1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
|
* $OpenBSD: stwotox.sa,v 1.2 1996/05/29 21:05:44 niklas Exp $
* $NetBSD: stwotox.sa,v 1.3 1994/10/26 07:50:15 cgd Exp $
* MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
* M68000 Hi-Performance Microprocessor Division
* M68040 Software Package
*
* M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
* All rights reserved.
*
* THE SOFTWARE is provided on an "AS IS" basis and without warranty.
* To the maximum extent permitted by applicable law,
* MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
* INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
* PARTICULAR PURPOSE and any warranty against infringement with
* regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
* and any accompanying written materials.
*
* To the maximum extent permitted by applicable law,
* IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
* (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
* PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
* OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
* SOFTWARE. Motorola assumes no responsibility for the maintenance
* and support of the SOFTWARE.
*
* You are hereby granted a copyright license to use, modify, and
* distribute the SOFTWARE so long as this entire notice is retained
* without alteration in any modified and/or redistributed versions,
* and that such modified versions are clearly identified as such.
* No licenses are granted by implication, estoppel or otherwise
* under any patents or trademarks of Motorola, Inc.
*
* stwotox.sa 3.1 12/10/90
*
* stwotox --- 2**X
* stwotoxd --- 2**X for denormalized X
* stentox --- 10**X
* stentoxd --- 10**X for denormalized X
*
* Input: Double-extended number X in location pointed to
* by address register a0.
*
* Output: The function values are returned in Fp0.
*
* Accuracy and Monotonicity: The returned result is within 2 ulps in
* 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
* result is subsequently rounded to double precision. The
* result is provably monotonic in double precision.
*
* Speed: The program stwotox takes approximately 190 cycles and the
* program stentox takes approximately 200 cycles.
*
* Algorithm:
*
* twotox
* 1. If |X| > 16480, go to ExpBig.
*
* 2. If |X| < 2**(-70), go to ExpSm.
*
* 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore
* decompose N as
* N = 64(M + M') + j, j = 0,1,2,...,63.
*
* 4. Overwrite r := r * log2. Then
* 2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r).
* Go to expr to compute that expression.
*
* tentox
* 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig.
*
* 2. If |X| < 2**(-70), go to ExpSm.
*
* 3. Set y := X*log_2(10)*64 (base 2 log of 10). Set
* N := round-to-int(y). Decompose N as
* N = 64(M + M') + j, j = 0,1,2,...,63.
*
* 4. Define r as
* r := ((X - N*L1)-N*L2) * L10
* where L1, L2 are the leading and trailing parts of log_10(2)/64
* and L10 is the natural log of 10. Then
* 10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r).
* Go to expr to compute that expression.
*
* expr
* 1. Fetch 2**(j/64) from table as Fact1 and Fact2.
*
* 2. Overwrite Fact1 and Fact2 by
* Fact1 := 2**(M) * Fact1
* Fact2 := 2**(M) * Fact2
* Thus Fact1 + Fact2 = 2**(M) * 2**(j/64).
*
* 3. Calculate P where 1 + P approximates exp(r):
* P = r + r*r*(A1+r*(A2+...+r*A5)).
*
* 4. Let AdjFact := 2**(M'). Return
* AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ).
* Exit.
*
* ExpBig
* 1. Generate overflow by Huge * Huge if X > 0; otherwise, generate
* underflow by Tiny * Tiny.
*
* ExpSm
* 1. Return 1 + X.
