1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
|
* $NetBSD: slogn.sa,v 1.3 1994/10/26 07:49:54 cgd Exp $
* MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
* M68000 Hi-Performance Microprocessor Division
* M68040 Software Package
*
* M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
* All rights reserved.
*
* THE SOFTWARE is provided on an "AS IS" basis and without warranty.
* To the maximum extent permitted by applicable law,
* MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
* INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
* PARTICULAR PURPOSE and any warranty against infringement with
* regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
* and any accompanying written materials.
*
* To the maximum extent permitted by applicable law,
* IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
* (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
* PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
* OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
* SOFTWARE. Motorola assumes no responsibility for the maintenance
* and support of the SOFTWARE.
*
* You are hereby granted a copyright license to use, modify, and
* distribute the SOFTWARE so long as this entire notice is retained
* without alteration in any modified and/or redistributed versions,
* and that such modified versions are clearly identified as such.
* No licenses are granted by implication, estoppel or otherwise
* under any patents or trademarks of Motorola, Inc.
*
* slogn.sa 3.1 12/10/90
*
* slogn computes the natural logarithm of an
* input value. slognd does the same except the input value is a
* denormalized number. slognp1 computes log(1+X), and slognp1d
* computes log(1+X) for denormalized X.
*
* Input: Double-extended value in memory location pointed to by address
* register a0.
*
* Output: log(X) or log(1+X) returned in floating-point register Fp0.
*
* Accuracy and Monotonicity: The returned result is within 2 ulps in
* 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
* result is subsequently rounded to double precision. The
* result is provably monotonic in double precision.
*
* Speed: The program slogn takes approximately 190 cycles for input
* argument X such that |X-1| >= 1/16, which is the the usual
* situation. For those arguments, slognp1 takes approximately
* 210 cycles. For the less common arguments, the program will
* run no worse than 10% slower.
*
* Algorithm:
* LOGN:
* Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in
* u, where u = 2(X-1)/(X+1). Otherwise, move on to Step 2.
*
* Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first seven
* significant bits of Y plus 2**(-7), i.e. F = 1.xxxxxx1 in base
* 2 where the six "x" match those of Y. Note that |Y-F| <= 2**(-7).
*
* Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a polynomial in u,
* log(1+u) = poly.
*
* Step 4. Reconstruct log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u)
* by k*log(2) + (log(F) + poly). The values of log(F) are calculated
* beforehand and stored in the program.
*
* lognp1:
* Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in
* u where u = 2X/(2+X). Otherwise, move on to Step 2.
*
* Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done in Step 2
* of the algorithm for LOGN and compute log(1+X) as
* k*log(2) + log(F) + poly where poly approximates log(1+u),
* u = (Y-F)/F.
*
* Implementation Notes:
* Note 1. There are 64 different possible values for F, thus 64 log(F)'s
* need to be tabulated. Moreover, the values of 1/F are also
* tabulated so that the division in (Y-F)/F can be performed by a
* multiplication.
*
* Note 2. In Step 2 of lognp1, in order to preserved accuracy, the value
* Y-F has to be calculated carefully when 1/2 <= X < 3/2.
*
* Note 3. To fully exploit the pipeline, polynomials are usually separated
* into two parts evaluated independently before being added up.
