summaryrefslogtreecommitdiff
path: root/sys/arch/m68k/fpsp/bindec.sa
blob: e38a8766c1d828e33bd0f5c3d3c8c4b8eb022708 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
*	$OpenBSD: bindec.sa,v 1.2 1996/05/29 21:05:24 niklas Exp $
*	$NetBSD: bindec.sa,v 1.3 1994/10/26 07:48:51 cgd Exp $

*	MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
*	M68000 Hi-Performance Microprocessor Division
*	M68040 Software Package 
*
*	M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
*	All rights reserved.
*
*	THE SOFTWARE is provided on an "AS IS" basis and without warranty.
*	To the maximum extent permitted by applicable law,
*	MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
*	INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
*	PARTICULAR PURPOSE and any warranty against infringement with
*	regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
*	and any accompanying written materials. 
*
*	To the maximum extent permitted by applicable law,
*	IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
*	(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
*	PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
*	OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
*	SOFTWARE.  Motorola assumes no responsibility for the maintenance
*	and support of the SOFTWARE.  
*
*	You are hereby granted a copyright license to use, modify, and
*	distribute the SOFTWARE so long as this entire notice is retained
*	without alteration in any modified and/or redistributed versions,
*	and that such modified versions are clearly identified as such.
*	No licenses are granted by implication, estoppel or otherwise
*	under any patents or trademarks of Motorola, Inc.

*
*	bindec.sa 3.4 1/3/91
*
*	bindec
*
*	Description:
*		Converts an input in extended precision format
*		to bcd format.
*
*	Input:
*		a0 points to the input extended precision value
*		value in memory; d0 contains the k-factor sign-extended
*		to 32-bits.  The input may be either normalized,
*		unnormalized, or denormalized.
*
*	Output:	result in the FP_SCR1 space on the stack.
*
*	Saves and Modifies: D2-D7,A2,FP2
*
*	Algorithm:
*
*	A1.	Set RM and size ext;  Set SIGMA = sign of input.  
*		The k-factor is saved for use in d7. Clear the
*		BINDEC_FLG for separating normalized/denormalized
*		input.  If input is unnormalized or denormalized,
*		normalize it.
*
*	A2.	Set X = abs(input).
*
*	A3.	Compute ILOG.
*		ILOG is the log base 10 of the input value.  It is
*		approximated by adding e + 0.f when the original 
*		value is viewed as 2^^e * 1.f in extended precision.  
*		This value is stored in d6.
*
*	A4.	Clr INEX bit.
*		The operation in A3 above may have set INEX2.  
*
*	A5.	Set ICTR = 0;
*		ICTR is a flag used in A13.  It must be set before the 
*		loop entry A6.
*
*	A6.	Calculate LEN.
*		LEN is the number of digits to be displayed.  The
*		k-factor can dictate either the total number of digits,
*		if it is a positive number, or the number of digits
*		after the decimal point which are to be included as
*		significant.  See the 68882 manual for examples.
*		If LEN is computed to be greater than 17, set OPERR in
*		USER_FPSR.  LEN is stored in d4.
*
*	A7.	Calculate SCALE.
*		SCALE is equal to 10^ISCALE, where ISCALE is the number
*		of decimal places needed to insure LEN integer digits
*		in the output before conversion to bcd. LAMBDA is the
*		sign of ISCALE, used in A9. Fp1 contains
*		10^^(abs(ISCALE)) using a rounding mode which is a
*		function of the original rounding mode and the signs
*		of ISCALE and X.  A table is given in the code.
*
*	A8.	Clr INEX; Force RZ.
*		The operation in A3 above may have set INEX2.  
*		RZ mode is forced for the scaling operation to insure
*		only one rounding error.  The grs bits are collected in 
*		the INEX flag for use in A10.
*
*	A9.	Scale X -> Y.
*		The mantissa is scaled to the desired number of
*		significant digits.  The excess digits are collected
*		in INEX2.
*
*	A10.	Or in INEX.
*		If INEX is set, round error occured.  This is
*		compensated for by 'or-ing' in the INEX2 flag to
*		the lsb of Y.
*
*	A11.	Restore original FPCR; set size ext.
*		Perform FINT operation in the user's rounding mode.
*		Keep the size to extended.
*
*	A12.	Calculate YINT = FINT(Y) according to user's rounding
*		mode.  The FPSP routine sintd0 is used.  The output
*		is in fp0.
*
*	A13.	Check for LEN digits.
*		If the int operation results in more than LEN digits,
*		or less than LEN -1 digits, adjust ILOG and repeat from
*		A6.  This test occurs only on the first pass.  If the
*		result is exactly 10^LEN, decrement ILOG and divide
*		the mantissa by 10.
*
*	A14.	Convert the mantissa to bcd.
*		The binstr routine is used to convert the LEN digit 
*		mantissa to bcd in memory.  The input to binstr is
*		to be a fraction; i.e. (mantissa)/10^LEN and adjusted
*		such that the decimal point is to the left of bit 63.
*		The bcd digits are stored in the correct position in 
*		the final string area in memory.
*
*	A15.	Convert the exponent to bcd.
*		As in A14 above, the exp is converted to bcd and the
*		digits are stored in the final string.
*		Test the length of the final exponent string.  If the
*		length is 4, set operr.
*
*	A16.	Write sign bits to final string.
*
*	Implementation Notes:
*
*	The registers are used as follows:
*
*		d0: scratch; LEN input to binstr
*		d1: scratch
*		d2: upper 32-bits of mantissa for binstr
*		d3: scratch;lower 32-bits of mantissa for binstr
*		d4: LEN
*      		d5: LAMBDA/ICTR
*		d6: ILOG
*		d7: k-factor
*		a0: ptr for original operand/final result
*		a1: scratch pointer
*		a2: pointer to FP_X; abs(original value) in ext
*		fp0: scratch
*		fp1: scratch
*		fp2: scratch
*		F_SCR1:
*		F_SCR2:
*		L_SCR1:
*		L_SCR2:
*