*
STWOTOX IDNT 2,1 Motorola 040 Floating Point Software Package
section 8
include fpsp.h
BOUNDS1 DC.L $3FB98000,$400D80C0 ... 2^(-70),16480
BOUNDS2 DC.L $3FB98000,$400B9B07 ... 2^(-70),16480 LOG2/LOG10
L2TEN64 DC.L $406A934F,$0979A371 ... 64LOG10/LOG2
L10TWO1 DC.L $3F734413,$509F8000 ... LOG2/64LOG10
L10TWO2 DC.L $BFCD0000,$C0219DC1,$DA994FD2,$00000000
LOG10 DC.L $40000000,$935D8DDD,$AAA8AC17,$00000000
LOG2 DC.L $3FFE0000,$B17217F7,$D1CF79AC,$00000000
EXPA5 DC.L $3F56C16D,$6F7BD0B2
EXPA4 DC.L $3F811112,$302C712C
EXPA3 DC.L $3FA55555,$55554CC1
EXPA2 DC.L $3FC55555,$55554A54
EXPA1 DC.L $3FE00000,$00000000,$00000000,$00000000
HUGE DC.L $7FFE0000,$FFFFFFFF,$FFFFFFFF,$00000000
TINY DC.L $00010000,$FFFFFFFF,$FFFFFFFF,$00000000
EXPTBL
DC.L $3FFF0000,$80000000,$00000000,$3F738000
DC.L $3FFF0000,$8164D1F3,$BC030773,$3FBEF7CA
DC.L $3FFF0000,$82CD8698,$AC2BA1D7,$3FBDF8A9
DC.L $3FFF0000,$843A28C3,$ACDE4046,$3FBCD7C9
DC.L $3FFF0000,$85AAC367,$CC487B15,$BFBDE8DA
DC.L $3FFF0000,$871F6196,$9E8D1010,$3FBDE85C
DC.L $3FFF0000,$88980E80,$92DA8527,$3FBEBBF1
DC.L $3FFF0000,$8A14D575,$496EFD9A,$3FBB80CA
DC.L $3FFF0000,$8B95C1E3,$EA8BD6E7,$BFBA8373
DC.L $3FFF0000,$8D1ADF5B,$7E5BA9E6,$BFBE9670
DC.L $3FFF0000,$8EA4398B,$45CD53C0,$3FBDB700
DC.L $3FFF0000,$9031DC43,$1466B1DC,$3FBEEEB0
DC.L $3FFF0000,$91C3D373,$AB11C336,$3FBBFD6D
DC.L $3FFF0000,$935A2B2F,$13E6E92C,$BFBDB319
DC.L $3FFF0000,$94F4EFA8,$FEF70961,$3FBDBA2B
DC.L $3FFF0000,$96942D37,$20185A00,$3FBE91D5
DC.L $3FFF0000,$9837F051,$8DB8A96F,$3FBE8D5A
DC.L $3FFF0000,$99E04593,$20B7FA65,$BFBCDE7B
DC.L $3FFF0000,$9B8D39B9,$D54E5539,$BFBEBAAF
DC.L $3FFF0000,$9D3ED9A7,$2CFFB751,$BFBD86DA
DC.L $3FFF0000,$9EF53260,$91A111AE,$BFBEBEDD
DC.L $3FFF0000,$A0B0510F,$B9714FC2,$3FBCC96E
DC.L $3FFF0000,$A2704303,$0C496819,$BFBEC90B
DC.L $3FFF0000,$A43515AE,$09E6809E,$3FBBD1DB
DC.L $3FFF0000,$A5FED6A9,$B15138EA,$3FBCE5EB
DC.L $3FFF0000,$A7CD93B4,$E965356A,$BFBEC274
DC.L $3FFF0000,$A9A15AB4,$EA7C0EF8,$3FBEA83C
DC.L $3FFF0000,$AB7A39B5,$A93ED337,$3FBECB00
DC.L $3FFF0000,$AD583EEA,$42A14AC6,$3FBE9301
DC.L $3FFF0000,$AF3B78AD,$690A4375,$BFBD8367
DC.L $3FFF0000,$B123F581,$D2AC2590,$BFBEF05F
DC.L $3FFF0000,$B311C412,$A9112489,$3FBDFB3C
