1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
|
* $OpenBSD: bindec.sa,v 1.2 1996/05/29 21:05:24 niklas Exp $
* $NetBSD: bindec.sa,v 1.3 1994/10/26 07:48:51 cgd Exp $
* MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
* M68000 Hi-Performance Microprocessor Division
* M68040 Software Package
*
* M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
* All rights reserved.
*
* THE SOFTWARE is provided on an "AS IS" basis and without warranty.
* To the maximum extent permitted by applicable law,
* MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
* INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
* PARTICULAR PURPOSE and any warranty against infringement with
* regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
* and any accompanying written materials.
*
* To the maximum extent permitted by applicable law,
* IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
* (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
* PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
* OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
* SOFTWARE. Motorola assumes no responsibility for the maintenance
* and support of the SOFTWARE.
*
* You are hereby granted a copyright license to use, modify, and
* distribute the SOFTWARE so long as this entire notice is retained
* without alteration in any modified and/or redistributed versions,
* and that such modified versions are clearly identified as such.
* No licenses are granted by implication, estoppel or otherwise
* under any patents or trademarks of Motorola, Inc.
*
* bindec.sa 3.4 1/3/91
*
* bindec
*
* Description:
* Converts an input in extended precision format
* to bcd format.
*
* Input:
* a0 points to the input extended precision value
* value in memory; d0 contains the k-factor sign-extended
* to 32-bits. The input may be either normalized,
* unnormalized, or denormalized.
*
* Output: result in the FP_SCR1 space on the stack.
*
* Saves and Modifies: D2-D7,A2,FP2
*
* Algorithm:
*
* A1. Set RM and size ext; Set SIGMA = sign of input.
* The k-factor is saved for use in d7. Clear the
* BINDEC_FLG for separating normalized/denormalized
* input. If input is unnormalized or denormalized,
* normalize it.
*
* A2. Set X = abs(input).
*
* A3. Compute ILOG.
* ILOG is the log base 10 of the input value. It is
* approximated by adding e + 0.f when the original
* value is viewed as 2^^e * 1.f in extended precision.
* This value is stored in d6.
*
* A4. Clr INEX bit.
* The operation in A3 above may have set INEX2.
*
* A5. Set ICTR = 0;
* ICTR is a flag used in A13. It must be set before the
* loop entry A6.
*
* A6. Calculate LEN.
* LEN is the number of digits to be displayed. The
* k-factor can dictate either the total number of digits,
* if it is a positive number, or the number of digits
* after the decimal point which are to be included as
* significant. See the 68882 manual for examples.
* If LEN is computed to be greater than 17, set OPERR in
* USER_FPSR. LEN is stored in d4.
*
* A7. Calculate SCALE.
* SCALE is equal to 10^ISCALE, where ISCALE is the number
* of decimal places needed to insure LEN integer digits
* in the output before conversion to bcd. LAMBDA is the
* sign of ISCALE, used in A9. Fp1 contains
* 10^^(abs(ISCALE)) using a rounding mode which is a
* function of the original rounding mode and the signs
* of ISCALE and X. A table is given in the code.
*
* A8. Clr INEX; Force RZ.
* The operation in A3 above may have set INEX2.
* RZ mode is forced for the scaling operation to insure
* only one rounding error. The grs bits are collected in
* the INEX flag for use in A10.
*
* A9. Scale X -> Y.
* The mantissa is scaled to the desired number of
* significant digits. The excess digits are collected
* in INEX2.
*
* A10. Or in INEX.
* If INEX is set, round error occured. This is
* compensated for by 'or-ing' in the INEX2 flag to
* the lsb of Y.
*
* A11. Restore original FPCR; set size ext.
* Perform FINT operation in the user's rounding mode.
* Keep the size to extended.
*
* A12. Calculate YINT = FINT(Y) according to user's rounding
* mode. The FPSP routine sintd0 is used. The output
* is in fp0.
*
* A13. Check for LEN digits.
* If the int operation results in more than LEN digits,
* or less than LEN -1 digits, adjust ILOG and repeat from
* A6. This test occurs only on the first pass. If the
* result is exactly 10^LEN, decrement ILOG and divide
* the mantissa by 10.
*
* A14. Convert the mantissa to bcd.
* The binstr routine is used to convert the LEN digit
* mantissa to bcd in memory. The input to binstr is
* to be a fraction; i.e. (mantissa)/10^LEN and adjusted
* such that the decimal point is to the left of bit 63.
* The bcd digits are stored in the correct position in
* the final string area in memory.
*
* A15. Convert the exponent to bcd.
* As in A14 above, the exp is converted to bcd and the
* digits are stored in the final string.
* Test the length of the final exponent string. If the
* length is 4, set operr.
*
* A16. Write sign bits to final string.