BINDEC    IDNT    2,1 Motorola 040 Floating Point Software Package

	include	fpsp.h

	section	8

* Constants in extended precision
LOG2 	dc.l	$3FFD0000,$9A209A84,$FBCFF798,$00000000
LOG2UP1	dc.l	$3FFD0000,$9A209A84,$FBCFF799,$00000000

* Constants in single precision
FONE 	dc.l	$3F800000,$00000000,$00000000,$00000000
FTWO	dc.l	$40000000,$00000000,$00000000,$00000000
FTEN 	dc.l	$41200000,$00000000,$00000000,$00000000
F4933	dc.l	$459A2800,$00000000,$00000000,$00000000

RBDTBL 	dc.b	0,0,0,0
	dc.b	3,3,2,2
	dc.b	3,2,2,3
	dc.b	2,3,3,2

	xref	binstr
	xref	sintdo
	xref	ptenrn,ptenrm,ptenrp

	xdef	bindec
	xdef	sc_mul
bindec:
	movem.l	d2-d7/a2,-(a7)
	fmovem.x fp0-fp2,-(a7)

* A1. Set RM and size ext. Set SIGMA = sign input;
*     The k-factor is saved for use in d7.  Clear BINDEC_FLG for
*     separating  normalized/denormalized input.  If the input
*     is a denormalized number, set the BINDEC_FLG memory word
*     to signal denorm.  If the input is unnormalized, normalize
*     the input and test for denormalized result.  
*
	fmove.l	#rm_mode,FPCR	;set RM and ext
	move.l	(a0),L_SCR2(a6)	;save exponent for sign check
	move.l	d0,d7		;move k-factor to d7
	clr.b	BINDEC_FLG(a6)	;clr norm/denorm flag
	move.w	STAG(a6),d0	;get stag
	andi.w	#$e000,d0	;isolate stag bits
	beq	A2_str		;if zero, input is norm
*
* Normalize the denorm
*
un_de_norm:
	move.w	(a0),d0
	andi.w	#$7fff,d0	;strip sign of normalized exp
	move.l	4(a0),d1
	move.l	8(a0),d2
norm_loop:
	sub.w	#1,d0
	add.l	d2,d2
	addx.l	d1,d1
	tst.l	d1
	bge.b	norm_loop
*
* Test if the normalized input is denormalized
*
	tst.w	d0
	bgt.b	pos_exp		;if greater than zero, it is a norm
	st	BINDEC_FLG(a6)	;set flag for denorm
pos_exp:
	andi.w	#$7fff,d0	;strip sign of normalized exp
	move.w	d0,(a0)
	move.l	d1,4(a0)
	move.l	d2,8(a0)

* A2. Set X = abs(input).
*
A2_str:
	move.l	(a0),FP_SCR2(a6) ; move input to work space
	move.l	4(a0),FP_SCR2+4(a6) ; move input to work space
	move.l	8(a0),FP_SCR2+8(a6) ; move input to work space
	andi.l	#$7fffffff,FP_SCR2(a6) ;create abs(X)

* A3. Compute ILOG.
*     ILOG is the log base 10 of the input value.  It is approx-
*     imated by adding e + 0.f when the original value is viewed
*     as 2^^e * 1.f in extended precision.  This value is stored
*     in d6.
*
* Register usage:
*	Input/Output
*	d0: k-factor/exponent
*	d2: x/x
*	d3: x/x
*	d4: x/x
*	d5: x/x
*	d6: x/ILOG
*	d7: k-factor/Unchanged
*	a0: ptr for original operand/final result
*	a1: x/x
*	a2: x/x
*	fp0: x/float(ILOG)
*	fp1: x/x
*	fp2: x/x
*	F_SCR1:x/x
*	F_SCR2:Abs(X)/Abs(X) with $3fff exponent
*	L_SCR1:x/x
*	L_SCR2:first word of X packed/Unchanged

	tst.b	BINDEC_FLG(a6)	;check for denorm
	beq.b	A3_cont		;if clr, continue with norm
	move.l	#-4933,d6	;force ILOG = -4933
	bra.b	A4_str
A3_cont:
	move.w	FP_SCR2(a6),d0	;move exp to d0
	move.w	#$3fff,FP_SCR2(a6) ;replace exponent with 0x3fff
	fmove.x	FP_SCR2(a6),fp0	;now fp0 has 1.f
	sub.w	#$3fff,d0	;strip off bias
	fadd.w	d0,fp0		;add in exp
	fsub.s	FONE,fp0	;subtract off 1.0
	fbge.w	pos_res		;if pos, branch 
	fmul.x	LOG2UP1,fp0	;if neg, mul by LOG2UP1
	fmove.l	fp0,d6		;put ILOG in d6 as a lword
	bra.b	A4_str		;go move out ILOG
pos_res:
	fmul.x	LOG2,fp0	;if pos, mul by LOG2
	fmove.l	fp0,d6		;put ILOG in d6 as a lword


