << 28) | ((ses) & 0x0fffffff))
static struct glxsb_softc *glxsb_sc;
int glxsb_crypto_setup(struct glxsb_softc *);
int glxsb_crypto_newsession(uint32_t *, struct cryptoini *);
int glxsb_crypto_process(struct cryptop *);
int glxsb_crypto_freesession(uint64_t);
static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
uint32_t, void *, int, void *);
int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *);
void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
#endif /* CRYPTO */
int
glxsb_match(struct device *parent, void *match, void *aux)
{
struct pci_attach_args *pa = aux;
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODE_LX_CRYPTO)
return (1);
return (0);
}
void
glxsb_attach(struct device *parent, struct device *self, void *aux)
{
struct glxsb_softc *sc = (void *) self;
struct pci_attach_args *pa = aux;
bus_addr_t membase;
bus_size_t memsize;
uint64_t msr;
#ifdef CRYPTO
uint32_t intr;
#endif
msr = rdmsr(SB_GLD_MSR_CAP);
if ((msr & 0xFFFF00) != 0x130400) {
printf(": unknown ID 0x%x\n", (int) ((msr & 0xFFFF00) >> 16));
return;
}
/* printf(": revision %d", (int) (msr & 0xFF)); */
/* Map in the security block configuration/control registers */
if (pci_mapreg_map(pa, PCI_MAPREG_START,
PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, &sc->sc_iot,
&sc->sc_ioh, &membase, &memsize, SB_MEM_SIZE)) {
printf(": can't find mem space\n");
return;
}
/*
* Configure the Security Block.
*
* We want to enable the noise generator (T_NE), and enable the
* linear feedback shift register and whitener post-processing
* (T_SEL = 3). Also ensure that test mode (deterministic values)
* is disabled.
*/
msr = rdmsr(SB_GLD_MSR_CTRL);
msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
#if 0
msr |= SB_GMC_SBI | SB_GMC_SBY; /* for AES, if necessary */
#endif
wrmsr(SB_GLD_MSR_CTRL, msr);
/* Install a periodic collector for the "true" (AMD's word) RNG */
timeout_set(&sc->sc_to, glxsb_rnd, sc);
glxsb_rnd(sc);
printf(": RNG");
#ifdef CRYPTO
/* We don't have an interrupt handler, so disable completion INTs */
intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |
SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |
SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr);
sc->sc_dmat = pa->pa_dmat;
if (glxsb_crypto_setup(sc))
printf(" AES");
#endif
printf("\n");
}
int
glxsb_activate(struct device *self, int act)
{
struct glxsb_softc *sc = (struct glxsb_softc *)self;
switch (act) {
case DVACT_QUIESCE:
/* XXX should wait for current crypto op to finish */
break;
case DVACT_SUSPEND:
sc->save_gld_msr = rdmsr(SB_GLD_MSR_CTRL);
break;
case DVACT_RESUME:
wrmsr(SB_GLD_MSR_CTRL, sc->save_gld_msr);
break;
}
return (0);
}
void
glxsb_rnd(void *v)
{
struct glxsb_softc *sc = v;
uint32_t status, value;
status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS);
if (status & SB_RNS_TRNG_VALID) {
value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM);
enqueue_randomness(value);
}
timeout_add_msec(&sc->sc_to, 10);
}
#ifdef CRYPTO
int
glxsb_crypto_setup(struct glxsb_softc *sc)
{
int algs[CRYPTO_ALGORITHM_MAX + 1];
/* Allocate a contiguous DMA-able buffer to work in */
if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0)
return 0;
bzero(algs, sizeof(algs));