*
* Implementation Notes:
*
* The registers are used as follows:
*
* d0: scratch; LEN input to binstr
* d1: scratch
* d2: upper 32-bits of mantissa for binstr
* d3: scratch;lower 32-bits of mantissa for binstr
* d4: LEN
* d5: LAMBDA/ICTR
* d6: ILOG
* d7: k-factor
* a0: ptr for original operand/final result
* a1: scratch pointer
* a2: pointer to FP_X; abs(original value) in ext
* fp0: scratch
* fp1: scratch
* fp2: scratch
* F_SCR1:
* F_SCR2:
* L_SCR1:
* L_SCR2:
*
BINDEC IDNT 2,1 Motorola 040 Floating Point Software Package
include fpsp.h
section 8
* Constants in extended precision
LOG2 dc.l $3FFD0000,$9A209A84,$FBCFF798,$00000000
LOG2UP1 dc.l $3FFD0000,$9A209A84,$FBCFF799,$00000000
* Constants in single precision
FONE dc.l $3F800000,$00000000,$00000000,$00000000
FTWO dc.l $40000000,$00000000,$00000000,$00000000
FTEN dc.l $41200000,$00000000,$00000000,$00000000
F4933 dc.l $459A2800,$00000000,$00000000,$00000000
RBDTBL dc.b 0,0,0,0
dc.b 3,3,2,2
dc.b 3,2,2,3
dc.b 2,3,3,2
xref binstr
xref sintdo
xref ptenrn,ptenrm,ptenrp
xdef bindec
xdef sc_mul
bindec:
movem.l d2-d7/a2,-(a7)
fmovem.x fp0-fp2,-(a7)
* A1. Set RM and size ext. Set SIGMA = sign input;
* The k-factor is saved for use in d7. Clear BINDEC_FLG for
* separating normalized/denormalized input. If the input
* is a denormalized number, set the BINDEC_FLG memory word
* to signal denorm. If the input is unnormalized, normalize
* the input and test for denormalized result.
*
fmove.l #rm_mode,FPCR ;set RM and ext
move.l (a0),L_SCR2(a6) ;save exponent for sign check
move.l d0,d7 ;move k-factor to d7
clr.b BINDEC_FLG(a6) ;clr norm/denorm flag
move.w STAG(a6),d0 ;get stag
andi.w #$e000,d0 ;isolate stag bits
beq A2_str ;if zero, input is norm
*
* Normalize the denorm
*
un_de_norm:
move.w (a0),d0
andi.w #$7fff,d0 ;strip sign of normalized exp
move.l 4(a0),d1
move.l 8(a0),d2
norm_loop:
sub.w #1,d0
add.l d2,d2
addx.l d1,d1
tst.l d1
bge.b norm_loop
*
* Test if the normalized input is denormalized
*
tst.w d0
bgt.b pos_exp ;if greater than zero, it is a norm
st BINDEC_FLG(a6) ;set flag for denorm
pos_exp:
andi.w #$7fff,d0 ;strip sign of normalized exp
move.w d0,(a0)
move.l d1,4(a0)
move.l d2,8(a0)
* A2. Set X = abs(input).
*
A2_str:
move.l (a0),FP_SCR2(a6) ; move input to work space
move.l 4(a0),FP_SCR2+4(a6) ; move input to work space
move.l 8(a0),FP_SCR2+8(a6) ; move input to work space
andi.l #$7fffffff,FP_SCR2(a6) ;create abs(X)
* A3. Compute ILOG.
* ILOG is the log base 10 of the input value. It is approx-
* imated by adding e + 0.f when the original value is viewed
* as 2^^e * 1.f in extended precision. This value is stored
* in d6.
*
* Register usage:
* Input/Output
* d0: k-factor/exponent
* d2: x/x
* d3: x/x
* d4: x/x
* d5: x/x
* d6: x/ILOG
* d7: k-factor/Unchanged
* a0: ptr for original operand/final result
* a1: x/x
* a2: x/x
* fp0: x/float(ILOG)
* fp1: x/x
* fp2: x/x
* F_SCR1:x/x
* F_SCR2:Abs(X)/Abs(X) with $3fff exponent
* L_SCR1:x/x
* L_SCR2:first word of X packed/Unchanged
tst.b BINDEC_FLG(a6) ;check for denorm
beq.b A3_cont ;if clr, continue with norm
move.l #-4933,d6 ;force ILOG = -4933
bra.b A4_str
A3_cont:
move.w FP_SCR2(a6),d0 ;move exp to d0
move.w #$3fff,FP_SCR2(a6) ;replace exponent with 0x3fff
fmove.x FP_SCR2(a6),fp0 ;now fp0 has 1.f
sub.w #$3fff,d0 ;strip off bias
fadd.w d0,fp0 ;add in exp
fsub.s FONE,fp0 ;subtract off 1.0
fbge.w pos_res ;if pos, branch
fmul.x LOG2UP1,fp0 ;if neg, mul by LOG2UP1
fmove.l fp0,d6 ;put ILOG in d6 as a lword
bra.b A4_str ;go move out ILOG
pos_res:
fmul.x LOG2,fp0 ;if pos, mul by LOG2
fmove.l fp0,d6 ;put ILOG in d6 as a lword
* A4. Clr INEX bit.
