1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
|
* $OpenBSD: satan.sa,v 1.2 1996/05/29 21:05:35 niklas Exp $
* $NetBSD: satan.sa,v 1.3 1994/10/26 07:49:31 cgd Exp $
* MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
* M68000 Hi-Performance Microprocessor Division
* M68040 Software Package
*
* M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
* All rights reserved.
*
* THE SOFTWARE is provided on an "AS IS" basis and without warranty.
* To the maximum extent permitted by applicable law,
* MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
* INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
* PARTICULAR PURPOSE and any warranty against infringement with
* regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
* and any accompanying written materials.
*
* To the maximum extent permitted by applicable law,
* IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
* (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
* PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
* OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
* SOFTWARE. Motorola assumes no responsibility for the maintenance
* and support of the SOFTWARE.
*
* You are hereby granted a copyright license to use, modify, and
* distribute the SOFTWARE so long as this entire notice is retained
* without alteration in any modified and/or redistributed versions,
* and that such modified versions are clearly identified as such.
* No licenses are granted by implication, estoppel or otherwise
* under any patents or trademarks of Motorola, Inc.
*
* satan.sa 3.3 12/19/90
*
* The entry point satan computes the arctagent of an
* input value. satand does the same except the input value is a
* denormalized number.
*
* Input: Double-extended value in memory location pointed to by address
* register a0.
*
* Output: Arctan(X) returned in floating-point register Fp0.
*
* Accuracy and Monotonicity: The returned result is within 2 ulps in
* 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
* result is subsequently rounded to double precision. The
* result is provably monotonic in double precision.
*
* Speed: The program satan takes approximately 160 cycles for input
* argument X such that 1/16 < |X| < 16. For the other arguments,
* the program will run no worse than 10% slower.
*
* Algorithm:
* Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5.
*
* Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. Note that k = -4, -3,..., or 3.
* Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 significant bits
* of X with a bit-1 attached at the 6-th bit position. Define u
* to be u = (X-F) / (1 + X*F).
*
* Step 3. Approximate arctan(u) by a polynomial poly.
*
* Step 4. Return arctan(F) + poly, arctan(F) is fetched from a table of values
* calculated beforehand. Exit.
*
* Step 5. If |X| >= 16, go to Step 7.
*
* Step 6. Approximate arctan(X) by an odd polynomial in X. Exit.
*
* Step 7. Define X' = -1/X. Approximate arctan(X') by an odd polynomial in X'.
* Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit.
*
satan IDNT 2,1 Motorola 040 Floating Point Software Package
section 8
include fpsp.h
BOUNDS1 DC.L $3FFB8000,$4002FFFF
ONE DC.L $3F800000
DC.L $00000000
ATANA3 DC.L $BFF6687E,$314987D8
ATANA2 DC.L $4002AC69,$34A26DB3
ATANA1 DC.L $BFC2476F,$4E1DA28E
ATANB6 DC.L $3FB34444,$7F876989
ATANB5 DC.L $BFB744EE,$7FAF45DB