DC.L $3FFF0000,$B504F333,$F9DE6484,$3FBEB2FB
DC.L $3FFF0000,$B6FD91E3,$28D17791,$3FBAE2CB
DC.L $3FFF0000,$B8FBAF47,$62FB9EE9,$3FBCDC3C
DC.L $3FFF0000,$BAFF5AB2,$133E45FB,$3FBEE9AA
DC.L $3FFF0000,$BD08A39F,$580C36BF,$BFBEAEFD
DC.L $3FFF0000,$BF1799B6,$7A731083,$BFBCBF51
DC.L $3FFF0000,$C12C4CCA,$66709456,$3FBEF88A
DC.L $3FFF0000,$C346CCDA,$24976407,$3FBD83B2
DC.L $3FFF0000,$C5672A11,$5506DADD,$3FBDF8AB
DC.L $3FFF0000,$C78D74C8,$ABB9B15D,$BFBDFB17
DC.L $3FFF0000,$C9B9BD86,$6E2F27A3,$BFBEFE3C
DC.L $3FFF0000,$CBEC14FE,$F2727C5D,$BFBBB6F8
DC.L $3FFF0000,$CE248C15,$1F8480E4,$BFBCEE53
DC.L $3FFF0000,$D06333DA,$EF2B2595,$BFBDA4AE
DC.L $3FFF0000,$D2A81D91,$F12AE45A,$3FBC9124
DC.L $3FFF0000,$D4F35AAB,$CFEDFA1F,$3FBEB243
DC.L $3FFF0000,$D744FCCA,$D69D6AF4,$3FBDE69A
DC.L $3FFF0000,$D99D15C2,$78AFD7B6,$BFB8BC61
DC.L $3FFF0000,$DBFBB797,$DAF23755,$3FBDF610
DC.L $3FFF0000,$DE60F482,$5E0E9124,$BFBD8BE1
DC.L $3FFF0000,$E0CCDEEC,$2A94E111,$3FBACB12
DC.L $3FFF0000,$E33F8972,$BE8A5A51,$3FBB9BFE
DC.L $3FFF0000,$E5B906E7,$7C8348A8,$3FBCF2F4
DC.L $3FFF0000,$E8396A50,$3C4BDC68,$3FBEF22F
DC.L $3FFF0000,$EAC0C6E7,$DD24392F,$BFBDBF4A
DC.L $3FFF0000,$ED4F301E,$D9942B84,$3FBEC01A
DC.L $3FFF0000,$EFE4B99B,$DCDAF5CB,$3FBE8CAC
DC.L $3FFF0000,$F281773C,$59FFB13A,$BFBCBB3F
DC.L $3FFF0000,$F5257D15,$2486CC2C,$3FBEF73A
DC.L $3FFF0000,$F7D0DF73,$0AD13BB9,$BFB8B795
DC.L $3FFF0000,$FA83B2DB,$722A033A,$3FBEF84B
DC.L $3FFF0000,$FD3E0C0C,$F486C175,$BFBEF581
N equ L_SCR1
X equ FP_SCR1
XDCARE equ X+2
XFRAC equ X+4
ADJFACT equ FP_SCR2
FACT1 equ FP_SCR3
FACT1HI equ FACT1+4
FACT1LOW equ FACT1+8
FACT2 equ FP_SCR4
FACT2HI equ FACT2+4
FACT2LOW equ FACT2+8
xref t_unfl
xref t_ovfl
xref t_frcinx
xdef stwotoxd
stwotoxd:
*--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT
fmove.l d1,fpcr ...set user's rounding mode/precision
Fmove.S #:3F800000,FP0 ...RETURN 1 + X
move.l (a0),d0
or.l #$00800001,d0
fadd.s d0,fp0
bra t_frcinx
xdef stwotox
stwotox:
*--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
FMOVEM.X (a0),FP0 ...LOAD INPUT, do not set cc's
MOVE.L (A0),D0
MOVE.W 4(A0),D0
FMOVE.X FP0,X(a6)
ANDI.L #$7FFFFFFF,D0
CMPI.L #$3FB98000,D0 ...|X| >= 2**(-70)?