* The operation in A3 above may have set INEX2.
A4_str:
fmove.l #0,FPSR ;zero all of fpsr - nothing needed
* A5. Set ICTR = 0;
* ICTR is a flag used in A13. It must be set before the
* loop entry A6. The lower word of d5 is used for ICTR.
clr.w d5 ;clear ICTR
* A6. Calculate LEN.
* LEN is the number of digits to be displayed. The k-factor
* can dictate either the total number of digits, if it is
* a positive number, or the number of digits after the
* original decimal point which are to be included as
* significant. See the 68882 manual for examples.
* If LEN is computed to be greater than 17, set OPERR in
* USER_FPSR. LEN is stored in d4.
*
* Register usage:
* Input/Output
* d0: exponent/Unchanged
* d2: x/x/scratch
* d3: x/x
* d4: exc picture/LEN
* d5: ICTR/Unchanged
* d6: ILOG/Unchanged
* d7: k-factor/Unchanged
* a0: ptr for original operand/final result
* a1: x/x
* a2: x/x
* fp0: float(ILOG)/Unchanged
* fp1: x/x
* fp2: x/x
* F_SCR1:x/x
* F_SCR2:Abs(X) with $3fff exponent/Unchanged
* L_SCR1:x/x
* L_SCR2:first word of X packed/Unchanged
A6_str:
tst.l d7 ;branch on sign of k
ble.b k_neg ;if k <= 0, LEN = ILOG + 1 - k
move.l d7,d4 ;if k > 0, LEN = k
bra.b len_ck ;skip to LEN check
k_neg:
move.l d6,d4 ;first load ILOG to d4
sub.l d7,d4 ;subtract off k
addq.l #1,d4 ;add in the 1
len_ck:
tst.l d4 ;LEN check: branch on sign of LEN
ble.b LEN_ng ;if neg, set LEN = 1
cmp.l #17,d4 ;test if LEN > 17
ble.b A7_str ;if not, forget it
move.l #17,d4 ;set max LEN = 17
tst.l d7 ;if negative, never set OPERR
ble.b A7_str ;if positive, continue
or.l #opaop_mask,USER_FPSR(a6) ;set OPERR & AIOP in USER_FPSR
bra.b A7_str ;finished here
LEN_ng:
moveq.l #1,d4 ;min LEN is 1
* A7. Calculate SCALE.
* SCALE is equal to 10^ISCALE, where ISCALE is the number
* of decimal places needed to insure LEN integer digits
* in the output before conversion to bcd. LAMBDA is the sign
* of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using
* the rounding mode as given in the following table (see
* Coonen, p. 7.23 as ref.; however, the SCALE variable is
* of opposite sign in bindec.sa from Coonen).
*
* Initial USE
* FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5]
* ----------------------------------------------
* RN 00 0 0 00/0 RN
* RN 00 0 1 00/0 RN
* RN 00 1 0 00/0 RN
* RN 00 1 1 00/0 RN
* RZ 01 0 0 11/3 RP
* RZ 01 0 1 11/3 RP
* RZ 01 1 0 10/2 RM
* RZ 01 1 1 10/2 RM
* RM 10 0 0 11/3 RP
* RM 10 0 1 10/2 RM
* RM 10 1 0 10/2 RM
* RM 10 1 1 11/3 RP
* RP 11 0 0 10/2 RM
* RP 11 0 1 11/3 RP
* RP 11 1 0 11/3 RP
* RP 11 1 1 10/2 RM
*
* Register usage:
* Input/Output
* d0: exponent/scratch - final is 0
* d2: x/0 or 24 for A9
* d3: x/scratch - offset ptr into PTENRM array
* d4: LEN/Unchanged
* d5: 0/ICTR:LAMBDA
* d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))
* d7: k-factor/Unchanged
* a0: ptr for original operand/final result
* a1: x/ptr to PTENRM array
* a2: x/x