ATANB4 DC.L $3FBC71C6,$46940220
ATANB3 DC.L $BFC24924,$921872F9
ATANB2 DC.L $3FC99999,$99998FA9
ATANB1 DC.L $BFD55555,$55555555
ATANC5 DC.L $BFB70BF3,$98539E6A
ATANC4 DC.L $3FBC7187,$962D1D7D
ATANC3 DC.L $BFC24924,$827107B8
ATANC2 DC.L $3FC99999,$9996263E
ATANC1 DC.L $BFD55555,$55555536
PPIBY2 DC.L $3FFF0000,$C90FDAA2,$2168C235,$00000000
NPIBY2 DC.L $BFFF0000,$C90FDAA2,$2168C235,$00000000
PTINY DC.L $00010000,$80000000,$00000000,$00000000
NTINY DC.L $80010000,$80000000,$00000000,$00000000
ATANTBL:
DC.L $3FFB0000,$83D152C5,$060B7A51,$00000000
DC.L $3FFB0000,$8BC85445,$65498B8B,$00000000
DC.L $3FFB0000,$93BE4060,$17626B0D,$00000000
DC.L $3FFB0000,$9BB3078D,$35AEC202,$00000000
DC.L $3FFB0000,$A3A69A52,$5DDCE7DE,$00000000
DC.L $3FFB0000,$AB98E943,$62765619,$00000000
DC.L $3FFB0000,$B389E502,$F9C59862,$00000000
DC.L $3FFB0000,$BB797E43,$6B09E6FB,$00000000
DC.L $3FFB0000,$C367A5C7,$39E5F446,$00000000
DC.L $3FFB0000,$CB544C61,$CFF7D5C6,$00000000
DC.L $3FFB0000,$D33F62F8,$2488533E,$00000000
DC.L $3FFB0000,$DB28DA81,$62404C77,$00000000
DC.L $3FFB0000,$E310A407,$8AD34F18,$00000000
DC.L $3FFB0000,$EAF6B0A8,$188EE1EB,$00000000
DC.L $3FFB0000,$F2DAF194,$9DBE79D5,$00000000
DC.L $3FFB0000,$FABD5813,$61D47E3E,$00000000
DC.L $3FFC0000,$8346AC21,$0959ECC4,$00000000
DC.L $3FFC0000,$8B232A08,$304282D8,$00000000
DC.L $3FFC0000,$92FB70B8,$D29AE2F9,$00000000
DC.L $3FFC0000,$9ACF476F,$5CCD1CB4,$00000000
DC.L $3FFC0000,$A29E7630,$4954F23F,$00000000
DC.L $3FFC0000,$AA68C5D0,$8AB85230,$00000000
DC.L $3FFC0000,$B22DFFFD,$9D539F83,$00000000
DC.L $3FFC0000,$B9EDEF45,$3E900EA5,$00000000
DC.L $3FFC0000,$C1A85F1C,$C75E3EA5,$00000000
DC.L $3FFC0000,$C95D1BE8,$28138DE6,$00000000
DC.L $3FFC0000,$D10BF300,$840D2DE4,$00000000
DC.L $3FFC0000,$D8B4B2BA,$6BC05E7A,$00000000
DC.L $3FFC0000,$E0572A6B,$B42335F6,$00000000
DC.L $3FFC0000,$E7F32A70,$EA9CAA8F,$00000000
DC.L $3FFC0000,$EF888432,$64ECEFAA,$00000000
DC.L $3FFC0000,$F7170A28,$ECC06666,$00000000
DC.L $3FFD0000,$812FD288,$332DAD32,$00000000
DC.L $3FFD0000,$88A8D1B1,$218E4D64,$00000000
DC.L $3FFD0000,$9012AB3F,$23E4AEE8,$00000000
DC.L $3FFD0000,$976CC3D4,$11E7F1B9,$00000000
DC.L $3FFD0000,$9EB68949,$3889A227,$00000000
DC.L $3FFD0000,$A5EF72C3,$4487361B,$00000000
DC.L $3FFD0000,$AD1700BA,$F07A7227,$00000000
DC.L $3FFD0000,$B42CBCFA,$FD37EFB7,$00000000
DC.L $3FFD0000,$BB303A94,$0BA80F89,$00000000
DC.L $3FFD0000,$C22115C6,$FCAEBBAF,$00000000
DC.L $3FFD0000,$C8FEF3E6,$86331221,$00000000
DC.L $3FFD0000,$CFC98330,$B4000C70,$00000000
DC.L $3FFD0000,$D6807AA1,$102C5BF9,$00000000
DC.L $3FFD0000,$DD2399BC,$31252AA3,$00000000
DC.L $3FFD0000,$E3B2A855,$6B8FC517,$00000000
DC.L $3FFD0000,$EA2D764F,$64315989,$00000000
DC.L $3FFD0000,$F3BF5BF8,$BAD1A21D,$00000000
DC.L $3FFE0000,$801CE39E,$0D205C9A,$00000000
DC.L $3FFE0000,$8630A2DA,$DA1ED066,$00000000
DC.L $3FFE0000,$8C1AD445,$F3E09B8C,$00000000
DC.L $3FFE0000,$91DB8F16,$64F350E2,$00000000
DC.L $3FFE0000,$97731420,$365E538C,$00000000
DC.L $3FFE0000,$9CE1C8E6,$A0B8CDBA,$00000000
DC.L $3FFE0000,$A22832DB,$CADAAE09,$00000000
DC.L $3FFE0000,$A746F2DD,$B7602294,$00000000
DC.L $3FFE0000,$AC3EC0FB,$997DD6A2,$00000000
DC.L $3FFE0000,$B110688A,$EBDC6F6A,$00000000
DC.L $3FFE0000,$B5BCC490,$59ECC4B0,$00000000
DC.L $3FFE0000,$BA44BC7D,$D470782F,$00000000
DC.L $3FFE0000,$BEA94144,$FD049AAC,$00000000
DC.L $3FFE0000,$C2EB4ABB,$661628B6,$00000000