* A4. Clr INEX bit.
*     The operation in A3 above may have set INEX2.  

A4_str:	
	fmove.l	#0,FPSR		;zero all of fpsr - nothing needed


* A5. Set ICTR = 0;
*     ICTR is a flag used in A13.  It must be set before the 
*     loop entry A6. The lower word of d5 is used for ICTR.

	clr.w	d5		;clear ICTR


* A6. Calculate LEN.
*     LEN is the number of digits to be displayed.  The k-factor
*     can dictate either the total number of digits, if it is
*     a positive number, or the number of digits after the
*     original decimal point which are to be included as
*     significant.  See the 68882 manual for examples.
*     If LEN is computed to be greater than 17, set OPERR in
*     USER_FPSR.  LEN is stored in d4.
*
* Register usage:
*	Input/Output
*	d0: exponent/Unchanged
*	d2: x/x/scratch
*	d3: x/x
*	d4: exc picture/LEN
*	d5: ICTR/Unchanged
*	d6: ILOG/Unchanged
*	d7: k-factor/Unchanged
*	a0: ptr for original operand/final result
*	a1: x/x
*	a2: x/x
*	fp0: float(ILOG)/Unchanged
*	fp1: x/x
*	fp2: x/x
*	F_SCR1:x/x
*	F_SCR2:Abs(X) with $3fff exponent/Unchanged
*	L_SCR1:x/x
*	L_SCR2:first word of X packed/Unchanged

A6_str:	
	tst.l	d7		;branch on sign of k
	ble.b	k_neg		;if k <= 0, LEN = ILOG + 1 - k
	move.l	d7,d4		;if k > 0, LEN = k
	bra.b	len_ck		;skip to LEN check
k_neg:
	move.l	d6,d4		;first load ILOG to d4
	sub.l	d7,d4		;subtract off k
	addq.l	#1,d4		;add in the 1
len_ck:
	tst.l	d4		;LEN check: branch on sign of LEN
	ble.b	LEN_ng		;if neg, set LEN = 1
	cmp.l	#17,d4		;test if LEN > 17
	ble.b	A7_str		;if not, forget it
	move.l	#17,d4		;set max LEN = 17
	tst.l	d7		;if negative, never set OPERR
	ble.b	A7_str		;if positive, continue
	or.l	#opaop_mask,USER_FPSR(a6) ;set OPERR & AIOP in USER_FPSR
	bra.b	A7_str		;finished here
LEN_ng:
	moveq.l	#1,d4		;min LEN is 1


* A7. Calculate SCALE.
*     SCALE is equal to 10^ISCALE, where ISCALE is the number
*     of decimal places needed to insure LEN integer digits
*     in the output before conversion to bcd. LAMBDA is the sign
*     of ISCALE, used in A9.  Fp1 contains 10^^(abs(ISCALE)) using
*     the rounding mode as given in the following table (see
*     Coonen, p. 7.23 as ref.; however, the SCALE variable is
*     of opposite sign in bindec.sa from Coonen).
*
*	Initial					USE
*	FPCR[6:5]	LAMBDA	SIGN(X)		FPCR[6:5]
*	----------------------------------------------
*	 RN	00	   0	   0		00/0	RN
*	 RN	00	   0	   1		00/0	RN
*	 RN	00	   1	   0		00/0	RN
*	 RN	00	   1	   1		00/0	RN
*	 RZ	01	   0	   0		11/3	RP
*	 RZ	01	   0	   1		11/3	RP
*	 RZ	01	   1	   0		10/2	RM
*	 RZ	01	   1	   1		10/2	RM
*	 RM	10	   0	   0		11/3	RP
*	 RM	10	   0	   1		10/2	RM
*	 RM	10	   1	   0		10/2	RM
*	 RM	10	   1	   1		11/3	RP
*	 RP	11	   0	   0		10/2	RM
*	 RP	11	   0	   1		11/3	RP
*	 RP	11	   1	   0		11/3	RP
*	 RP	11	   1	   1		10/2	RM
*
* Register usage:
*	Input/Output
*	d0: exponent/scratch - final is 0
*	d2: x/0 or 24 for A9
*	d3: x/scratch - offset ptr into PTENRM array
*	d4: LEN/Unchanged
*	d5: 0/ICTR:LAMBDA
*	d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))
*	d7: k-factor/Unchanged
*	a0: ptr for original operand/final result
*	a1: x/ptr to PTENRM array
*	a2: x/x
*	fp0: float(ILOG)/Unchanged
*	fp1: x/10^ISCALE
*	fp2: x/x
*	F_SCR1:x/x
*	F_SCR2:Abs(X) with $3fff exponent/Unchanged
*	L_SCR1:x/x
*	L_SCR2:first word of X packed/Unchanged