* fp0: float(ILOG)/Unchanged
* fp1: x/10^ISCALE
* fp2: x/x
* F_SCR1:x/x
* F_SCR2:Abs(X) with $3fff exponent/Unchanged
* L_SCR1:x/x
* L_SCR2:first word of X packed/Unchanged
A7_str:
tst.l d7 ;test sign of k
bgt.b k_pos ;if pos and > 0, skip this
cmp.l d6,d7 ;test k - ILOG
blt.b k_pos ;if ILOG >= k, skip this
move.l d7,d6 ;if ((k<0) & (ILOG < k)) ILOG = k
k_pos:
move.l d6,d0 ;calc ILOG + 1 - LEN in d0
addq.l #1,d0 ;add the 1
sub.l d4,d0 ;sub off LEN
swap d5 ;use upper word of d5 for LAMBDA
clr.w d5 ;set it zero initially
clr.w d2 ;set up d2 for very small case
tst.l d0 ;test sign of ISCALE
bge.b iscale ;if pos, skip next inst
addq.w #1,d5 ;if neg, set LAMBDA true
cmp.l #$ffffecd4,d0 ;test iscale <= -4908
bgt.b no_inf ;if false, skip rest
addi.l #24,d0 ;add in 24 to iscale
move.l #24,d2 ;put 24 in d2 for A9
no_inf:
neg.l d0 ;and take abs of ISCALE
iscale:
fmove.s FONE,fp1 ;init fp1 to 1
bfextu USER_FPCR(a6){26:2},d1 ;get initial rmode bits
add.w d1,d1 ;put them in bits 2:1
add.w d5,d1 ;add in LAMBDA
add.w d1,d1 ;put them in bits 3:1
tst.l L_SCR2(a6) ;test sign of original x
bge.b x_pos ;if pos, don't set bit 0
addq.l #1,d1 ;if neg, set bit 0
x_pos:
lea.l RBDTBL,a2 ;load rbdtbl base
move.b (a2,d1),d3 ;load d3 with new rmode
lsl.l #4,d3 ;put bits in proper position
fmove.l d3,fpcr ;load bits into fpu
lsr.l #4,d3 ;put bits in proper position
tst.b d3 ;decode new rmode for pten table
bne.b not_rn ;if zero, it is RN
lea.l PTENRN,a1 ;load a1 with RN table base
bra.b rmode ;exit decode
not_rn:
lsr.b #1,d3 ;get lsb in carry
bcc.b not_rp ;if carry clear, it is RM
lea.l PTENRP,a1 ;load a1 with RP table base
bra.b rmode ;exit decode
not_rp:
lea.l PTENRM,a1 ;load a1 with RM table base
rmode:
clr.l d3 ;clr table index
e_loop:
lsr.l #1,d0 ;shift next bit into carry
bcc.b e_next ;if zero, skip the mul
fmul.x (a1,d3),fp1 ;mul by 10**(d3_bit_no)
e_next:
add.l #12,d3 ;inc d3 to next pwrten table entry
tst.l d0 ;test if ISCALE is zero
bne.b e_loop ;if not, loop
* A8. Clr INEX; Force RZ.
* The operation in A3 above may have set INEX2.
* RZ mode is forced for the scaling operation to insure
* only one rounding error. The grs bits are collected in
* the INEX flag for use in A10.
*
* Register usage:
* Input/Output
fmove.l #0,FPSR ;clr INEX
fmove.l #rz_mode,FPCR ;set RZ rounding mode
* A9. Scale X -> Y.
* The mantissa is scaled to the desired number of significant
* digits. The excess digits are collected in INEX2. If mul,
* Check d2 for excess 10 exponential value. If not zero,
* the iscale value would have caused the pwrten calculation
* to overflow. Only a negative iscale can cause this, so
* multiply by 10^(d2), which is now only allowed to be 24,
* with a multiply by 10^8 and 10^16, which is exact since
* 10^24 is exact. If the input was denormalized, we must
* create a busy stack frame with the mul command and the
* two operands, and allow the fpu to complete the multiply.