algs[CRYPTO_AES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_MD5_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_SHA1_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_RIPEMD160_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_SHA2_256_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_SHA2_384_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_SHA2_512_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
sc->sc_cid = crypto_get_driverid(0);
if (sc->sc_cid < 0)
return 0;
crypto_register(sc->sc_cid, algs, glxsb_crypto_newsession,
glxsb_crypto_freesession, glxsb_crypto_process);
sc->sc_nsessions = 0;
glxsb_sc = sc;
return 1;
}
int
glxsb_crypto_newsession(uint32_t *sidp, struct cryptoini *cri)
{
struct glxsb_softc *sc = glxsb_sc;
struct glxsb_session *ses = NULL;
struct auth_hash *axf;
struct enc_xform *txf;
struct cryptoini *c;
struct swcr_data *swd;
int sesn, i;
if (sc == NULL || sidp == NULL || cri == NULL)
return (EINVAL);
for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
if (sc->sc_sessions[sesn].ses_used == 0) {
ses = &sc->sc_sessions[sesn];
break;
}
}
if (ses == NULL) {
sesn = sc->sc_nsessions;
ses = mallocarray(sesn + 1, sizeof(*ses), M_DEVBUF,
M_NOWAIT);
if (ses == NULL)
return (ENOMEM);
if (sesn != 0) {
bcopy(sc->sc_sessions, ses, sesn * sizeof(*ses));
explicit_bzero(sc->sc_sessions, sesn * sizeof(*ses));
free(sc->sc_sessions, M_DEVBUF, sesn * sizeof(*ses));
}
sc->sc_sessions = ses;
ses = &sc->sc_sessions[sesn];
sc->sc_nsessions++;
}
bzero(ses, sizeof(*ses));
ses->ses_used = 1;
for (c = cri; c != NULL; c = c->cri_next) {
switch (c->cri_alg) {
case CRYPTO_AES_CBC:
if (c->cri_klen != 128) {
swd = malloc(sizeof(struct swcr_data),
M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
if (swd == NULL) {
glxsb_crypto_freesession(sesn);
return (ENOMEM);
}
ses->ses_swd_enc = swd;
txf = &enc_xform_aes;
if (txf->ctxsize > 0) {
swd->sw_kschedule =
malloc(txf->ctxsize,
M_CRYPTO_DATA,
M_NOWAIT|M_ZERO);
if (swd->sw_kschedule == NULL) {
glxsb_crypto_freesession(sesn);
return (EINVAL);
}
}
if (txf->setkey(swd->sw_kschedule, c->cri_key,
c->cri_klen / 8) < 0) {
glxsb_crypto_freesession(sesn);
return (EINVAL);
}
swd->sw_exf = txf;
break;
}
ses->ses_klen = c->cri_klen;
/* Copy the key (Geode LX wants the primary key only) */
bcopy(c->cri_key, ses->ses_key, sizeof(ses->ses_key));
break;
case CRYPTO_MD5_HMAC:
axf = &auth_hash_hmac_md5_96;
goto authcommon;
case CRYPTO_SHA1_HMAC:
axf = &auth_hash_hmac_sha1_96;
goto authcommon;
case CRYPTO_RIPEMD160_HMAC:
axf = &auth_hash_hmac_ripemd_160_96;
goto authcommon;
case CRYPTO_SHA2_256_HMAC:
axf = &auth_hash_hmac_sha2_256_128;
goto authcommon;
case CRYPTO_SHA2_384_HMAC:
axf = &auth_hash_hmac_sha2_384_192;
goto authcommon;
case CRYPTO_SHA2_512_HMAC:
axf = &auth_hash_hmac_sha2_512_256;
authcommon:
swd = malloc(sizeof(struct swcr_data), M_CRYPTO_DATA,
M_NOWAIT|M_ZERO);
if (swd == NULL) {
glxsb_crypto_freesession(sesn);
return (ENOMEM);
}
ses->ses_swd_auth = swd;
swd->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA,
M_NOWAIT);
if (swd->sw_ictx == NULL) {
glxsb_crypto_freesession(sesn);
return (ENOMEM);
}
swd->sw_octx = malloc(axf->ctxsize, M_CRYPTO_DATA,
M_NOWAIT);