A7_str:	
	tst.l	d7		;test sign of k
	bgt.b	k_pos		;if pos and > 0, skip this
	cmp.l	d6,d7		;test k - ILOG
	blt.b	k_pos		;if ILOG >= k, skip this
	move.l	d7,d6		;if ((k<0) & (ILOG < k)) ILOG = k
k_pos:	
	move.l	d6,d0		;calc ILOG + 1 - LEN in d0
	addq.l	#1,d0		;add the 1
	sub.l	d4,d0		;sub off LEN
	swap	d5		;use upper word of d5 for LAMBDA
	clr.w	d5		;set it zero initially
	clr.w	d2		;set up d2 for very small case
	tst.l	d0		;test sign of ISCALE
	bge.b	iscale		;if pos, skip next inst
	addq.w	#1,d5		;if neg, set LAMBDA true
	cmp.l	#$ffffecd4,d0	;test iscale <= -4908
	bgt.b	no_inf		;if false, skip rest
	addi.l	#24,d0		;add in 24 to iscale
	move.l	#24,d2		;put 24 in d2 for A9
no_inf:	
	neg.l	d0		;and take abs of ISCALE
iscale:	
	fmove.s	FONE,fp1	;init fp1 to 1
	bfextu	USER_FPCR(a6){26:2},d1 ;get initial rmode bits
	add.w	d1,d1		;put them in bits 2:1
	add.w	d5,d1		;add in LAMBDA
	add.w	d1,d1		;put them in bits 3:1
	tst.l	L_SCR2(a6)	;test sign of original x
	bge.b	x_pos		;if pos, don't set bit 0
	addq.l	#1,d1		;if neg, set bit 0
x_pos:
	lea.l	RBDTBL,a2	;load rbdtbl base
	move.b	(a2,d1),d3	;load d3 with new rmode
	lsl.l	#4,d3		;put bits in proper position
	fmove.l	d3,fpcr		;load bits into fpu
	lsr.l	#4,d3		;put bits in proper position
	tst.b	d3		;decode new rmode for pten table
	bne.b	not_rn		;if zero, it is RN
	lea.l	PTENRN,a1	;load a1 with RN table base
	bra.b	rmode		;exit decode
not_rn:
	lsr.b	#1,d3		;get lsb in carry
	bcc.b	not_rp		;if carry clear, it is RM
	lea.l	PTENRP,a1	;load a1 with RP table base
	bra.b	rmode		;exit decode
not_rp:
	lea.l	PTENRM,a1	;load a1 with RM table base
rmode:
	clr.l	d3		;clr table index
e_loop:	
	lsr.l	#1,d0		;shift next bit into carry
	bcc.b	e_next		;if zero, skip the mul
	fmul.x	(a1,d3),fp1	;mul by 10**(d3_bit_no)
e_next:	
	add.l	#12,d3		;inc d3 to next pwrten table entry
	tst.l	d0		;test if ISCALE is zero
	bne.b	e_loop		;if not, loop


* A8. Clr INEX; Force RZ.
*     The operation in A3 above may have set INEX2.  
*     RZ mode is forced for the scaling operation to insure
*     only one rounding error.  The grs bits are collected in 
*     the INEX flag for use in A10.
*
* Register usage:
*	Input/Output

	fmove.l	#0,FPSR		;clr INEX 
	fmove.l	#rz_mode,FPCR	;set RZ rounding mode


* A9. Scale X -> Y.
*     The mantissa is scaled to the desired number of significant
*     digits.  The excess digits are collected in INEX2. If mul,
*     Check d2 for excess 10 exponential value.  If not zero, 
*     the iscale value would have caused the pwrten calculation
*     to overflow.  Only a negative iscale can cause this, so
*     multiply by 10^(d2), which is now only allowed to be 24,
*     with a multiply by 10^8 and 10^16, which is exact since
*     10^24 is exact.  If the input was denormalized, we must
*     create a busy stack frame with the mul command and the
*     two operands, and allow the fpu to complete the multiply.
*
* Register usage:
*	Input/Output
*	d0: FPCR with RZ mode/Unchanged
*	d2: 0 or 24/unchanged
*	d3: x/x
*	d4: LEN/Unchanged
*	d5: ICTR:LAMBDA
*	d6: ILOG/Unchanged
*	d7: k-factor/Unchanged
*	a0: ptr for original operand/final result
*	a1: ptr to PTENRM array/Unchanged
*	a2: x/x
*	fp0: float(ILOG)/X adjusted for SCALE (Y)
*	fp1: 10^ISCALE/Unchanged
*	fp2: x/x
*	F_SCR1:x/x
*	F_SCR2:Abs(X) with $3fff exponent/Unchanged
*	L_SCR1:x/x
*	L_SCR2:first word of X packed/Unchanged