*
slogn IDNT 2,1 Motorola 040 Floating Point Software Package
section 8
include fpsp.h
BOUNDS1 DC.L $3FFEF07D,$3FFF8841
BOUNDS2 DC.L $3FFE8000,$3FFFC000
LOGOF2 DC.L $3FFE0000,$B17217F7,$D1CF79AC,$00000000
one DC.L $3F800000
zero DC.L $00000000
infty DC.L $7F800000
negone DC.L $BF800000
LOGA6 DC.L $3FC2499A,$B5E4040B
LOGA5 DC.L $BFC555B5,$848CB7DB
LOGA4 DC.L $3FC99999,$987D8730
LOGA3 DC.L $BFCFFFFF,$FF6F7E97
LOGA2 DC.L $3FD55555,$555555A4
LOGA1 DC.L $BFE00000,$00000008
LOGB5 DC.L $3F175496,$ADD7DAD6
LOGB4 DC.L $3F3C71C2,$FE80C7E0
LOGB3 DC.L $3F624924,$928BCCFF
LOGB2 DC.L $3F899999,$999995EC
LOGB1 DC.L $3FB55555,$55555555
TWO DC.L $40000000,$00000000
LTHOLD DC.L $3f990000,$80000000,$00000000,$00000000
LOGTBL:
DC.L $3FFE0000,$FE03F80F,$E03F80FE,$00000000
DC.L $3FF70000,$FF015358,$833C47E2,$00000000
DC.L $3FFE0000,$FA232CF2,$52138AC0,$00000000
DC.L $3FF90000,$BDC8D83E,$AD88D549,$00000000
DC.L $3FFE0000,$F6603D98,$0F6603DA,$00000000
DC.L $3FFA0000,$9CF43DCF,$F5EAFD48,$00000000
DC.L $3FFE0000,$F2B9D648,$0F2B9D65,$00000000
DC.L $3FFA0000,$DA16EB88,$CB8DF614,$00000000
DC.L $3FFE0000,$EF2EB71F,$C4345238,$00000000
DC.L $3FFB0000,$8B29B775,$1BD70743,$00000000
DC.L $3FFE0000,$EBBDB2A5,$C1619C8C,$00000000
DC.L $3FFB0000,$A8D839F8,$30C1FB49,$00000000
DC.L $3FFE0000,$E865AC7B,$7603A197,$00000000
DC.L $3FFB0000,$C61A2EB1,$8CD907AD,$00000000
DC.L $3FFE0000,$E525982A,$F70C880E,$00000000
DC.L $3FFB0000,$E2F2A47A,$DE3A18AF,$00000000
DC.L $3FFE0000,$E1FC780E,$1FC780E2,$00000000
DC.L $3FFB0000,$FF64898E,$DF55D551,$00000000
DC.L $3FFE0000,$DEE95C4C,$A037BA57,$00000000
DC.L $3FFC0000,$8DB956A9,$7B3D0148,$00000000
DC.L $3FFE0000,$DBEB61EE,$D19C5958,$00000000
DC.L $3FFC0000,$9B8FE100,$F47BA1DE,$00000000
DC.L $3FFE0000,$D901B203,$6406C80E,$00000000
DC.L $3FFC0000,$A9372F1D,$0DA1BD17,$00000000
DC.L $3FFE0000,$D62B80D6,$2B80D62C,$00000000
DC.L $3FFC0000,$B6B07F38,$CE90E46B,$00000000
DC.L $3FFE0000,$D3680D36,$80D3680D,$00000000
DC.L $3FFC0000,$C3FD0329,$06488481,$00000000
DC.L $3FFE0000,$D0B69FCB,$D2580D0B,$00000000
DC.L $3FFC0000,$D11DE0FF,$15AB18CA,$00000000
DC.L $3FFE0000,$CE168A77,$25080CE1,$00000000
DC.L $3FFC0000,$DE1433A1,$6C66B150,$00000000
DC.L $3FFE0000,$CB8727C0,$65C393E0,$00000000
DC.L $3FFC0000,$EAE10B5A,$7DDC8ADD,$00000000
DC.L $3FFE0000,$C907DA4E,$871146AD,$00000000
DC.L $3FFC0000,$F7856E5E,$E2C9B291,$00000000