if (swd->sw_octx == NULL) {
glxsb_crypto_freesession(sesn);
return (ENOMEM);
}
for (i = 0; i < c->cri_klen / 8; i++)
c->cri_key[i] ^= HMAC_IPAD_VAL;
axf->Init(swd->sw_ictx);
axf->Update(swd->sw_ictx, c->cri_key, c->cri_klen / 8);
axf->Update(swd->sw_ictx, hmac_ipad_buffer,
axf->blocksize - (c->cri_klen / 8));
for (i = 0; i < c->cri_klen / 8; i++)
c->cri_key[i] ^= (HMAC_IPAD_VAL ^
HMAC_OPAD_VAL);
axf->Init(swd->sw_octx);
axf->Update(swd->sw_octx, c->cri_key, c->cri_klen / 8);
axf->Update(swd->sw_octx, hmac_opad_buffer,
axf->blocksize - (c->cri_klen / 8));
for (i = 0; i < c->cri_klen / 8; i++)
c->cri_key[i] ^= HMAC_OPAD_VAL;
swd->sw_axf = axf;
swd->sw_alg = c->cri_alg;
break;
default:
glxsb_crypto_freesession(sesn);
return (EINVAL);
}
}
*sidp = GLXSB_SID(0, sesn);
return (0);
}
int
glxsb_crypto_freesession(uint64_t tid)
{
struct glxsb_softc *sc = glxsb_sc;
struct swcr_data *swd;
struct auth_hash *axf;
struct enc_xform *txf;
int sesn;
uint32_t sid = ((uint32_t)tid) & 0xffffffff;
if (sc == NULL)
return (EINVAL);
sesn = GLXSB_SESSION(sid);
if (sesn >= sc->sc_nsessions)
return (EINVAL);
if ((swd = sc->sc_sessions[sesn].ses_swd_enc)) {
txf = swd->sw_exf;
if (swd->sw_kschedule) {
explicit_bzero(swd->sw_kschedule, txf->ctxsize);
free(swd->sw_kschedule, M_CRYPTO_DATA, txf->ctxsize);
}
free(swd, M_CRYPTO_DATA, sizeof(*swd));
}
if ((swd = sc->sc_sessions[sesn].ses_swd_auth)) {
axf = swd->sw_axf;
if (swd->sw_ictx) {
explicit_bzero(swd->sw_ictx, axf->ctxsize);
free(swd->sw_ictx, M_CRYPTO_DATA, axf->ctxsize);
}
if (swd->sw_octx) {
explicit_bzero(swd->sw_octx, axf->ctxsize);
free(swd->sw_octx, M_CRYPTO_DATA, axf->ctxsize);
}
free(swd, M_CRYPTO_DATA, sizeof(*swd));
}
explicit_bzero(&sc->sc_sessions[sesn], sizeof(sc->sc_sessions[sesn]));
return (0);
}
/*
* Must be called at splnet() or higher
*/
static __inline void
glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
uint32_t pdst, void *key, int len, void *iv)
{
uint32_t status;
int i;
if (len & 0xF) {
printf("%s: len must be a multiple of 16 (not %d)\n",
sc->sc_dev.dv_xname, len);
return;
}
/* Set the source */
bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc);
/* Set the destination address */
bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst);
/* Set the data length */
bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len);
/* Set the IV */
if (iv != NULL) {
bus_space_write_region_4(sc->sc_iot, sc->sc_ioh,
SB_CBC_IV, iv, 4);
control |= SB_CTL_CBC;
}
/* Set the key */
bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4);
/* Ask the security block to do it */
bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A,
control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
/*
* Now wait until it is done.
*
* We do a busy wait. Obviously the number of iterations of
* the loop required to perform the AES operation depends upon
* the number of bytes to process.
*
* On a 500 MHz Geode LX we see
*
* length (bytes) typical max iterations
* 16 12
* 64 22
* 256 59
* 1024 212
* 8192 1,537
*
* Since we have a maximum size of operation defined in
* GLXSB_MAX_AES_LEN, we use this constant to decide how long
* to wait. Allow an order of magnitude longer than it should
* really take, just in case.