*
* Register usage:
* Input/Output
* d0: FPCR with RZ mode/Unchanged
* d2: 0 or 24/unchanged
* d3: x/x
* d4: LEN/Unchanged
* d5: ICTR:LAMBDA
* d6: ILOG/Unchanged
* d7: k-factor/Unchanged
* a0: ptr for original operand/final result
* a1: ptr to PTENRM array/Unchanged
* a2: x/x
* fp0: float(ILOG)/X adjusted for SCALE (Y)
* fp1: 10^ISCALE/Unchanged
* fp2: x/x
* F_SCR1:x/x
* F_SCR2:Abs(X) with $3fff exponent/Unchanged
* L_SCR1:x/x
* L_SCR2:first word of X packed/Unchanged
A9_str:
fmove.x (a0),fp0 ;load X from memory
fabs.x fp0 ;use abs(X)
tst.w d5 ;LAMBDA is in lower word of d5
bne.b sc_mul ;if neg (LAMBDA = 1), scale by mul
fdiv.x fp1,fp0 ;calculate X / SCALE -> Y to fp0
bra.b A10_st ;branch to A10
sc_mul:
tst.b BINDEC_FLG(a6) ;check for denorm
beq.b A9_norm ;if norm, continue with mul
fmovem.x fp1,-(a7) ;load ETEMP with 10^ISCALE
move.l 8(a0),-(a7) ;load FPTEMP with input arg
move.l 4(a0),-(a7)
move.l (a0),-(a7)
move.l #18,d3 ;load count for busy stack
A9_loop:
clr.l -(a7) ;clear lword on stack
dbf.w d3,A9_loop
move.b VER_TMP(a6),(a7) ;write current version number
move.b #BUSY_SIZE-4,1(a7) ;write current busy size
move.b #$10,$44(a7) ;set fcefpte[15] bit
move.w #$0023,$40(a7) ;load cmdreg1b with mul command
move.b #$fe,$8(a7) ;load all 1s to cu savepc
frestore (a7)+ ;restore frame to fpu for completion
fmul.x 36(a1),fp0 ;multiply fp0 by 10^8
fmul.x 48(a1),fp0 ;multiply fp0 by 10^16
bra.b A10_st
A9_norm:
tst.w d2 ;test for small exp case
beq.b A9_con ;if zero, continue as normal
fmul.x 36(a1),fp0 ;multiply fp0 by 10^8
fmul.x 48(a1),fp0 ;multiply fp0 by 10^16
A9_con:
fmul.x fp1,fp0 ;calculate X * SCALE -> Y to fp0
* A10. Or in INEX.
* If INEX is set, round error occured. This is compensated
* for by 'or-ing' in the INEX2 flag to the lsb of Y.
*
* Register usage:
* Input/Output
* d0: FPCR with RZ mode/FPSR with INEX2 isolated
* d2: x/x
* d3: x/x
* d4: LEN/Unchanged
* d5: ICTR:LAMBDA
* d6: ILOG/Unchanged
* d7: k-factor/Unchanged
* a0: ptr for original operand/final result
* a1: ptr to PTENxx array/Unchanged
* a2: x/ptr to FP_SCR2(a6)
* fp0: Y/Y with lsb adjusted
* fp1: 10^ISCALE/Unchanged
* fp2: x/x
A10_st:
fmove.l FPSR,d0 ;get FPSR
fmove.x fp0,FP_SCR2(a6) ;move Y to memory
lea.l FP_SCR2(a6),a2 ;load a2 with ptr to FP_SCR2
btst.l #9,d0 ;check if INEX2 set
beq.b A11_st ;if clear, skip rest
ori.l #1,8(a2) ;or in 1 to lsb of mantissa
fmove.x FP_SCR2(a6),fp0 ;write adjusted Y back to fpu
* A11. Restore original FPCR; set size ext.
* Perform FINT operation in the user's rounding mode. Keep
* the size to extended. The sintdo entry point in the sint
* routine expects the FPCR value to be in USER_FPCR for
* mode and precision. The original FPCR is saved in L_SCR1.
A11_st:
move.l USER_FPCR(a6),L_SCR1(a6) ;save it for later
andi.l #$00000030,USER_FPCR(a6) ;set size to ext,
* ;block exceptions
* A12. Calculate YINT = FINT(Y) according to user's rounding mode.
* The FPSP routine sintd0 is used. The output is in fp0.
*
* Register usage:
* Input/Output
* d0: FPSR with AINEX cleared/FPCR with size set to ext
* d2: x/x/scratch
* d3: x/x
* d4: LEN/Unchanged
* d5: ICTR:LAMBDA/Unchanged
* d6: ILOG/Unchanged
* d7: k-factor/Unchanged
* a0: ptr for original operand/src ptr for sintdo
* a1: ptr to PTENxx array/Unchanged
* a2: ptr to FP_SCR2(a6)/Unchanged
* a6: temp pointer to FP_SCR2(a6) - orig value saved and restored
* fp0: Y/YINT
* fp1: 10^ISCALE/Unchanged
* fp2: x/x
* F_SCR1:x/x
* F_SCR2:Y adjusted for inex/Y with original exponent
* L_SCR1:x/original USER_FPCR
* L_SCR2:first word of X packed/Unchanged
A12_st:
movem.l d0-d1/a0-a1,-(a7) ;save regs used by sintd0
move.l L_SCR1(a6),-(a7)
move.l L_SCR2(a6),-(a7)
lea.l FP_SCR2(a6),a0 ;a0 is ptr to F_SCR2(a6)
fmove.x fp0,(a0) ;move Y to memory at FP_SCR2(a6)
tst.l L_SCR2(a6) ;test sign of original operand
bge.b do_fint ;if pos, use Y
or.l #$80000000,(a0) ;if neg, use -Y
do_fint:
move.l USER_FPSR(a6),-(a7)
bsr sintdo ;sint routine returns int in fp0
move.b (a7),USER_FPSR(a6)
add.l #4,a7
move.l (a7)+,L_SCR2(a6)
move.l (a7)+,L_SCR1(a6)
movem.l (a7)+,d0-d1/a0-a1 ;restore regs used by sint
move.l L_SCR2(a6),FP_SCR2(a6) ;restore original exponent
move.l L_SCR1(a6),USER_FPCR(a6) ;restore user's FPCR
* A13. Check for LEN digits.