DC.L $3FFE0000,$C6980C69,$80C6980C,$00000000
DC.L $3FFD0000,$82012CA5,$A68206D7,$00000000
DC.L $3FFE0000,$C4372F85,$5D824CA6,$00000000
DC.L $3FFD0000,$882C5FCD,$7256A8C5,$00000000
DC.L $3FFE0000,$C1E4BBD5,$95F6E947,$00000000
DC.L $3FFD0000,$8E44C60B,$4CCFD7DE,$00000000
DC.L $3FFE0000,$BFA02FE8,$0BFA02FF,$00000000
DC.L $3FFD0000,$944AD09E,$F4351AF6,$00000000
DC.L $3FFE0000,$BD691047,$07661AA3,$00000000
DC.L $3FFD0000,$9A3EECD4,$C3EAA6B2,$00000000
DC.L $3FFE0000,$BB3EE721,$A54D880C,$00000000
DC.L $3FFD0000,$A0218434,$353F1DE8,$00000000
DC.L $3FFE0000,$B92143FA,$36F5E02E,$00000000
DC.L $3FFD0000,$A5F2FCAB,$BBC506DA,$00000000
DC.L $3FFE0000,$B70FBB5A,$19BE3659,$00000000
DC.L $3FFD0000,$ABB3B8BA,$2AD362A5,$00000000
DC.L $3FFE0000,$B509E68A,$9B94821F,$00000000
DC.L $3FFD0000,$B1641795,$CE3CA97B,$00000000
DC.L $3FFE0000,$B30F6352,$8917C80B,$00000000
DC.L $3FFD0000,$B7047551,$5D0F1C61,$00000000
DC.L $3FFE0000,$B11FD3B8,$0B11FD3C,$00000000
DC.L $3FFD0000,$BC952AFE,$EA3D13E1,$00000000
DC.L $3FFE0000,$AF3ADDC6,$80AF3ADE,$00000000
DC.L $3FFD0000,$C2168ED0,$F458BA4A,$00000000
DC.L $3FFE0000,$AD602B58,$0AD602B6,$00000000
DC.L $3FFD0000,$C788F439,$B3163BF1,$00000000
DC.L $3FFE0000,$AB8F69E2,$8359CD11,$00000000
DC.L $3FFD0000,$CCECAC08,$BF04565D,$00000000
DC.L $3FFE0000,$A9C84A47,$A07F5638,$00000000
DC.L $3FFD0000,$D2420487,$2DD85160,$00000000
DC.L $3FFE0000,$A80A80A8,$0A80A80B,$00000000
DC.L $3FFD0000,$D7894992,$3BC3588A,$00000000
DC.L $3FFE0000,$A655C439,$2D7B73A8,$00000000
DC.L $3FFD0000,$DCC2C4B4,$9887DACC,$00000000
DC.L $3FFE0000,$A4A9CF1D,$96833751,$00000000
DC.L $3FFD0000,$E1EEBD3E,$6D6A6B9E,$00000000
DC.L $3FFE0000,$A3065E3F,$AE7CD0E0,$00000000
DC.L $3FFD0000,$E70D785C,$2F9F5BDC,$00000000
DC.L $3FFE0000,$A16B312E,$A8FC377D,$00000000
DC.L $3FFD0000,$EC1F392C,$5179F283,$00000000
DC.L $3FFE0000,$9FD809FD,$809FD80A,$00000000
DC.L $3FFD0000,$F12440D3,$E36130E6,$00000000
DC.L $3FFE0000,$9E4CAD23,$DD5F3A20,$00000000
DC.L $3FFD0000,$F61CCE92,$346600BB,$00000000
DC.L $3FFE0000,$9CC8E160,$C3FB19B9,$00000000
DC.L $3FFD0000,$FB091FD3,$8145630A,$00000000
DC.L $3FFE0000,$9B4C6F9E,$F03A3CAA,$00000000
DC.L $3FFD0000,$FFE97042,$BFA4C2AD,$00000000
DC.L $3FFE0000,$99D722DA,$BDE58F06,$00000000
DC.L $3FFE0000,$825EFCED,$49369330,$00000000
DC.L $3FFE0000,$9868C809,$868C8098,$00000000
DC.L $3FFE0000,$84C37A7A,$B9A905C9,$00000000