BGE.B TWOOK1
BRA.W EXPBORS
TWOOK1:
CMPI.L #$400D80C0,D0 ...|X| > 16480?
BLE.B TWOMAIN
BRA.W EXPBORS
TWOMAIN:
*--USUAL CASE, 2^(-70) <= |X| <= 16480
FMOVE.X FP0,FP1
FMUL.S #:42800000,FP1 ...64 * X
FMOVE.L FP1,N(a6) ...N = ROUND-TO-INT(64 X)
MOVE.L d2,-(sp)
LEA EXPTBL,a1 ...LOAD ADDRESS OF TABLE OF 2^(J/64)
FMOVE.L N(a6),FP1 ...N --> FLOATING FMT
MOVE.L N(a6),D0
MOVE.L D0,d2
ANDI.L #$3F,D0 ...D0 IS J
ASL.L #4,D0 ...DISPLACEMENT FOR 2^(J/64)
ADDA.L D0,a1 ...ADDRESS FOR 2^(J/64)
ASR.L #6,d2 ...d2 IS L, N = 64L + J
MOVE.L d2,D0
ASR.L #1,D0 ...D0 IS M
SUB.L D0,d2 ...d2 IS M', N = 64(M+M') + J
ADDI.L #$3FFF,d2
MOVE.W d2,ADJFACT(a6) ...ADJFACT IS 2^(M')
MOVE.L (sp)+,d2
*--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64),
*--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN.
*--ADJFACT = 2^(M').
*--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2.
FMUL.S #:3C800000,FP1 ...(1/64)*N
MOVE.L (a1)+,FACT1(a6)
MOVE.L (a1)+,FACT1HI(a6)
MOVE.L (a1)+,FACT1LOW(a6)
MOVE.W (a1)+,FACT2(a6)
clr.w FACT2+2(a6)
FSUB.X FP1,FP0 ...X - (1/64)*INT(64 X)
MOVE.W (a1)+,FACT2HI(a6)
clr.w FACT2HI+2(a6)
clr.l FACT2LOW(a6)
ADD.W D0,FACT1(a6)
FMUL.X LOG2,FP0 ...FP0 IS R
ADD.W D0,FACT2(a6)
BRA.W expr
EXPBORS:
*--FPCR, D0 SAVED
CMPI.L #$3FFF8000,D0
BGT.B EXPBIG
EXPSM:
*--|X| IS SMALL, RETURN 1 + X
FMOVE.L d1,FPCR ;restore users exceptions
FADD.S #:3F800000,FP0 ...RETURN 1 + X
bra t_frcinx
EXPBIG:
*--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW
*--REGISTERS SAVE SO FAR ARE FPCR AND D0
MOVE.L X(a6),D0
TST.L D0
BLT.B EXPNEG
bclr.b #7,(a0) ;t_ovfl expects positive value
bra t_ovfl
EXPNEG:
bclr.b #7,(a0) ;t_unfl expects positive value
bra t_unfl
xdef stentoxd
stentoxd:
*--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT
fmove.l d1,fpcr ...set user's rounding mode/precision
Fmove.S #:3F800000,FP0 ...RETURN 1 + X
move.l (a0),d0
or.l #$00800001,d0
fadd.s d0,fp0
bra t_frcinx
xdef stentox
stentox:
*--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
FMOVEM.X (a0),FP0 ...LOAD INPUT, do not set cc's
MOVE.L (A0),D0
MOVE.W 4(A0),D0
FMOVE.X FP0,X(a6)
ANDI.L #$7FFFFFFF,D0
CMPI.L #$3FB98000,D0 ...|X| >= 2**(-70)?
BGE.B TENOK1
BRA.W EXPBORS
TENOK1:
CMPI.L #$400B9B07,D0 ...|X| <= 16480*log2/log10 ?