* If the int operation results in more than LEN digits,
* or less than LEN -1 digits, adjust ILOG and repeat from
* A6. This test occurs only on the first pass. If the
* result is exactly 10^LEN, decrement ILOG and divide
* the mantissa by 10. The calculation of 10^LEN cannot
* be inexact, since all powers of ten upto 10^27 are exact
* in extended precision, so the use of a previous power-of-ten
* table will introduce no error.
*
*
* Register usage:
* Input/Output
* d0: FPCR with size set to ext/scratch final = 0
* d2: x/x
* d3: x/scratch final = x
* d4: LEN/LEN adjusted
* d5: ICTR:LAMBDA/LAMBDA:ICTR
* d6: ILOG/ILOG adjusted
* d7: k-factor/Unchanged
* a0: pointer into memory for packed bcd string formation
* a1: ptr to PTENxx array/Unchanged
* a2: ptr to FP_SCR2(a6)/Unchanged
* fp0: int portion of Y/abs(YINT) adjusted
* fp1: 10^ISCALE/Unchanged
* fp2: x/10^LEN
* F_SCR1:x/x
* F_SCR2:Y with original exponent/Unchanged
* L_SCR1:original USER_FPCR/Unchanged
* L_SCR2:first word of X packed/Unchanged
A13_st:
swap d5 ;put ICTR in lower word of d5
tst.w d5 ;check if ICTR = 0
bne not_zr ;if non-zero, go to second test
*
* Compute 10^(LEN-1)
*
fmove.s FONE,fp2 ;init fp2 to 1.0
move.l d4,d0 ;put LEN in d0
subq.l #1,d0 ;d0 = LEN -1
clr.l d3 ;clr table index
l_loop:
lsr.l #1,d0 ;shift next bit into carry
bcc.b l_next ;if zero, skip the mul
fmul.x (a1,d3),fp2 ;mul by 10**(d3_bit_no)
l_next:
add.l #12,d3 ;inc d3 to next pwrten table entry
tst.l d0 ;test if LEN is zero
bne.b l_loop ;if not, loop
*
* 10^LEN-1 is computed for this test and A14. If the input was
* denormalized, check only the case in which YINT > 10^LEN.
*
tst.b BINDEC_FLG(a6) ;check if input was norm
beq.b A13_con ;if norm, continue with checking
fabs.x fp0 ;take abs of YINT
bra test_2
*
* Compare abs(YINT) to 10^(LEN-1) and 10^LEN
*
A13_con:
fabs.x fp0 ;take abs of YINT
fcmp.x fp2,fp0 ;compare abs(YINT) with 10^(LEN-1)
fbge.w test_2 ;if greater, do next test
subq.l #1,d6 ;subtract 1 from ILOG
move.w #1,d5 ;set ICTR
fmove.l #rm_mode,FPCR ;set rmode to RM
fmul.s FTEN,fp2 ;compute 10^LEN
bra.w A6_str ;return to A6 and recompute YINT
test_2:
fmul.s FTEN,fp2 ;compute 10^LEN
fcmp.x fp2,fp0 ;compare abs(YINT) with 10^LEN
fblt.w A14_st ;if less, all is ok, go to A14
fbgt.w fix_ex ;if greater, fix and redo
fdiv.s FTEN,fp0 ;if equal, divide by 10
addq.l #1,d6 ; and inc ILOG
bra.b A14_st ; and continue elsewhere
fix_ex:
addq.l #1,d6 ;increment ILOG by 1
move.w #1,d5 ;set ICTR
fmove.l #rm_mode,FPCR ;set rmode to RM
bra.w A6_str ;return to A6 and recompute YINT
*
* Since ICTR <> 0, we have already been through one adjustment,
* and shouldn't have another; this is to check if abs(YINT) = 10^LEN
* 10^LEN is again computed using whatever table is in a1 since the
* value calculated cannot be inexact.