DC.L $3FFE0000,$C70BD54C,$E602EE14,$00000000
DC.L $3FFE0000,$CD000549,$ADEC7159,$00000000
DC.L $3FFE0000,$D48457D2,$D8EA4EA3,$00000000
DC.L $3FFE0000,$DB948DA7,$12DECE3B,$00000000
DC.L $3FFE0000,$E23855F9,$69E8096A,$00000000
DC.L $3FFE0000,$E8771129,$C4353259,$00000000
DC.L $3FFE0000,$EE57C16E,$0D379C0D,$00000000
DC.L $3FFE0000,$F3E10211,$A87C3779,$00000000
DC.L $3FFE0000,$F919039D,$758B8D41,$00000000
DC.L $3FFE0000,$FE058B8F,$64935FB3,$00000000
DC.L $3FFF0000,$8155FB49,$7B685D04,$00000000
DC.L $3FFF0000,$83889E35,$49D108E1,$00000000
DC.L $3FFF0000,$859CFA76,$511D724B,$00000000
DC.L $3FFF0000,$87952ECF,$FF8131E7,$00000000
DC.L $3FFF0000,$89732FD1,$9557641B,$00000000
DC.L $3FFF0000,$8B38CAD1,$01932A35,$00000000
DC.L $3FFF0000,$8CE7A8D8,$301EE6B5,$00000000
DC.L $3FFF0000,$8F46A39E,$2EAE5281,$00000000
DC.L $3FFF0000,$922DA7D7,$91888487,$00000000
DC.L $3FFF0000,$94D19FCB,$DEDF5241,$00000000
DC.L $3FFF0000,$973AB944,$19D2A08B,$00000000
DC.L $3FFF0000,$996FF00E,$08E10B96,$00000000
DC.L $3FFF0000,$9B773F95,$12321DA7,$00000000
DC.L $3FFF0000,$9D55CC32,$0F935624,$00000000
DC.L $3FFF0000,$9F100575,$006CC571,$00000000
DC.L $3FFF0000,$A0A9C290,$D97CC06C,$00000000
DC.L $3FFF0000,$A22659EB,$EBC0630A,$00000000
DC.L $3FFF0000,$A388B4AF,$F6EF0EC9,$00000000
DC.L $3FFF0000,$A4D35F10,$61D292C4,$00000000
DC.L $3FFF0000,$A60895DC,$FBE3187E,$00000000
DC.L $3FFF0000,$A72A51DC,$7367BEAC,$00000000
DC.L $3FFF0000,$A83A5153,$0956168F,$00000000
DC.L $3FFF0000,$A93A2007,$7539546E,$00000000
DC.L $3FFF0000,$AA9E7245,$023B2605,$00000000
DC.L $3FFF0000,$AC4C84BA,$6FE4D58F,$00000000
DC.L $3FFF0000,$ADCE4A4A,$606B9712,$00000000
DC.L $3FFF0000,$AF2A2DCD,$8D263C9C,$00000000
DC.L $3FFF0000,$B0656F81,$F22265C7,$00000000
DC.L $3FFF0000,$B1846515,$0F71496A,$00000000
DC.L $3FFF0000,$B28AAA15,$6F9ADA35,$00000000
DC.L $3FFF0000,$B37B44FF,$3766B895,$00000000
DC.L $3FFF0000,$B458C3DC,$E9630433,$00000000
DC.L $3FFF0000,$B525529D,$562246BD,$00000000
DC.L $3FFF0000,$B5E2CCA9,$5F9D88CC,$00000000
DC.L $3FFF0000,$B692CADA,$7ACA1ADA,$00000000
DC.L $3FFF0000,$B736AEA7,$A6925838,$00000000
DC.L $3FFF0000,$B7CFAB28,$7E9F7B36,$00000000
DC.L $3FFF0000,$B85ECC66,$CB219835,$00000000
DC.L $3FFF0000,$B8E4FD5A,$20A593DA,$00000000
DC.L $3FFF0000,$B99F41F6,$4AFF9BB5,$00000000
DC.L $3FFF0000,$BA7F1E17,$842BBE7B,$00000000
DC.L $3FFF0000,$BB471285,$7637E17D,$00000000
DC.L $3FFF0000,$BBFABE8A,$4788DF6F,$00000000
DC.L $3FFF0000,$BC9D0FAD,$2B689D79,$00000000
DC.L $3FFF0000,$BD306A39,$471ECD86,$00000000
DC.L $3FFF0000,$BDB6C731,$856AF18A,$00000000
DC.L $3FFF0000,$BE31CAC5,$02E80D70,$00000000
DC.L $3FFF0000,$BEA2D55C,$E33194E2,$00000000
DC.L $3FFF0000,$BF0B10B7,$C03128F0,$00000000
DC.L $3FFF0000,$BF6B7A18,$DACB778D,$00000000
DC.L $3FFF0000,$BFC4EA46,$63FA18F6,$00000000
DC.L $3FFF0000,$C0181BDE,$8B89A454,$00000000
DC.L $3FFF0000,$C065B066,$CFBF6439,$00000000
DC.L $3FFF0000,$C0AE345F,$56340AE6,$00000000
DC.L $3FFF0000,$C0F22291,$9CB9E6A7,$00000000
X equ FP_SCR1
XDCARE equ X+2
XFRAC equ X+4
XFRACLO equ X+8
ATANF equ FP_SCR2
ATANFHI equ ATANF+4
ATANFLO equ ATANF+8
xref t_frcinx
xref t_extdnrm
xdef satand
satand:
*--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT
bra t_extdnrm
xdef satan
satan:
*--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
FMOVE.X (A0),FP0 ...LOAD INPUT
MOVE.L (A0),D0
MOVE.W 4(A0),D0
FMOVE.X FP0,X(a6)
ANDI.L #$7FFFFFFF,D0
CMPI.L #$3FFB8000,D0 ...|X| >= 1/16?