DC.L $3FFE0000,$97012E02,$5C04B809,$00000000
DC.L $3FFE0000,$87224C2E,$8E645FB7,$00000000
DC.L $3FFE0000,$95A02568,$095A0257,$00000000
DC.L $3FFE0000,$897B8CAC,$9F7DE298,$00000000
DC.L $3FFE0000,$94458094,$45809446,$00000000
DC.L $3FFE0000,$8BCF55DE,$C4CD05FE,$00000000
DC.L $3FFE0000,$92F11384,$0497889C,$00000000
DC.L $3FFE0000,$8E1DC0FB,$89E125E5,$00000000
DC.L $3FFE0000,$91A2B3C4,$D5E6F809,$00000000
DC.L $3FFE0000,$9066E68C,$955B6C9B,$00000000
DC.L $3FFE0000,$905A3863,$3E06C43B,$00000000
DC.L $3FFE0000,$92AADE74,$C7BE59E0,$00000000
DC.L $3FFE0000,$8F1779D9,$FDC3A219,$00000000
DC.L $3FFE0000,$94E9BFF6,$15845643,$00000000
DC.L $3FFE0000,$8DDA5202,$37694809,$00000000
DC.L $3FFE0000,$9723A1B7,$20134203,$00000000
DC.L $3FFE0000,$8CA29C04,$6514E023,$00000000
DC.L $3FFE0000,$995899C8,$90EB8990,$00000000
DC.L $3FFE0000,$8B70344A,$139BC75A,$00000000
DC.L $3FFE0000,$9B88BDAA,$3A3DAE2F,$00000000
DC.L $3FFE0000,$8A42F870,$5669DB46,$00000000
DC.L $3FFE0000,$9DB4224F,$FFE1157C,$00000000
DC.L $3FFE0000,$891AC73A,$E9819B50,$00000000
DC.L $3FFE0000,$9FDADC26,$8B7A12DA,$00000000
DC.L $3FFE0000,$87F78087,$F78087F8,$00000000
DC.L $3FFE0000,$A1FCFF17,$CE733BD4,$00000000
DC.L $3FFE0000,$86D90544,$7A34ACC6,$00000000
DC.L $3FFE0000,$A41A9E8F,$5446FB9F,$00000000
DC.L $3FFE0000,$85BF3761,$2CEE3C9B,$00000000
DC.L $3FFE0000,$A633CD7E,$6771CD8B,$00000000
DC.L $3FFE0000,$84A9F9C8,$084A9F9D,$00000000
DC.L $3FFE0000,$A8489E60,$0B435A5E,$00000000
DC.L $3FFE0000,$83993052,$3FBE3368,$00000000
DC.L $3FFE0000,$AA59233C,$CCA4BD49,$00000000
DC.L $3FFE0000,$828CBFBE,$B9A020A3,$00000000
DC.L $3FFE0000,$AC656DAE,$6BCC4985,$00000000
DC.L $3FFE0000,$81848DA8,$FAF0D277,$00000000
DC.L $3FFE0000,$AE6D8EE3,$60BB2468,$00000000
DC.L $3FFE0000,$80808080,$80808081,$00000000
DC.L $3FFE0000,$B07197A2,$3C46C654,$00000000
ADJK equ L_SCR1
X equ FP_SCR1
XDCARE equ X+2
XFRAC equ X+4
F equ FP_SCR2
FFRAC equ F+4
KLOG2 equ FP_SCR3
SAVEU equ FP_SCR4
xref t_frcinx
xref t_extdnrm
xref t_operr
xref t_dz
xdef slognd
slognd:
*--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT
MOVE.L #-100,ADJK(a6) ...INPUT = 2^(ADJK) * FP0
*----normalize the input value by left shifting k bits (k to be determined
*----below), adjusting exponent and storing -k to ADJK
*----the value TWOTO100 is no longer needed.
*----Note that this code assumes the denormalized input is NON-ZERO.