*
not_zr:
fmove.s FONE,fp2 ;init fp2 to 1.0
move.l d4,d0 ;put LEN in d0
clr.l d3 ;clr table index
z_loop:
lsr.l #1,d0 ;shift next bit into carry
bcc.b z_next ;if zero, skip the mul
fmul.x (a1,d3),fp2 ;mul by 10**(d3_bit_no)
z_next:
add.l #12,d3 ;inc d3 to next pwrten table entry
tst.l d0 ;test if LEN is zero
bne.b z_loop ;if not, loop
fabs.x fp0 ;get abs(YINT)
fcmp.x fp2,fp0 ;check if abs(YINT) = 10^LEN
fbne.w A14_st ;if not, skip this
fdiv.s FTEN,fp0 ;divide abs(YINT) by 10
addq.l #1,d6 ;and inc ILOG by 1
addq.l #1,d4 ; and inc LEN
fmul.s FTEN,fp2 ; if LEN++, the get 10^^LEN
* A14. Convert the mantissa to bcd.
* The binstr routine is used to convert the LEN digit
* mantissa to bcd in memory. The input to binstr is
* to be a fraction; i.e. (mantissa)/10^LEN and adjusted
* such that the decimal point is to the left of bit 63.
* The bcd digits are stored in the correct position in
* the final string area in memory.
*
*
* Register usage:
* Input/Output
* d0: x/LEN call to binstr - final is 0
* d1: x/0
* d2: x/ms 32-bits of mant of abs(YINT)
* d3: x/ls 32-bits of mant of abs(YINT)
* d4: LEN/Unchanged
* d5: ICTR:LAMBDA/LAMBDA:ICTR
* d6: ILOG
* d7: k-factor/Unchanged
* a0: pointer into memory for packed bcd string formation
* /ptr to first mantissa byte in result string
* a1: ptr to PTENxx array/Unchanged
* a2: ptr to FP_SCR2(a6)/Unchanged
* fp0: int portion of Y/abs(YINT) adjusted
* fp1: 10^ISCALE/Unchanged
* fp2: 10^LEN/Unchanged
* F_SCR1:x/Work area for final result
* F_SCR2:Y with original exponent/Unchanged
* L_SCR1:original USER_FPCR/Unchanged
* L_SCR2:first word of X packed/Unchanged
A14_st:
fmove.l #rz_mode,FPCR ;force rz for conversion
fdiv.x fp2,fp0 ;divide abs(YINT) by 10^LEN
lea.l FP_SCR1(a6),a0
fmove.x fp0,(a0) ;move abs(YINT)/10^LEN to memory
move.l 4(a0),d2 ;move 2nd word of FP_RES to d2
move.l 8(a0),d3 ;move 3rd word of FP_RES to d3
clr.l 4(a0) ;zero word 2 of FP_RES
clr.l 8(a0) ;zero word 3 of FP_RES
move.l (a0),d0 ;move exponent to d0
swap d0 ;put exponent in lower word
beq.b no_sft ;if zero, don't shift
subi.l #$3ffd,d0 ;sub bias less 2 to make fract
tst.l d0 ;check if > 1
bgt.b no_sft ;if so, don't shift
neg.l d0 ;make exp positive
m_loop:
lsr.l #1,d2 ;shift d2:d3 right, add 0s
roxr.l #1,d3 ;the number of places
dbf.w d0,m_loop ;given in d0
no_sft:
tst.l d2 ;check for mantissa of zero
bne.b no_zr ;if not, go on
tst.l d3 ;continue zero check
beq.b zer_m ;if zero, go directly to binstr
no_zr:
clr.l d1 ;put zero in d1 for addx
addi.l #$00000080,d3 ;inc at bit 7
addx.l d1,d2 ;continue inc
andi.l #$ffffff80,d3 ;strip off lsb not used by 882
zer_m:
move.l d4,d0 ;put LEN in d0 for binstr call
addq.l #3,a0 ;a0 points to M16 byte in result
bsr binstr ;call binstr to convert mant
* A15. Convert the exponent to bcd.
* As in A14 above, the exp is converted to bcd and the
* digits are stored in the final string.
*
* Digits are stored in L_SCR1(a6) on return from BINDEC as:
*
* 32 16 15 0
* -----------------------------------------
* | 0 | e3 | e2 | e1 | e4 | X | X | X |
* -----------------------------------------
*
* And are moved into their proper places in FP_SCR1. If digit e4
* is non-zero, OPERR is signaled. In all cases, all 4 digits are
* written as specified in the 881/882 manual for packed decimal.
