1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
|
/* $NetBSD: clock.c,v 1.22 1995/05/29 23:57:15 pk Exp $ */
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
* Copyright (c) 1995 Nivas Madhur
* Copyright (c) 1994 Gordon W. Ross
* Copyright (c) 1993 Adam Glass
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)clock.c 8.1 (Berkeley) 6/11/93
*/
/*
* Clock driver. Has both interval timer as well as statistics timer.
*/
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/device.h>
#ifdef GPROF
#include <sys/gmon.h>
#endif
#include <machine/autoconf.h>
#include <machine/cpu.h>
#include <mvme88k/dev/pcctworeg.h>
/*
* Statistics clock interval and variance, in usec. Variance must be a
* power of two. Since this gives us an even number, not an odd number,
* we discard one case and compensate. That is, a variance of 4096 would
* give us offsets in [0..4095]. Instead, we take offsets in [1..4095].
* This is symmetric about the point 2048, or statvar/2, and thus averages
* to that value (assuming uniform random numbers).
*/
int statvar = 8192;
int statmin; /* statclock interval - 1/2*variance */
int timerok;
u_long delay_factor = 1;
static int clockmatch __P((struct device *, void *, void *));
static void clockattach __P((struct device *, struct device *, void *));
int clockintr __P((void *, void *));
int statintr __P((void *, void *));
struct clocksoftc {
struct device sc_dev;
volatile struct pcc2reg *sc_pcc2reg;
};
struct cfattach clock_ca = {
sizeof(struct clocksoftc), clockmatch, clockattach
};
struct cfdriver clock_cd = {
NULL, "clock", DV_DULL, 0
};
struct intrhand clockintrhand, statintrhand;
static int
clockmatch(struct device *parent, void *self, void *aux)
{
register struct confargs *ca = aux;
register struct cfdata *cf = self;
if (ca->ca_bustype != BUS_PCCTWO ||
strcmp(cf->cf_driver->cd_name, "clock")) {
return (0);
}
/*
* clock has to be at ipl 5
* We return the ipl here so that the parent can print
* a message if it is different from what ioconf.c says.
*/
ca->ca_ipl = IPL_CLOCK;
/* set size to 0 - see pcctwo.c:match for details */
ca->ca_size = 0;
return 1;
}
/* ARGSUSED */
static void
clockattach(struct device *parent, struct device *self, void *aux)
{
struct confargs *ca = aux;
struct clocksoftc *sc = (struct clocksoftc *)self;
u_long elapsedtime;
extern void delay(u_long);
extern int cpuspeed;
/*
* save virtual address of the pcc2 block since our
* registers are in that block.
*/
sc->sc_pcc2reg = (struct pcc2reg *)ca->ca_vaddr;
/*
* calibrate for delay() calls.
* We do this by using tick timer1 in free running mode before
* cpu_initclocks() is called so turn on clock interrupts etc.
*
* the approach is:
* set count in timer to 0
* call delay(1000) for a 1000 us delay
* after return, stop count and figure out
* how many us went by (call it x)
* now the factor to multiply the arg. passed to
* delay would be (x/1000) rounded up to an int.
*/
printf("\n");
sc->sc_pcc2reg->pcc2_t1ctl &= ~PCC2_TICTL_CEN;
sc->sc_pcc2reg->pcc2_psclkadj = 256 - cpuspeed;
sc->sc_pcc2reg->pcc2_t1irq &= ~PCC2_TTIRQ_IEN;
sc->sc_pcc2reg->pcc2_t1cntr = 0;
sc->sc_pcc2reg->pcc2_t1ctl |= PCC2_TICTL_CEN;
delay(1000); /* delay for 1 ms */
sc->sc_pcc2reg->pcc2_t1ctl &= ~PCC2_TICTL_CEN;
elapsedtime = sc->sc_pcc2reg->pcc2_t1cntr;
delay_factor = (u_long)(elapsedtime / 1000 + 1);
/*
* program clock to interrupt at IPL_CLOCK. Set everything
* except compare registers, interrupt enable and counter
* enable registers.
*/
sc->sc_pcc2reg->pcc2_t1ctl &= ~(PCC2_TICTL_CEN);
sc->sc_pcc2reg->pcc2_t1cntr= 0;
sc->sc_pcc2reg->pcc2_t1ctl |= (PCC2_TICTL_COC|PCC2_TICTL_COVF);
sc->sc_pcc2reg->pcc2_t1irq = (PCC2_TTIRQ_ICLR|IPL_CLOCK);
sc->sc_pcc2reg->pcc2_t2ctl &= ~(PCC2_TICTL_CEN);
sc->sc_pcc2reg->pcc2_t2cntr= 0;
sc->sc_pcc2reg->pcc2_t2ctl |= (PCC2_TICTL_COC|PCC2_TICTL_COVF);
sc->sc_pcc2reg->pcc2_t2irq = (PCC2_TTIRQ_ICLR|IPL_CLOCK);
/*
* Establish inerrupt handlers.
*/
clockintrhand.ih_fn = clockintr;
clockintrhand.ih_arg = 0; /* don't want anything */
clockintrhand.ih_ipl = IPL_CLOCK;
clockintrhand.ih_wantframe = 1;
intr_establish(PCC2_VECT+9, &clockintrhand);
statintrhand.ih_fn = statintr;
statintrhand.ih_arg = 0; /* don't want anything */
statintrhand.ih_ipl = IPL_CLOCK;
statintrhand.ih_wantframe = 1;
intr_establish(PCC2_VECT+8, &statintrhand);
timerok = 1;
}
/*
* Set up the real-time and statistics clocks. Leave stathz 0 only if
* no alternative timer is available. mvme167/mvme187 has 2 tick timers
* in pcc2 - we are using timer 1 for clock interrupt and timer 2 for
* statistics.