A9_str:	
	fmove.x	(a0),fp0	;load X from memory
	fabs.x	fp0		;use abs(X)
	tst.w	d5		;LAMBDA is in lower word of d5
	bne.b	sc_mul		;if neg (LAMBDA = 1), scale by mul
	fdiv.x	fp1,fp0		;calculate X / SCALE -> Y to fp0
	bra.b	A10_st		;branch to A10

sc_mul:
	tst.b	BINDEC_FLG(a6)	;check for denorm
	beq.b	A9_norm		;if norm, continue with mul
	fmovem.x fp1,-(a7)	;load ETEMP with 10^ISCALE
	move.l	8(a0),-(a7)	;load FPTEMP with input arg
	move.l	4(a0),-(a7)
	move.l	(a0),-(a7)
	move.l	#18,d3		;load count for busy stack
A9_loop:
	clr.l	-(a7)		;clear lword on stack
	dbf.w	d3,A9_loop	
	move.b	VER_TMP(a6),(a7) ;write current version number
	move.b	#BUSY_SIZE-4,1(a7) ;write current busy size 
	move.b	#$10,$44(a7)	;set fcefpte[15] bit
	move.w	#$0023,$40(a7)	;load cmdreg1b with mul command
	move.b	#$fe,$8(a7)	;load all 1s to cu savepc
	frestore (a7)+		;restore frame to fpu for completion
	fmul.x	36(a1),fp0	;multiply fp0 by 10^8
	fmul.x	48(a1),fp0	;multiply fp0 by 10^16
	bra.b	A10_st
A9_norm:
	tst.w	d2		;test for small exp case
	beq.b	A9_con		;if zero, continue as normal
	fmul.x	36(a1),fp0	;multiply fp0 by 10^8
	fmul.x	48(a1),fp0	;multiply fp0 by 10^16
A9_con:
	fmul.x	fp1,fp0		;calculate X * SCALE -> Y to fp0


* A10. Or in INEX.
*      If INEX is set, round error occured.  This is compensated
*      for by 'or-ing' in the INEX2 flag to the lsb of Y.
*
* Register usage:
*	Input/Output
*	d0: FPCR with RZ mode/FPSR with INEX2 isolated
*	d2: x/x
*	d3: x/x
*	d4: LEN/Unchanged
*	d5: ICTR:LAMBDA
*	d6: ILOG/Unchanged
*	d7: k-factor/Unchanged
*	a0: ptr for original operand/final result
*	a1: ptr to PTENxx array/Unchanged
*	a2: x/ptr to FP_SCR2(a6)
*	fp0: Y/Y with lsb adjusted
*	fp1: 10^ISCALE/Unchanged
*	fp2: x/x

A10_st:	
	fmove.l	FPSR,d0		;get FPSR
	fmove.x	fp0,FP_SCR2(a6)	;move Y to memory
	lea.l	FP_SCR2(a6),a2	;load a2 with ptr to FP_SCR2
	btst.l	#9,d0		;check if INEX2 set
	beq.b	A11_st		;if clear, skip rest
	ori.l	#1,8(a2)	;or in 1 to lsb of mantissa
	fmove.x	FP_SCR2(a6),fp0	;write adjusted Y back to fpu


* A11. Restore original FPCR; set size ext.
*      Perform FINT operation in the user's rounding mode.  Keep
*      the size to extended.  The sintdo entry point in the sint
*      routine expects the FPCR value to be in USER_FPCR for
*      mode and precision.  The original FPCR is saved in L_SCR1.

A11_st:	
	move.l	USER_FPCR(a6),L_SCR1(a6) ;save it for later
	andi.l	#$00000030,USER_FPCR(a6) ;set size to ext, 
*					;block exceptions


* A12. Calculate YINT = FINT(Y) according to user's rounding mode.
*      The FPSP routine sintd0 is used.  The output is in fp0.
*
* Register usage:
*	Input/Output
*	d0: FPSR with AINEX cleared/FPCR with size set to ext
*	d2: x/x/scratch
*	d3: x/x
*	d4: LEN/Unchanged
*	d5: ICTR:LAMBDA/Unchanged
*	d6: ILOG/Unchanged
*	d7: k-factor/Unchanged
*	a0: ptr for original operand/src ptr for sintdo
*	a1: ptr to PTENxx array/Unchanged
*	a2: ptr to FP_SCR2(a6)/Unchanged
*	a6: temp pointer to FP_SCR2(a6) - orig value saved and restored
*	fp0: Y/YINT
*	fp1: 10^ISCALE/Unchanged
*	fp2: x/x
*	F_SCR1:x/x
*	F_SCR2:Y adjusted for inex/Y with original exponent
*	L_SCR1:x/original USER_FPCR
*	L_SCR2:first word of X packed/Unchanged