BLE.B TENMAIN
BRA.W EXPBORS
TENMAIN:
*--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10
FMOVE.X FP0,FP1
FMUL.D L2TEN64,FP1 ...X*64*LOG10/LOG2
FMOVE.L FP1,N(a6) ...N=INT(X*64*LOG10/LOG2)
MOVE.L d2,-(sp)
LEA EXPTBL,a1 ...LOAD ADDRESS OF TABLE OF 2^(J/64)
FMOVE.L N(a6),FP1 ...N --> FLOATING FMT
MOVE.L N(a6),D0
MOVE.L D0,d2
ANDI.L #$3F,D0 ...D0 IS J
ASL.L #4,D0 ...DISPLACEMENT FOR 2^(J/64)
ADDA.L D0,a1 ...ADDRESS FOR 2^(J/64)
ASR.L #6,d2 ...d2 IS L, N = 64L + J
MOVE.L d2,D0
ASR.L #1,D0 ...D0 IS M
SUB.L D0,d2 ...d2 IS M', N = 64(M+M') + J
ADDI.L #$3FFF,d2
MOVE.W d2,ADJFACT(a6) ...ADJFACT IS 2^(M')
MOVE.L (sp)+,d2
*--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64),
*--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN.
*--ADJFACT = 2^(M').
*--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2.
FMOVE.X FP1,FP2
FMUL.D L10TWO1,FP1 ...N*(LOG2/64LOG10)_LEAD
MOVE.L (a1)+,FACT1(a6)
FMUL.X L10TWO2,FP2 ...N*(LOG2/64LOG10)_TRAIL
MOVE.L (a1)+,FACT1HI(a6)
MOVE.L (a1)+,FACT1LOW(a6)
FSUB.X FP1,FP0 ...X - N L_LEAD
MOVE.W (a1)+,FACT2(a6)
FSUB.X FP2,FP0 ...X - N L_TRAIL
clr.w FACT2+2(a6)
MOVE.W (a1)+,FACT2HI(a6)
clr.w FACT2HI+2(a6)
clr.l FACT2LOW(a6)
FMUL.X LOG10,FP0 ...FP0 IS R
ADD.W D0,FACT1(a6)
ADD.W D0,FACT2(a6)
expr:
*--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN.
*--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64).
*--FP0 IS R. THE FOLLOWING CODE COMPUTES
*-- 2**(M'+M) * 2**(J/64) * EXP(R)
FMOVE.X FP0,FP1
FMUL.X FP1,FP1 ...FP1 IS S = R*R
FMOVE.D EXPA5,FP2 ...FP2 IS A5
FMOVE.D EXPA4,FP3 ...FP3 IS A4
FMUL.X FP1,FP2 ...FP2 IS S*A5
FMUL.X FP1,FP3 ...FP3 IS S*A4
FADD.D EXPA3,FP2 ...FP2 IS A3+S*A5
FADD.D EXPA2,FP3 ...FP3 IS A2+S*A4
FMUL.X FP1,FP2 ...FP2 IS S*(A3+S*A5)
FMUL.X FP1,FP3 ...FP3 IS S*(A2+S*A4)
FADD.D EXPA1,FP2 ...FP2 IS A1+S*(A3+S*A5)
FMUL.X FP0,FP3 ...FP3 IS R*S*(A2+S*A4)
FMUL.X FP1,FP2 ...FP2 IS S*(A1+S*(A3+S*A5))
FADD.X FP3,FP0 ...FP0 IS R+R*S*(A2+S*A4)
FADD.X FP2,FP0 ...FP0 IS EXP(R) - 1
*--FINAL RECONSTRUCTION PROCESS
*--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0)
FMUL.X FACT1(a6),FP0
FADD.X FACT2(a6),FP0
FADD.X FACT1(a6),FP0
FMOVE.L d1,FPCR ;restore users exceptions
clr.w ADJFACT+2(a6)
move.l #$80000000,ADJFACT+4(a6)
clr.l ADJFACT+8(a6)
FMUL.X ADJFACT(a6),FP0 ...FINAL ADJUSTMENT
bra t_frcinx
end
|