BGE.B ATANOK1
BRA.W ATANSM
ATANOK1:
CMPI.L #$4002FFFF,D0 ...|X| < 16 ?
BLE.B ATANMAIN
BRA.W ATANBIG
*--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE
*--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ).
*--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN
*--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE
*--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS
*--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR
*--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO
*--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE
*--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL
*--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE
*--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION
*--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION
*--WILL INVOLVE A VERY LONG POLYNOMIAL.
*--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS
*--WE CHOSE F TO BE +-2^K * 1.BBBB1
*--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE
*--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE
*--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS
*-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|).
ATANMAIN:
CLR.W XDCARE(a6) ...CLEAN UP X JUST IN CASE
ANDI.L #$F8000000,XFRAC(a6) ...FIRST 5 BITS
ORI.L #$04000000,XFRAC(a6) ...SET 6-TH BIT TO 1
CLR.L XFRACLO(a6) ...LOCATION OF X IS NOW F
FMOVE.X FP0,FP1 ...FP1 IS X
FMUL.X X(a6),FP1 ...FP1 IS X*F, NOTE THAT X*F > 0
FSUB.X X(a6),FP0 ...FP0 IS X-F
FADD.S #:3F800000,FP1 ...FP1 IS 1 + X*F
FDIV.X FP1,FP0 ...FP0 IS U = (X-F)/(1+X*F)
*--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|)
*--CREATE ATAN(F) AND STORE IT IN ATANF, AND
*--SAVE REGISTERS FP2.
MOVE.L d2,-(a7) ...SAVE d2 TEMPORARILY
MOVE.L d0,d2 ...THE EXPO AND 16 BITS OF X
ANDI.L #$00007800,d0 ...4 VARYING BITS OF F'S FRACTION
ANDI.L #$7FFF0000,d2 ...EXPONENT OF F
SUBI.L #$3FFB0000,d2 ...K+4
ASR.L #1,d2
ADD.L d2,d0 ...THE 7 BITS IDENTIFYING F
ASR.L #7,d0 ...INDEX INTO TBL OF ATAN(|F|)
LEA ATANTBL,a1
ADDA.L d0,a1 ...ADDRESS OF ATAN(|F|)
MOVE.L (a1)+,ATANF(a6)
MOVE.L (a1)+,ATANFHI(a6)
MOVE.L (a1)+,ATANFLO(a6) ...ATANF IS NOW ATAN(|F|)
MOVE.L X(a6),d0 ...LOAD SIGN AND EXPO. AGAIN
ANDI.L #$80000000,d0 ...SIGN(F)
OR.L d0,ATANF(a6) ...ATANF IS NOW SIGN(F)*ATAN(|F|)
MOVE.L (a7)+,d2 ...RESTORE d2
*--THAT'S ALL I HAVE TO DO FOR NOW,
*--BUT ALAS, THE DIVIDE IS STILL CRANKING!
*--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS
*--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U
*--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT.
*--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3))
*--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3.
*--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT
*--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED
FMOVE.X FP0,FP1
FMUL.X FP1,FP1
FMOVE.D ATANA3,FP2
FADD.X FP1,FP2 ...A3+V
FMUL.X FP1,FP2 ...V*(A3+V)
FMUL.X FP0,FP1 ...U*V
FADD.D ATANA2,FP2 ...A2+V*(A3+V)
FMUL.D ATANA1,FP1 ...A1*U*V
FMUL.X FP2,FP1 ...A1*U*V*(A2+V*(A3+V))
FADD.X FP1,FP0 ...ATAN(U), FP1 RELEASED
FMOVE.L d1,FPCR ;restore users exceptions
FADD.X ATANF(a6),FP0 ...ATAN(X)
bra t_frcinx
ATANBORS:
*--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED.