A12_st:
	movem.l	d0-d1/a0-a1,-(a7)	;save regs used by sintd0	
	move.l	L_SCR1(a6),-(a7)
	move.l	L_SCR2(a6),-(a7)
	lea.l	FP_SCR2(a6),a0		;a0 is ptr to F_SCR2(a6)
	fmove.x	fp0,(a0)		;move Y to memory at FP_SCR2(a6)
	tst.l	L_SCR2(a6)		;test sign of original operand
	bge.b	do_fint			;if pos, use Y 
	or.l	#$80000000,(a0)		;if neg, use -Y
do_fint:
	move.l	USER_FPSR(a6),-(a7)
	bsr	sintdo			;sint routine returns int in fp0
	move.b	(a7),USER_FPSR(a6)
	add.l	#4,a7
	move.l	(a7)+,L_SCR2(a6)
	move.l	(a7)+,L_SCR1(a6)
	movem.l	(a7)+,d0-d1/a0-a1	;restore regs used by sint	
	move.l	L_SCR2(a6),FP_SCR2(a6)	;restore original exponent
	move.l	L_SCR1(a6),USER_FPCR(a6) ;restore user's FPCR


* A13. Check for LEN digits.
*      If the int operation results in more than LEN digits,
*      or less than LEN -1 digits, adjust ILOG and repeat from
*      A6.  This test occurs only on the first pass.  If the
*      result is exactly 10^LEN, decrement ILOG and divide
*      the mantissa by 10.  The calculation of 10^LEN cannot
*      be inexact, since all powers of ten upto 10^27 are exact
*      in extended precision, so the use of a previous power-of-ten
*      table will introduce no error.
*
*
* Register usage:
*	Input/Output
*	d0: FPCR with size set to ext/scratch final = 0
*	d2: x/x
*	d3: x/scratch final = x
*	d4: LEN/LEN adjusted
*	d5: ICTR:LAMBDA/LAMBDA:ICTR
*	d6: ILOG/ILOG adjusted
*	d7: k-factor/Unchanged
*	a0: pointer into memory for packed bcd string formation
*	a1: ptr to PTENxx array/Unchanged
*	a2: ptr to FP_SCR2(a6)/Unchanged
*	fp0: int portion of Y/abs(YINT) adjusted
*	fp1: 10^ISCALE/Unchanged
*	fp2: x/10^LEN
*	F_SCR1:x/x
*	F_SCR2:Y with original exponent/Unchanged
*	L_SCR1:original USER_FPCR/Unchanged
*	L_SCR2:first word of X packed/Unchanged

A13_st:	
	swap	d5		;put ICTR in lower word of d5
	tst.w	d5		;check if ICTR = 0
	bne	not_zr		;if non-zero, go to second test
*
* Compute 10^(LEN-1)
*
	fmove.s	FONE,fp2	;init fp2 to 1.0
	move.l	d4,d0		;put LEN in d0
	subq.l	#1,d0		;d0 = LEN -1
	clr.l	d3		;clr table index
l_loop:	
	lsr.l	#1,d0		;shift next bit into carry
	bcc.b	l_next		;if zero, skip the mul
	fmul.x	(a1,d3),fp2	;mul by 10**(d3_bit_no)
l_next:
	add.l	#12,d3		;inc d3 to next pwrten table entry
	tst.l	d0		;test if LEN is zero
	bne.b	l_loop		;if not, loop
*
* 10^LEN-1 is computed for this test and A14.  If the input was
* denormalized, check only the case in which YINT > 10^LEN.
*
	tst.b	BINDEC_FLG(a6)	;check if input was norm
	beq.b	A13_con		;if norm, continue with checking
	fabs.x	fp0		;take abs of YINT
	bra	test_2
*
* Compare abs(YINT) to 10^(LEN-1) and 10^LEN
*
A13_con:
	fabs.x	fp0		;take abs of YINT
	fcmp.x	fp2,fp0		;compare abs(YINT) with 10^(LEN-1)
	fbge.w	test_2		;if greater, do next test
	subq.l	#1,d6		;subtract 1 from ILOG
	move.w	#1,d5		;set ICTR
	fmove.l	#rm_mode,FPCR	;set rmode to RM
	fmul.s	FTEN,fp2	;compute 10^LEN 
	bra.w	A6_str		;return to A6 and recompute YINT
test_2:
	fmul.s	FTEN,fp2	;compute 10^LEN
	fcmp.x	fp2,fp0		;compare abs(YINT) with 10^LEN
	fblt.w	A14_st		;if less, all is ok, go to A14
	fbgt.w	fix_ex		;if greater, fix and redo
	fdiv.s	FTEN,fp0	;if equal, divide by 10
	addq.l	#1,d6		; and inc ILOG
	bra.b	A14_st		; and continue elsewhere
fix_ex:
	addq.l	#1,d6		;increment ILOG by 1
	move.w	#1,d5		;set ICTR
	fmove.l	#rm_mode,FPCR	;set rmode to RM
	bra.w	A6_str		;return to A6 and recompute YINT
*
* Since ICTR <> 0, we have already been through one adjustment, 
* and shouldn't have another; this is to check if abs(YINT) = 10^LEN
* 10^LEN is again computed using whatever table is in a1 since the
* value calculated cannot be inexact.
*
not_zr:
	fmove.s	FONE,fp2	;init fp2 to 1.0
	move.l	d4,d0		;put LEN in d0
	clr.l	d3		;clr table index
z_loop:
	lsr.l	#1,d0		;shift next bit into carry
	bcc.b	z_next		;if zero, skip the mul
	fmul.x	(a1,d3),fp2	;mul by 10**(d3_bit_no)
z_next:
	add.l	#12,d3		;inc d3 to next pwrten table entry
	tst.l	d0		;test if LEN is zero
	bne.b	z_loop		;if not, loop
	fabs.x	fp0		;get abs(YINT)
	fcmp.x	fp2,fp0		;check if abs(YINT) = 10^LEN
	fbne.w	A14_st		;if not, skip this
	fdiv.s	FTEN,fp0	;divide abs(YINT) by 10
	addq.l	#1,d6		;and inc ILOG by 1
	addq.l	#1,d4		; and inc LEN
	fmul.s	FTEN,fp2	; if LEN++, the get 10^^LEN


