1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
|
/* $OpenBSD: vmparam.h,v 1.13 2002/02/17 22:59:53 maja Exp $ */
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1982, 1986, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah $Hdr: vmparam.h 1.16 91/01/18$
*
* @(#)vmparam.h 8.2 (Berkeley) 4/19/94
*/
#ifndef _MVME68K_VMPARAM_H_
#define _MVME68K_VMPARAM_H_
/*
* Machine dependent constants for MVME68K
*/
/*
* USRTEXT is the start of the user text/data space, while USRSTACK
* is the top (end) of the user stack. LOWPAGES and HIGHPAGES are
* the number of pages from the beginning of the P0 region to the
* beginning of the text and from the beginning of the P1 region to the
* beginning of the stack respectively.
*
* NOTE: the ONLY reason that HIGHPAGES is 0x100 instead of UPAGES (3)
* is for HPUX compatibility. Why?? Because HPUX's debuggers
* have the user's stack hard-wired at FFF00000 for post-mortems,
* and we must be compatible...
*/
#define USRTEXT 8192 /* Must equal __LDPGSZ */
#define USRSTACK (-HIGHPAGES*NBPG) /* Start of user stack */
#define LOWPAGES 0
#define HIGHPAGES (0x100000/NBPG)
/*
* Virtual memory related constants, all in bytes
*/
#ifndef MAXTSIZ
#define MAXTSIZ (8*1024*1024) /* max text size */
#endif
#ifndef DFLDSIZ
#define DFLDSIZ (16*1024*1024) /* initial data size limit */
#endif
#ifndef MAXDSIZ
#define MAXDSIZ (64*1024*1024) /* max data size */
#endif
#ifndef DFLSSIZ
#define DFLSSIZ (512*1024) /* initial stack size limit */
#endif
#ifndef MAXSSIZ
#define MAXSSIZ MAXDSIZ /* max stack size */
#endif
/*
* Sizes of the system and user portions of the system page table.
*/
#define USRPTSIZE (1 * NPTEPG) /* 4mb */
/*
* PTEs for mapping user space into the kernel for phyio operations.
* One page is enough to handle 4Mb of simultaneous raw IO operations.
*/
#ifndef USRIOSIZE
#define USRIOSIZE (1 * NPTEPG) /* 4mb */
#endif
/*
* PTEs for system V style shared memory.
* This is basically slop for kmempt which we actually allocate (malloc) from.
*/
#ifndef SHMMAXPGS
#define SHMMAXPGS 1024 /* 4mb */
#endif
/*
* External IO space map size.
*/
#ifndef EIOMAPSIZE
#define EIOMAPSIZE 1024 /* in pages */
#endif
/*
* The time for a process to be blocked before being very swappable.
* This is a number of seconds which the system takes as being a non-trivial
* amount of real time. You probably shouldn't change this;
* it is used in subtle ways (fractions and multiples of it are, that is, like
* half of a ``long time'', almost a long time, etc.)
* It is related to human patience and other factors which don't really
* change over time.
*/
#define MAXSLP 20
/* user/kernel map constants */
#define VM_MIN_ADDRESS ((vm_offset_t)0)
#define VM_MAXUSER_ADDRESS ((vm_offset_t)0xFFF00000)
#define VM_MAX_ADDRESS ((vm_offset_t)0xFFF00000)
#define VM_MIN_KERNEL_ADDRESS ((vm_offset_t)0)
#define VM_MAX_KERNEL_ADDRESS ((vm_offset_t)0xFFFFF000)
/* virtual sizes (bytes) for various kernel submaps */
#define VM_PHYS_SIZE (USRIOSIZE*PAGE_SIZE)
/* # of kernel PT pages (initial only, can grow dynamically) */
#define VM_KERNEL_PT_PAGES ((vm_size_t)2)
/* pcb base */
#define pcbb(p) ((u_int)(p)->p_addr)
/*
* Constants which control the way the VM system deals with memory segments.
* The mvme68k only has one physical memory segment.
*/
#define VM_PHYSSEG_MAX 1
#define VM_PHYSSEG_STRAT VM_PSTRAT_BSEARCH
#define VM_PHYSSEG_NOADD
#define VM_NFREELIST 1
#define VM_FREELIST_DEFAULT 0
/*
* pmap-specific data stored in the vm_physmem[] array.
*/
#define __HAVE_PMAP_PHYSSEG
struct pmap_physseg {
struct pv_entry *pvent; /* pv table for this seg */
char *attrs; /* page attributes for this seg */
};
#endif /* _MVME68K_VMPARAM_H_ */
|