*--FP0 IS X AND |X| <= 1/16 OR |X| >= 16.
CMPI.L #$3FFF8000,d0
BGT.W ATANBIG ...I.E. |X| >= 16
ATANSM:
*--|X| <= 1/16
*--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE
*--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6)))))
*--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] )
*--WHERE Y = X*X, AND Z = Y*Y.
CMPI.L #$3FD78000,d0
BLT.W ATANTINY
*--COMPUTE POLYNOMIAL
FMUL.X FP0,FP0 ...FP0 IS Y = X*X
CLR.W XDCARE(a6)
FMOVE.X FP0,FP1
FMUL.X FP1,FP1 ...FP1 IS Z = Y*Y
FMOVE.D ATANB6,FP2
FMOVE.D ATANB5,FP3
FMUL.X FP1,FP2 ...Z*B6
FMUL.X FP1,FP3 ...Z*B5
FADD.D ATANB4,FP2 ...B4+Z*B6
FADD.D ATANB3,FP3 ...B3+Z*B5
FMUL.X FP1,FP2 ...Z*(B4+Z*B6)
FMUL.X FP3,FP1 ...Z*(B3+Z*B5)
FADD.D ATANB2,FP2 ...B2+Z*(B4+Z*B6)
FADD.D ATANB1,FP1 ...B1+Z*(B3+Z*B5)
FMUL.X FP0,FP2 ...Y*(B2+Z*(B4+Z*B6))
FMUL.X X(a6),FP0 ...X*Y
FADD.X FP2,FP1 ...[B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]
FMUL.X FP1,FP0 ...X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))])
FMOVE.L d1,FPCR ;restore users exceptions
FADD.X X(a6),FP0
bra t_frcinx
ATANTINY:
*--|X| < 2^(-40), ATAN(X) = X
CLR.W XDCARE(a6)
FMOVE.L d1,FPCR ;restore users exceptions
FMOVE.X X(a6),FP0 ;last inst - possible exception set
bra t_frcinx
ATANBIG:
*--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE,
*--RETURN SIGN(X)*PI/2 + ATAN(-1/X).
CMPI.L #$40638000,d0
BGT.W ATANHUGE
*--APPROXIMATE ATAN(-1/X) BY
*--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X'
*--THIS CAN BE RE-WRITTEN AS
*--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y.
FMOVE.S #:BF800000,FP1 ...LOAD -1
FDIV.X FP0,FP1 ...FP1 IS -1/X
*--DIVIDE IS STILL CRANKING
FMOVE.X FP1,FP0 ...FP0 IS X'
FMUL.X FP0,FP0 ...FP0 IS Y = X'*X'
FMOVE.X FP1,X(a6) ...X IS REALLY X'
FMOVE.X FP0,FP1
FMUL.X FP1,FP1 ...FP1 IS Z = Y*Y
FMOVE.D ATANC5,FP3
FMOVE.D ATANC4,FP2
FMUL.X FP1,FP3 ...Z*C5
FMUL.X FP1,FP2 ...Z*B4
FADD.D ATANC3,FP3 ...C3+Z*C5
FADD.D ATANC2,FP2 ...C2+Z*C4
FMUL.X FP3,FP1 ...Z*(C3+Z*C5), FP3 RELEASED
FMUL.X FP0,FP2 ...Y*(C2+Z*C4)
FADD.D ATANC1,FP1 ...C1+Z*(C3+Z*C5)
FMUL.X X(a6),FP0 ...X'*Y
FADD.X FP2,FP1 ...[Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)]
FMUL.X FP1,FP0 ...X'*Y*([B1+Z*(B3+Z*B5)]
* ... +[Y*(B2+Z*(B4+Z*B6))])
FADD.X X(a6),FP0
FMOVE.L d1,FPCR ;restore users exceptions
btst.b #7,(a0)
beq.b pos_big
neg_big:
FADD.X NPIBY2,FP0
bra t_frcinx
pos_big:
FADD.X PPIBY2,FP0
bra t_frcinx
ATANHUGE:
*--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY
btst.b #7,(a0)
beq.b pos_huge
neg_huge:
FMOVE.X NPIBY2,fp0
fmove.l d1,fpcr
fsub.x NTINY,fp0
bra t_frcinx
pos_huge:
FMOVE.X PPIBY2,fp0
fmove.l d1,fpcr
fsub.x PTINY,fp0
bra t_frcinx
end
|