* A14. Convert the mantissa to bcd.
*      The binstr routine is used to convert the LEN digit 
*      mantissa to bcd in memory.  The input to binstr is
*      to be a fraction; i.e. (mantissa)/10^LEN and adjusted
*      such that the decimal point is to the left of bit 63.
*      The bcd digits are stored in the correct position in 
*      the final string area in memory.
*
*
* Register usage:
*	Input/Output
*	d0: x/LEN call to binstr - final is 0
*	d1: x/0
*	d2: x/ms 32-bits of mant of abs(YINT)
*	d3: x/ls 32-bits of mant of abs(YINT)
*	d4: LEN/Unchanged
*	d5: ICTR:LAMBDA/LAMBDA:ICTR
*	d6: ILOG
*	d7: k-factor/Unchanged
*	a0: pointer into memory for packed bcd string formation
*	    /ptr to first mantissa byte in result string
*	a1: ptr to PTENxx array/Unchanged
*	a2: ptr to FP_SCR2(a6)/Unchanged
*	fp0: int portion of Y/abs(YINT) adjusted
*	fp1: 10^ISCALE/Unchanged
*	fp2: 10^LEN/Unchanged
*	F_SCR1:x/Work area for final result
*	F_SCR2:Y with original exponent/Unchanged
*	L_SCR1:original USER_FPCR/Unchanged
*	L_SCR2:first word of X packed/Unchanged

A14_st:	
	fmove.l	#rz_mode,FPCR	;force rz for conversion
	fdiv.x	fp2,fp0		;divide abs(YINT) by 10^LEN
	lea.l	FP_SCR1(a6),a0
	fmove.x	fp0,(a0)	;move abs(YINT)/10^LEN to memory
	move.l	4(a0),d2	;move 2nd word of FP_RES to d2
	move.l	8(a0),d3	;move 3rd word of FP_RES to d3
	clr.l	4(a0)		;zero word 2 of FP_RES
	clr.l	8(a0)		;zero word 3 of FP_RES
	move.l	(a0),d0		;move exponent to d0
	swap	d0		;put exponent in lower word
	beq.b	no_sft		;if zero, don't shift
	subi.l	#$3ffd,d0	;sub bias less 2 to make fract
	tst.l	d0		;check if > 1
	bgt.b	no_sft		;if so, don't shift
	neg.l	d0		;make exp positive
m_loop:
	lsr.l	#1,d2		;shift d2:d3 right, add 0s 
	roxr.l	#1,d3		;the number of places
	dbf.w	d0,m_loop	;given in d0
no_sft:
	tst.l	d2		;check for mantissa of zero
	bne.b	no_zr		;if not, go on
	tst.l	d3		;continue zero check
	beq.b	zer_m		;if zero, go directly to binstr
no_zr:
	clr.l	d1		;put zero in d1 for addx
	addi.l	#$00000080,d3	;inc at bit 7
	addx.l	d1,d2		;continue inc
	andi.l	#$ffffff80,d3	;strip off lsb not used by 882
zer_m:
	move.l	d4,d0		;put LEN in d0 for binstr call
	addq.l	#3,a0		;a0 points to M16 byte in result
	bsr	binstr		;call binstr to convert mant


* A15. Convert the exponent to bcd.
*      As in A14 above, the exp is converted to bcd and the
*      digits are stored in the final string.
*
*      Digits are stored in L_SCR1(a6) on return from BINDEC as:
*
*  	 32               16 15                0
*	-----------------------------------------
*  	|  0 | e3 | e2 | e1 | e4 |  X |  X |  X |
*	-----------------------------------------
*
* And are moved into their proper places in FP_SCR1.  If digit e4
* is non-zero, OPERR is signaled.  In all cases, all 4 digits are
* written as specified in the 881/882 manual for packed decimal.
*
* Register usage:
*	Input/Output
*	d0: x/LEN call to binstr - final is 0
*	d1: x/scratch (0);shift count for final exponent packing
*	d2: x/ms 32-bits of exp fraction/scratch
*	d3: x/ls 32-bits of exp fraction
*	d4: LEN/Unchanged
*	d5: ICTR:LAMBDA/LAMBDA:ICTR
*	d6: ILOG
*	d7: k-factor/Unchanged
*	a0: ptr to result string/ptr to L_SCR1(a6)
*	a1: ptr to PTENxx array/Unchanged
*	a2: ptr to FP_SCR2(a6)/Unchanged
*	fp0: abs(YINT) adjusted/float(ILOG)
*	fp1: 10^ISCALE/Unchanged
*	fp2: 10^LEN/Unchanged
*	F_SCR1:Work area for final result/BCD result
*	F_SCR2:Y with original exponent/ILOG/10^4
*	L_SCR1:original USER_FPCR/Exponent digits on return from binstr
*	L_SCR2:first word of X packed/Unchanged