MoveM.L D2-D7,-(A7) ...save some registers
Clr.L D3 ...D3 is exponent of smallest norm. #
Move.L 4(A0),D4
Move.L 8(A0),D5 ...(D4,D5) is (Hi_X,Lo_X)
Clr.L D2 ...D2 used for holding K
Tst.L D4
BNE.B HiX_not0
HiX_0:
Move.L D5,D4
Clr.L D5
Move.L #32,D2
Clr.L D6
BFFFO D4{0:32},D6
LSL.L D6,D4
Add.L D6,D2 ...(D3,D4,D5) is normalized
Move.L D3,X(a6)
Move.L D4,XFRAC(a6)
Move.L D5,XFRAC+4(a6)
Neg.L D2
Move.L D2,ADJK(a6)
FMove.X X(a6),FP0
MoveM.L (A7)+,D2-D7 ...restore registers
LEA X(a6),A0
Bra.B LOGBGN ...begin regular log(X)
HiX_not0:
Clr.L D6
BFFFO D4{0:32},D6 ...find first 1
Move.L D6,D2 ...get k
LSL.L D6,D4
Move.L D5,D7 ...a copy of D5
LSL.L D6,D5
Neg.L D6
AddI.L #32,D6
LSR.L D6,D7
Or.L D7,D4 ...(D3,D4,D5) normalized
Move.L D3,X(a6)
Move.L D4,XFRAC(a6)
Move.L D5,XFRAC+4(a6)
Neg.L D2
Move.L D2,ADJK(a6)
FMove.X X(a6),FP0
MoveM.L (A7)+,D2-D7 ...restore registers
LEA X(a6),A0
Bra.B LOGBGN ...begin regular log(X)
xdef slogn
slogn:
*--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S
FMOVE.X (A0),FP0 ...LOAD INPUT
CLR.L ADJK(a6)
LOGBGN:
*--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS
*--A FINITE, NON-ZERO, NORMALIZED NUMBER.
move.l (a0),d0
move.w 4(a0),d0
move.l (a0),X(a6)
move.l 4(a0),X+4(a6)
move.l 8(a0),X+8(a6)
TST.L D0 ...CHECK IF X IS NEGATIVE
BLT.W LOGNEG ...LOG OF NEGATIVE ARGUMENT IS INVALID
CMP2.L BOUNDS1,D0 ...X IS POSITIVE, CHECK IF X IS NEAR 1
BCC.W LOGNEAR1 ...BOUNDS IS ROUGHLY [15/16, 17/16]
LOGMAIN:
*--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1
*--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY.
*--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1.
*--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y)
*-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F).
*--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING
*--LOG(1+U) CAN BE VERY EFFICIENT.
*--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO
*--DIVISION IS NEEDED TO CALCULATE (Y-F)/F.
*--GET K, Y, F, AND ADDRESS OF 1/F.
ASR.L #8,D0
ASR.L #8,D0 ...SHIFTED 16 BITS, BIASED EXPO. OF X
SUBI.L #$3FFF,D0 ...THIS IS K
ADD.L ADJK(a6),D0 ...ADJUST K, ORIGINAL INPUT MAY BE DENORM.
LEA LOGTBL,A0 ...BASE ADDRESS OF 1/F AND LOG(F)
FMOVE.L D0,FP1 ...CONVERT K TO FLOATING-POINT FORMAT
*--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F
MOVE.L #$3FFF0000,X(a6) ...X IS NOW Y, I.E. 2^(-K)*X
MOVE.L XFRAC(a6),FFRAC(a6)
ANDI.L #$FE000000,FFRAC(a6) ...FIRST 7 BITS OF Y
ORI.L #$01000000,FFRAC(a6) ...GET F: ATTACH A 1 AT THE EIGHTH BIT
MOVE.L FFRAC(a6),D0 ...READY TO GET ADDRESS OF 1/F
ANDI.L #$7E000000,D0
ASR.L #8,D0
ASR.L #8,D0
ASR.L #4,D0 ...SHIFTED 20, D0 IS THE DISPLACEMENT
ADDA.L D0,A0 ...A0 IS THE ADDRESS FOR 1/F
FMOVE.X X(a6),FP0
move.l #$3fff0000,F(a6)
clr.l F+8(a6)
FSUB.X F(a6),FP0 ...Y-F
FMOVEm.X FP2/fp3,-(sp) ...SAVE FP2 WHILE FP0 IS NOT READY
*--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K
*--REGISTERS SAVED: FPCR, FP1, FP2
LP1CONT1:
*--AN RE-ENTRY POINT FOR LOGNP1
FMUL.X (A0),FP0 ...FP0 IS U = (Y-F)/F
FMUL.X LOGOF2,FP1 ...GET K*LOG2 WHILE FP0 IS NOT READY
FMOVE.X FP0,FP2
FMUL.X FP2,FP2 ...FP2 IS V=U*U