*/
for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A);
if ((status & SB_CTL_ST) == 0) /* Done */
return;
}
printf("%s: operation failed to complete\n", sc->sc_dev.dv_xname);
}
static int
glxsb_crypto_swauth(struct cryptop *crp, struct cryptodesc *crd,
struct swcr_data *sw, caddr_t buf)
{
int type;
if (crp->crp_flags & CRYPTO_F_IMBUF)
type = CRYPTO_BUF_MBUF;
else
type = CRYPTO_BUF_IOV;
return (swcr_authcompute(crp, crd, sw, buf, type));
}
static int
glxsb_crypto_swenc(struct cryptop *crp, struct cryptodesc *crd,
struct swcr_data *sw, caddr_t buf)
{
int type;
if (crp->crp_flags & CRYPTO_F_IMBUF)
type = CRYPTO_BUF_MBUF;
else
type = CRYPTO_BUF_IOV;
return (swcr_encdec(crd, sw, buf, type));
}
static int
glxsb_crypto_encdec(struct cryptop *crp, struct cryptodesc *crd,
struct glxsb_session *ses, struct glxsb_softc *sc, caddr_t buf)
{
char *op_src, *op_dst;
uint32_t op_psrc, op_pdst;
uint8_t op_iv[SB_AES_BLOCK_SIZE];
int err = 0;
int len, tlen, xlen;
int offset;
uint32_t control;
if (crd == NULL || (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) {
err = EINVAL;
goto out;
}
/* How much of our buffer will we need to use? */
xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
GLXSB_MAX_AES_LEN : crd->crd_len;
/*
* XXX Check if we can have input == output on Geode LX.
* XXX In the meantime, use two separate (adjacent) buffers.
*/
op_src = sc->sc_dma.dma_vaddr;
op_dst = sc->sc_dma.dma_vaddr + xlen;
op_psrc = sc->sc_dma.dma_paddr;
op_pdst = sc->sc_dma.dma_paddr + xlen;
if (crd->crd_flags & CRD_F_ENCRYPT) {
control = SB_CTL_ENC;
if (crd->crd_flags & CRD_F_IV_EXPLICIT)
bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
else
arc4random_buf(op_iv, sizeof(op_iv));
if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
if (crp->crp_flags & CRYPTO_F_IMBUF)
err = m_copyback((struct mbuf *)crp->crp_buf,
crd->crd_inject, sizeof(op_iv), op_iv,
M_NOWAIT);
else if (crp->crp_flags & CRYPTO_F_IOV)
cuio_copyback((struct uio *)crp->crp_buf,
crd->crd_inject, sizeof(op_iv), op_iv);
else
bcopy(op_iv,
crp->crp_buf + crd->crd_inject, sizeof(op_iv));
if (err)
goto out;
}
} else {
control = SB_CTL_DEC;
if (crd->crd_flags & CRD_F_IV_EXPLICIT)
bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
else {
if (crp->crp_flags & CRYPTO_F_IMBUF)
m_copydata((struct mbuf *)crp->crp_buf,
crd->crd_inject, sizeof(op_iv), op_iv);
else if (crp->crp_flags & CRYPTO_F_IOV)
cuio_copydata((struct uio *)crp->crp_buf,
crd->crd_inject, sizeof(op_iv), op_iv);
else
bcopy(crp->crp_buf + crd->crd_inject,
op_iv, sizeof(op_iv));
}
}
offset = 0;
tlen = crd->crd_len;
/* Process the data in GLXSB_MAX_AES_LEN chunks */
while (tlen > 0) {
len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
if (crp->crp_flags & CRYPTO_F_IMBUF)
m_copydata((struct mbuf *)crp->crp_buf,
crd->crd_skip + offset, len, op_src);
else if (crp->crp_flags & CRYPTO_F_IOV)
cuio_copydata((struct uio *)crp->crp_buf,
crd->crd_skip + offset, len, op_src);
else
bcopy(crp->crp_buf + crd->crd_skip + offset, op_src,
len);
glxsb_dma_pre_op(sc, &sc->sc_dma);
glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
len, op_iv);
glxsb_dma_post_op(sc, &sc->sc_dma);
if (crp->crp_flags & CRYPTO_F_IMBUF)
err = m_copyback((struct mbuf *)crp->crp_buf,
crd->crd_skip + offset, len, op_dst, M_NOWAIT);
else if (crp->crp_flags & CRYPTO_F_IOV)