A15_st:	
	tst.b	BINDEC_FLG(a6)	;check for denorm
	beq.b	not_denorm
	ftst.x	fp0		;test for zero
	fbeq.w	den_zero	;if zero, use k-factor or 4933
	fmove.l	d6,fp0		;float ILOG
	fabs.x	fp0		;get abs of ILOG
	bra.b	convrt
den_zero:
	tst.l	d7		;check sign of the k-factor
	blt.b	use_ilog	;if negative, use ILOG
	fmove.s	F4933,fp0	;force exponent to 4933
	bra.b	convrt		;do it
use_ilog:
	fmove.l	d6,fp0		;float ILOG
	fabs.x	fp0		;get abs of ILOG
	bra.b	convrt
not_denorm:
	ftst.x	fp0		;test for zero
	fbne.w	not_zero	;if zero, force exponent
	fmove.s	FONE,fp0	;force exponent to 1
	bra.b	convrt		;do it
not_zero:	
	fmove.l	d6,fp0		;float ILOG
	fabs.x	fp0		;get abs of ILOG
convrt:
	fdiv.x	24(a1),fp0	;compute ILOG/10^4
	fmove.x	fp0,FP_SCR2(a6)	;store fp0 in memory
	move.l	4(a2),d2	;move word 2 to d2
	move.l	8(a2),d3	;move word 3 to d3
	move.w	(a2),d0		;move exp to d0
	beq.b	x_loop_fin	;if zero, skip the shift
	subi.w	#$3ffd,d0	;subtract off bias
	neg.w	d0		;make exp positive
x_loop:
	lsr.l	#1,d2		;shift d2:d3 right 
	roxr.l	#1,d3		;the number of places
	dbf.w	d0,x_loop	;given in d0
x_loop_fin:
	clr.l	d1		;put zero in d1 for addx
	addi.l	#$00000080,d3	;inc at bit 6
	addx.l	d1,d2		;continue inc
	andi.l	#$ffffff80,d3	;strip off lsb not used by 882
	move.l	#4,d0		;put 4 in d0 for binstr call
	lea.l	L_SCR1(a6),a0	;a0 is ptr to L_SCR1 for exp digits
	bsr	binstr		;call binstr to convert exp
	move.l	L_SCR1(a6),d0	;load L_SCR1 lword to d0 
	move.l	#12,d1		;use d1 for shift count
	lsr.l	d1,d0		;shift d0 right by 12
	bfins	d0,FP_SCR1(a6){4:12} ;put e3:e2:e1 in FP_SCR1
	lsr.l	d1,d0		;shift d0 right by 12
	bfins	d0,FP_SCR1(a6){16:4} ;put e4 in FP_SCR1 
	tst.b	d0		;check if e4 is zero
	beq.b	A16_st		;if zero, skip rest
	or.l	#opaop_mask,USER_FPSR(a6) ;set OPERR & AIOP in USER_FPSR


* A16. Write sign bits to final string.
*	   Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG).
*
* Register usage:
*	Input/Output
*	d0: x/scratch - final is x
*	d2: x/x
*	d3: x/x
*	d4: LEN/Unchanged
*	d5: ICTR:LAMBDA/LAMBDA:ICTR
*	d6: ILOG/ILOG adjusted
*	d7: k-factor/Unchanged
*	a0: ptr to L_SCR1(a6)/Unchanged
*	a1: ptr to PTENxx array/Unchanged
*	a2: ptr to FP_SCR2(a6)/Unchanged
*	fp0: float(ILOG)/Unchanged
*	fp1: 10^ISCALE/Unchanged
*	fp2: 10^LEN/Unchanged
*	F_SCR1:BCD result with correct signs
*	F_SCR2:ILOG/10^4
*	L_SCR1:Exponent digits on return from binstr
*	L_SCR2:first word of X packed/Unchanged

A16_st:
	clr.l	d0		;clr d0 for collection of signs
	andi.b	#$0f,FP_SCR1(a6) ;clear first nibble of FP_SCR1 
	tst.l	L_SCR2(a6)	;check sign of original mantissa
	bge.b	mant_p		;if pos, don't set SM
	moveq.l	#2,d0		;move 2 in to d0 for SM
mant_p:
	tst.l	d6		;check sign of ILOG
	bge.b	wr_sgn		;if pos, don't set SE
	addq.l	#1,d0		;set bit 0 in d0 for SE 
wr_sgn:
	bfins	d0,FP_SCR1(a6){0:2} ;insert SM and SE into FP_SCR1

* Clean up and restore all registers used.

	fmove.l	#0,FPSR		;clear possible inex2/ainex bits
	fmovem.x (a7)+,fp0-fp2
	movem.l	(a7)+,d2-d7/a2
	rts

	end