FMOVE.X FP1,KLOG2(a6) ...PUT K*LOG2 IN MEMEORY, FREE FP1
*--LOG(1+U) IS APPROXIMATED BY
*--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS
*--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))]
FMOVE.X FP2,FP3
FMOVE.X FP2,FP1
FMUL.D LOGA6,FP1 ...V*A6
FMUL.D LOGA5,FP2 ...V*A5
FADD.D LOGA4,FP1 ...A4+V*A6
FADD.D LOGA3,FP2 ...A3+V*A5
FMUL.X FP3,FP1 ...V*(A4+V*A6)
FMUL.X FP3,FP2 ...V*(A3+V*A5)
FADD.D LOGA2,FP1 ...A2+V*(A4+V*A6)
FADD.D LOGA1,FP2 ...A1+V*(A3+V*A5)
FMUL.X FP3,FP1 ...V*(A2+V*(A4+V*A6))
ADDA.L #16,A0 ...ADDRESS OF LOG(F)
FMUL.X FP3,FP2 ...V*(A1+V*(A3+V*A5)), FP3 RELEASED
FMUL.X FP0,FP1 ...U*V*(A2+V*(A4+V*A6))
FADD.X FP2,FP0 ...U+V*(A1+V*(A3+V*A5)), FP2 RELEASED
FADD.X (A0),FP1 ...LOG(F)+U*V*(A2+V*(A4+V*A6))
FMOVEm.X (sp)+,FP2/fp3 ...RESTORE FP2
FADD.X FP1,FP0 ...FP0 IS LOG(F) + LOG(1+U)
fmove.l d1,fpcr
FADD.X KLOG2(a6),FP0 ...FINAL ADD
bra t_frcinx
LOGNEAR1:
*--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT.
FMOVE.X FP0,FP1
FSUB.S one,FP1 ...FP1 IS X-1
FADD.S one,FP0 ...FP0 IS X+1
FADD.X FP1,FP1 ...FP1 IS 2(X-1)
*--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL
*--IN U, U = 2(X-1)/(X+1) = FP1/FP0
LP1CONT2:
*--THIS IS AN RE-ENTRY POINT FOR LOGNP1
FDIV.X FP0,FP1 ...FP1 IS U
FMOVEm.X FP2/fp3,-(sp) ...SAVE FP2
*--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3
*--LET V=U*U, W=V*V, CALCULATE
*--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY
*--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] )
FMOVE.X FP1,FP0
FMUL.X FP0,FP0 ...FP0 IS V
FMOVE.X FP1,SAVEU(a6) ...STORE U IN MEMORY, FREE FP1
FMOVE.X FP0,FP1
FMUL.X FP1,FP1 ...FP1 IS W
FMOVE.D LOGB5,FP3
FMOVE.D LOGB4,FP2
FMUL.X FP1,FP3 ...W*B5
FMUL.X FP1,FP2 ...W*B4
FADD.D LOGB3,FP3 ...B3+W*B5
FADD.D LOGB2,FP2 ...B2+W*B4
FMUL.X FP3,FP1 ...W*(B3+W*B5), FP3 RELEASED
FMUL.X FP0,FP2 ...V*(B2+W*B4)
FADD.D LOGB1,FP1 ...B1+W*(B3+W*B5)
FMUL.X SAVEU(a6),FP0 ...FP0 IS U*V
FADD.X FP2,FP1 ...B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED
FMOVEm.X (sp)+,FP2/fp3 ...FP2 RESTORED
FMUL.X FP1,FP0 ...U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] )
fmove.l d1,fpcr
FADD.X SAVEU(a6),FP0
bra t_frcinx
rts
LOGNEG:
*--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID
bra t_operr
xdef slognp1d
slognp1d:
*--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT
* Simply return the denorm
bra t_extdnrm
xdef slognp1
slognp1:
*--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S
FMOVE.X (A0),FP0 ...LOAD INPUT
fabs.x fp0 ;test magnitude
fcmp.x LTHOLD,fp0 ;compare with min threshold
fbgt.w LP1REAL ;if greater, continue
fmove.l #0,fpsr ;clr N flag from compare
fmove.l d1,fpcr
fmove.x (a0),fp0 ;return signed argument
bra t_frcinx
LP1REAL:
FMOVE.X (A0),FP0 ...LOAD INPUT
CLR.L ADJK(a6)
FMOVE.X FP0,FP1 ...FP1 IS INPUT Z
FADD.S one,FP0 ...X := ROUND(1+Z)
FMOVE.X FP0,X(a6)
MOVE.W XFRAC(a6),XDCARE(a6)
MOVE.L X(a6),D0
TST.L D0
BLE.W LP1NEG0 ...LOG OF ZERO OR -VE
CMP2.L BOUNDS2,D0
BCS.W LOGMAIN ...BOUNDS2 IS [1/2,3/2]
*--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z,
*--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE,
*--SIMPLY INVOKE LOG(X) FOR LOG(1+Z).