*
* Register usage:
* Input/Output
* d0: x/LEN call to binstr - final is 0
* d1: x/scratch (0);shift count for final exponent packing
* d2: x/ms 32-bits of exp fraction/scratch
* d3: x/ls 32-bits of exp fraction
* d4: LEN/Unchanged
* d5: ICTR:LAMBDA/LAMBDA:ICTR
* d6: ILOG
* d7: k-factor/Unchanged
* a0: ptr to result string/ptr to L_SCR1(a6)
* a1: ptr to PTENxx array/Unchanged
* a2: ptr to FP_SCR2(a6)/Unchanged
* fp0: abs(YINT) adjusted/float(ILOG)
* fp1: 10^ISCALE/Unchanged
* fp2: 10^LEN/Unchanged
* F_SCR1:Work area for final result/BCD result
* F_SCR2:Y with original exponent/ILOG/10^4
* L_SCR1:original USER_FPCR/Exponent digits on return from binstr
* L_SCR2:first word of X packed/Unchanged
A15_st:
tst.b BINDEC_FLG(a6) ;check for denorm
beq.b not_denorm
ftst.x fp0 ;test for zero
fbeq.w den_zero ;if zero, use k-factor or 4933
fmove.l d6,fp0 ;float ILOG
fabs.x fp0 ;get abs of ILOG
bra.b convrt
den_zero:
tst.l d7 ;check sign of the k-factor
blt.b use_ilog ;if negative, use ILOG
fmove.s F4933,fp0 ;force exponent to 4933
bra.b convrt ;do it
use_ilog:
fmove.l d6,fp0 ;float ILOG
fabs.x fp0 ;get abs of ILOG
bra.b convrt
not_denorm:
ftst.x fp0 ;test for zero
fbne.w not_zero ;if zero, force exponent
fmove.s FONE,fp0 ;force exponent to 1
bra.b convrt ;do it
not_zero:
fmove.l d6,fp0 ;float ILOG
fabs.x fp0 ;get abs of ILOG
convrt:
fdiv.x 24(a1),fp0 ;compute ILOG/10^4
fmove.x fp0,FP_SCR2(a6) ;store fp0 in memory
move.l 4(a2),d2 ;move word 2 to d2
move.l 8(a2),d3 ;move word 3 to d3
move.w (a2),d0 ;move exp to d0
beq.b x_loop_fin ;if zero, skip the shift
subi.w #$3ffd,d0 ;subtract off bias
neg.w d0 ;make exp positive
x_loop:
lsr.l #1,d2 ;shift d2:d3 right
roxr.l #1,d3 ;the number of places
dbf.w d0,x_loop ;given in d0
x_loop_fin:
clr.l d1 ;put zero in d1 for addx
addi.l #$00000080,d3 ;inc at bit 6
addx.l d1,d2 ;continue inc
andi.l #$ffffff80,d3 ;strip off lsb not used by 882
move.l #4,d0 ;put 4 in d0 for binstr call
lea.l L_SCR1(a6),a0 ;a0 is ptr to L_SCR1 for exp digits
bsr binstr ;call binstr to convert exp
move.l L_SCR1(a6),d0 ;load L_SCR1 lword to d0
move.l #12,d1 ;use d1 for shift count
lsr.l d1,d0 ;shift d0 right by 12
bfins d0,FP_SCR1(a6){4:12} ;put e3:e2:e1 in FP_SCR1
lsr.l d1,d0 ;shift d0 right by 12
bfins d0,FP_SCR1(a6){16:4} ;put e4 in FP_SCR1
tst.b d0 ;check if e4 is zero
beq.b A16_st ;if zero, skip rest
or.l #opaop_mask,USER_FPSR(a6) ;set OPERR & AIOP in USER_FPSR
* A16. Write sign bits to final string.
* Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG).
*
* Register usage:
* Input/Output
* d0: x/scratch - final is x
* d2: x/x
* d3: x/x
* d4: LEN/Unchanged
* d5: ICTR:LAMBDA/LAMBDA:ICTR
* d6: ILOG/ILOG adjusted
* d7: k-factor/Unchanged
* a0: ptr to L_SCR1(a6)/Unchanged
* a1: ptr to PTENxx array/Unchanged
* a2: ptr to FP_SCR2(a6)/Unchanged
* fp0: float(ILOG)/Unchanged
* fp1: 10^ISCALE/Unchanged
* fp2: 10^LEN/Unchanged
* F_SCR1:BCD result with correct signs
* F_SCR2:ILOG/10^4
* L_SCR1:Exponent digits on return from binstr
* L_SCR2:first word of X packed/Unchanged
A16_st:
clr.l d0 ;clr d0 for collection of signs
andi.b #$0f,FP_SCR1(a6) ;clear first nibble of FP_SCR1
tst.l L_SCR2(a6) ;check sign of original mantissa
bge.b mant_p ;if pos, don't set SM
moveq.l #2,d0 ;move 2 in to d0 for SM
mant_p:
tst.l d6 ;check sign of ILOG
bge.b wr_sgn ;if pos, don't set SE
addq.l #1,d0 ;set bit 0 in d0 for SE
wr_sgn:
bfins d0,FP_SCR1(a6){0:2} ;insert SM and SE into FP_SCR1
* Clean up and restore all registers used.
fmove.l #0,FPSR ;clear possible inex2/ainex bits
fmovem.x (a7)+,fp0-fp2
movem.l (a7)+,d2-d7/a2
rts
end
|