*
* The frequencies of these clocks must be an even number of microseconds.
*/
cpu_initclocks()
{
register int statint, minint;
volatile struct pcc2reg *pcc2reg;
pcc2reg = ((struct clocksoftc *)clock_cd.cd_devs[0])->sc_pcc2reg;
if (1000000 % hz) {
printf("cannot get %d Hz clock; using 100 Hz\n", hz);
hz = 100;
tick = 1000000 / hz;
}
if (stathz == 0)
stathz = hz;
if (1000000 % stathz) {
printf("cannot get %d Hz statclock; using 100 Hz\n", stathz);
stathz = 100;
}
profhz = stathz; /* always */
statint = 1000000 / stathz;
minint = statint / 2 + 100;
while (statvar > minint)
statvar >>= 1;
/*
* hz value 100 means we want the clock to interrupt 100
* times a sec or 100 times in 1000000 us ie, 1 interrupt
* every 10000 us. Program the tick timer compare register
* to this value.
*/
pcc2reg->pcc2_t1cmp = tick;
pcc2reg->pcc2_t2cmp = statint;
statmin = statint - (statvar >> 1);
/* start the clocks ticking */
pcc2reg->pcc2_t1ctl = (PCC2_TICTL_CEN|PCC2_TICTL_COC|PCC2_TICTL_COVF);
pcc2reg->pcc2_t2ctl = (PCC2_TICTL_CEN|PCC2_TICTL_COC|PCC2_TICTL_COVF);
/* and enable those interrupts */
pcc2reg->pcc2_t1irq |= (PCC2_TTIRQ_IEN|PCC2_TTIRQ_ICLR);
pcc2reg->pcc2_t2irq |= (PCC2_TTIRQ_IEN|PCC2_TTIRQ_ICLR);
}
/*
* Dummy setstatclockrate(), since we know profhz==hz.
*/
/* ARGSUSED */
void
setstatclockrate(int newhz)
{
/* nothing */
}
/*
* Delay: wait for `about' n microseconds to pass.
*/
void
delay(volatile u_long n)
{
volatile u_long cnt = n * delay_factor;
while (cnt-- > 0) {
asm volatile("");
}
}
/*
* Clock interrupt handler. Calls hardclock() after setting up a
* clockframe.
*/
int
clockintr(void *cap, void *frame)
{
volatile struct pcc2reg *reg;
reg = ((struct clocksoftc *)clock_cd.cd_devs[0])->sc_pcc2reg;
/* Clear the interrupt */
reg->pcc2_t1irq = (PCC2_TTIRQ_IEN|PCC2_TTIRQ_ICLR|IPL_CLOCK);
#if 0
reg->pcc2_t1irq |= PCC2_TTIRQ_ICLR;
#endif /* 0 */
hardclock((struct clockframe *)frame);
#include "bugtty.h"
#if NBUGTTY > 0
bugtty_chkinput();
#endif /* NBUGTTY */
return (1);
}
/*
* Stat clock interrupt handler.
*/
int
statintr(void *cap, void *frame)
{
volatile struct pcc2reg *reg;
register u_long newint, r, var;
reg = ((struct clocksoftc *)clock_cd.cd_devs[0])->sc_pcc2reg;
/* Clear the interrupt */
#if 0
reg->pcc2_t2irq |= PCC2_TTIRQ_ICLR;
#endif /* 0 */
reg->pcc2_t2irq = (PCC2_TTIRQ_IEN|PCC2_TTIRQ_ICLR|IPL_CLOCK);
statclock((struct clockframe *)frame);
/*
* Compute new randomized interval. The intervals are uniformly
* distributed on [statint - statvar / 2, statint + statvar / 2],
* and therefore have mean statint, giving a stathz frequency clock.
*/
var = statvar;
do {
r = random() & (var - 1);
} while (r == 0);
newint = statmin + r;
/*
* reprogram statistics timer to interrupt at
* newint us intervals.
*/
reg->pcc2_t2ctl = ~(PCC2_TICTL_CEN);
reg->pcc2_t2cntr = 0;
reg->pcc2_t2cmp = newint;
reg->pcc2_t2ctl = (PCC2_TICTL_CEN|PCC2_TICTL_COC|PCC2_TICTL_COVF);
reg->pcc2_t2irq |= (PCC2_TTIRQ_ICLR|PCC2_TTIRQ_IEN);
return (1);
}
/*
* Return the best possible estimate of the time in the timeval
* to which tvp points. We do this by returning the current time
* plus the amount of time since the last clock interrupt.
*
* Check that this time is no less than any previously-reported time,
* which could happen around the time of a clock adjustment. Just for
* fun, we guarantee that the time will be greater than the value
* obtained by a previous call.
*/
void
microtime(tvp)
register struct timeval *tvp;
{
int s;
static struct timeval lasttime;
s = splhigh();
*tvp = time;
while (tvp->tv_usec > 1000000) {
tvp->tv_sec++;
tvp->tv_usec -= 1000000;
}
if (tvp->tv_sec == lasttime.tv_sec &&
tvp->tv_usec <= lasttime.tv_usec &&
(tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
tvp->tv_sec++;
tvp->tv_usec -= 1000000;
}
lasttime = *tvp;
splx(s);
}
|