cuio_copyback((struct uio *)crp->crp_buf,
crd->crd_skip + offset, len, op_dst);
else
bcopy(op_dst, crp->crp_buf + crd->crd_skip + offset,
len);
if (err)
break;
offset += len;
tlen -= len;
if (tlen > 0) {
/* Copy out last block for use as next iteration */
if (crd->crd_flags & CRD_F_ENCRYPT)
bcopy(op_dst + len - sizeof(op_iv), op_iv,
sizeof(op_iv));
else
bcopy(op_src + len - sizeof(op_iv), op_iv,
sizeof(op_iv));
}
}
/* All AES processing has now been done. */
explicit_bzero(sc->sc_dma.dma_vaddr, xlen * 2);
out:
return (err);
}
int
glxsb_crypto_process(struct cryptop *crp)
{
struct glxsb_softc *sc = glxsb_sc;
struct glxsb_session *ses;
struct cryptodesc *crd;
int sesn,err = 0;
int s, i;
s = splnet();
if (crp == NULL || crp->crp_callback == NULL) {
err = EINVAL;
goto out;
}
if (crp->crp_ndesc < 1) {
err = EINVAL;
goto out;
}
sesn = GLXSB_SESSION(crp->crp_sid);
if (sesn >= sc->sc_nsessions) {
err = EINVAL;
goto out;
}
ses = &sc->sc_sessions[sesn];
if (ses->ses_used == 0) {
err = EINVAL;
goto out;
}
for (i = 0; i < crp->crp_ndesc; i++) {
crd = &crp->crp_desc[i];
switch (crd->crd_alg) {
case CRYPTO_AES_CBC:
if (ses->ses_swd_enc) {
if ((err = glxsb_crypto_swenc(crp, crd, ses->ses_swd_enc,
crp->crp_buf)) != 0)
goto out;
} else if ((err = glxsb_crypto_encdec(crp, crd, ses, sc,
crp->crp_buf)) != 0)
goto out;
break;
case CRYPTO_MD5_HMAC:
case CRYPTO_SHA1_HMAC:
case CRYPTO_RIPEMD160_HMAC:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
if ((err = glxsb_crypto_swauth(crp, crd, ses->ses_swd_auth,
crp->crp_buf)) != 0)
goto out;
break;
default:
err = EINVAL;
goto out;
}
}
out:
crp->crp_etype = err;
crypto_done(crp);
splx(s);
return (err);
}
int
glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma)
{
int rc;
dma->dma_nsegs = 1;
dma->dma_size = size;
rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size,
0, BUS_DMA_NOWAIT, &dma->dma_map);
if (rc != 0) {
printf("%s: couldn't create DMA map for %d bytes (%d)\n",
sc->sc_dev.dv_xname, size, rc);
goto fail0;
}
rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0,
&dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT);
if (rc != 0) {
printf("%s: couldn't allocate DMA memory of %d bytes (%d)\n",
sc->sc_dev.dv_xname, size, rc);
goto fail1;
}
rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size,
&dma->dma_vaddr, BUS_DMA_NOWAIT);
if (rc != 0) {
printf("%s: couldn't map DMA memory for %d bytes (%d)\n",
sc->sc_dev.dv_xname, size, rc);
goto fail2;
}
rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
size, NULL, BUS_DMA_NOWAIT);
if (rc != 0) {
printf("%s: couldn't load DMA memory for %d bytes (%d)\n",
sc->sc_dev.dv_xname, size, rc);
goto fail3;
}
dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
return 0;
fail3:
bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
fail2:
bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
fail1:
bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
fail0:
return rc;
}
void
glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
{
bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
void
glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
{
bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
}
void
glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
{
bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
}
#endif /* CRYPTO */
|