LP1NEAR1:
*--NEXT SEE IF EXP(-1/16) < X < EXP(1/16)
CMP2.L BOUNDS1,D0
BCS.B LP1CARE
LP1ONE16:
*--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2)
*--WHERE U = 2Z/(2+Z) = 2Z/(1+X).
FADD.X FP1,FP1 ...FP1 IS 2Z
FADD.S one,FP0 ...FP0 IS 1+X
*--U = FP1/FP0
BRA.W LP1CONT2
LP1CARE:
*--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE
*--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST
*--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2],
*--THERE ARE ONLY TWO CASES.
*--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z
*--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z
*--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF
*--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED.
MOVE.L XFRAC(a6),FFRAC(a6)
ANDI.L #$FE000000,FFRAC(a6)
ORI.L #$01000000,FFRAC(a6) ...F OBTAINED
CMPI.L #$3FFF8000,D0 ...SEE IF 1+Z > 1
BGE.B KISZERO
KISNEG1:
FMOVE.S TWO,FP0
move.l #$3fff0000,F(a6)
clr.l F+8(a6)
FSUB.X F(a6),FP0 ...2-F
MOVE.L FFRAC(a6),D0
ANDI.L #$7E000000,D0
ASR.L #8,D0
ASR.L #8,D0
ASR.L #4,D0 ...D0 CONTAINS DISPLACEMENT FOR 1/F
FADD.X FP1,FP1 ...GET 2Z
FMOVEm.X FP2/fp3,-(sp) ...SAVE FP2
FADD.X FP1,FP0 ...FP0 IS Y-F = (2-F)+2Z
LEA LOGTBL,A0 ...A0 IS ADDRESS OF 1/F
ADDA.L D0,A0
FMOVE.S negone,FP1 ...FP1 IS K = -1
BRA.W LP1CONT1
KISZERO:
FMOVE.S one,FP0
move.l #$3fff0000,F(a6)
clr.l F+8(a6)
FSUB.X F(a6),FP0 ...1-F
MOVE.L FFRAC(a6),D0
ANDI.L #$7E000000,D0
ASR.L #8,D0
ASR.L #8,D0
ASR.L #4,D0
FADD.X FP1,FP0 ...FP0 IS Y-F
FMOVEm.X FP2/fp3,-(sp) ...FP2 SAVED
LEA LOGTBL,A0
ADDA.L D0,A0 ...A0 IS ADDRESS OF 1/F
FMOVE.S zero,FP1 ...FP1 IS K = 0
BRA.W LP1CONT1
LP1NEG0:
*--FPCR SAVED. D0 IS X IN COMPACT FORM.
TST.L D0
BLT.B LP1NEG
LP1ZERO:
FMOVE.S negone,FP0
fmove.l d1,fpcr
bra t_dz
LP1NEG:
FMOVE.S zero,FP0
fmove.l d1,fpcr
bra t_operr
end
|