summaryrefslogtreecommitdiff
path: root/sys/arch/mvme88k/dev/clock.c
blob: 01ea15b533c857a0a98026bf7aaf76059354beff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
/*	$OpenBSD: clock.c,v 1.34 2004/07/30 22:09:59 miod Exp $ */
/*
 * Copyright (c) 1999 Steve Murphree, Jr.
 * Copyright (c) 1995 Theo de Raadt
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * Copyright (c) 1992, 1993
 *	The Regents of the University of California.  All rights reserved.
 * Copyright (c) 1995 Nivas Madhur
 * Copyright (c) 1994 Gordon W. Ross
 * Copyright (c) 1993 Adam Glass
 *
 * This software was developed by the Computer Systems Engineering group
 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
 * contributed to Berkeley.
 *
 * All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Lawrence Berkeley Laboratory.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)clock.c	8.1 (Berkeley) 6/11/93
 */

/*
 * Interval and statistic clocks driver.
 */

#include <sys/param.h>
#include <sys/simplelock.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/systm.h>

#include <machine/asm.h>
#include <machine/board.h>	/* for register defines */
#include <machine/psl.h>
#include <machine/autoconf.h>
#include <machine/bugio.h>
#include <machine/cpu.h>
#include <machine/cmmu.h>	/* DMA_CACHE_SYNC, etc... */

#include "pcctwo.h"
#if NPCCTWO > 0
#include <mvme88k/dev/pcctwovar.h>
#include <mvme88k/dev/pcctworeg.h>
#endif

#include "syscon.h"
#if NSYSCON > 0
#include <mvme88k/dev/sysconreg.h>
#endif

#include <mvme88k/dev/vme.h>

#include "bugtty.h"
#if NBUGTTY > 0
#include <mvme88k/dev/bugttyfunc.h>
#endif

int	clockmatch(struct device *, void *, void *);
void	clockattach(struct device *, struct device *, void *);

void	sbc_initclock(void);
void	sbc_initstatclock(void);
void	m188_initclock(void);
void	m188_initstatclock(void);
void	m188_timer_init(unsigned);
void	m188_cio_init(unsigned);
u_int	read_cio(int);
void	write_cio(int, u_int);

struct clocksoftc {
	struct device	sc_dev;
	struct intrhand	sc_profih;
	struct intrhand	sc_statih;
};

struct cfattach clock_ca = {
        sizeof(struct clocksoftc), clockmatch, clockattach
};

struct cfdriver clock_cd = {
        NULL, "clock", DV_DULL
};

int	sbc_clockintr(void *);
int	sbc_statintr(void *);
int	m188_clockintr(void *);
int	m188_statintr(void *);

#if NPCCTWO > 0
u_int8_t prof_reset;
u_int8_t stat_reset;
#endif

struct simplelock cio_lock;

#define	CIO_LOCK	simple_lock(&cio_lock)
#define	CIO_UNLOCK	simple_unlock(&cio_lock)

/*
 * Statistics clock interval and variance, in usec.  Variance must be a
 * power of two.  Since this gives us an even number, not an odd number,
 * we discard one case and compensate.  That is, a variance of 4096 would
 * give us offsets in [0..4095].  Instead, we take offsets in [1..4095].
 * This is symmetric about the point 2048, or statvar/2, and thus averages
 * to that value (assuming uniform random numbers).
 */
int statvar = 8192;
int statmin;			/* statclock interval - 1/2*variance */

/*
 * Every machine must have a clock tick device of some sort; for this
 * platform this file manages it, no matter what form it takes.
 */
int
clockmatch(struct device *parent, void *vcf, void *args)
{
	struct confargs *ca = args;
	struct cfdata *cf = vcf;

	if (strcmp(cf->cf_driver->cd_name, "clock")) {
		return (0);
	}

	/*
	 * clock has to be at ipl 5
	 * We return the ipl here so that the parent can print
	 * a message if it is different from what ioconf.c says.
	 */
	ca->ca_ipl = IPL_CLOCK;
	return (1);
}

void
clockattach(struct device *parent, struct device *self, void *args)
{
	struct confargs *ca = args;
	struct clocksoftc *sc = (struct clocksoftc *)self;

	switch (ca->ca_bustype) {
#if NPCCTWO > 0
	case BUS_PCCTWO:
		sc->sc_profih.ih_fn = sbc_clockintr;
		sc->sc_profih.ih_arg = 0;
		sc->sc_profih.ih_wantframe = 1;
		sc->sc_profih.ih_ipl = ca->ca_ipl;
		prof_reset = ca->ca_ipl | PCC2_IRQ_IEN | PCC2_IRQ_ICLR;
		pcctwointr_establish(PCC2V_TIMER1, &sc->sc_profih, "clock");
		md.clock_init_func = sbc_initclock;
		sc->sc_statih.ih_fn = sbc_statintr;
		sc->sc_statih.ih_arg = 0;
		sc->sc_statih.ih_wantframe = 1;
		sc->sc_statih.ih_ipl = ca->ca_ipl;
		stat_reset = ca->ca_ipl | PCC2_IRQ_IEN | PCC2_IRQ_ICLR;
		pcctwointr_establish(PCC2V_TIMER2, &sc->sc_statih, "stat");
		md.statclock_init_func = sbc_initstatclock;
		break;
#endif /* NPCCTWO */
#if NSYSCON > 0
	case BUS_SYSCON:
		sc->sc_profih.ih_fn = m188_clockintr;
		sc->sc_profih.ih_arg = 0;
		sc->sc_profih.ih_wantframe = 1;
		sc->sc_profih.ih_ipl = ca->ca_ipl;
		sysconintr_establish(SYSCV_TIMER1, &sc->sc_profih, "clock");
		md.clock_init_func = m188_initclock;
		sc->sc_statih.ih_fn = m188_statintr;
		sc->sc_statih.ih_arg = 0;
		sc->sc_statih.ih_wantframe = 1;
		sc->sc_statih.ih_ipl = ca->ca_ipl;
		sysconintr_establish(SYSCV_TIMER2, &sc->sc_statih, "stat");
		md.statclock_init_func = m188_initstatclock;
		break;
#endif /* NSYSCON */
	}

	printf("\n");
}

#if NPCCTWO > 0

void
sbc_initclock(void)
{
#ifdef CLOCK_DEBUG
	printf("SBC clock init\n");
#endif
	if (1000000 % hz) {
		printf("cannot get %d Hz clock; using 100 Hz\n", hz);
		hz = 100;
		tick = 1000000 / hz;
	}

	/* profclock */
	*(volatile u_int8_t *)(OBIO_START + PCC2_BASE + PCCTWO_T1CTL) = 0;
	*(volatile u_int32_t *)(OBIO_START + PCC2_BASE + PCCTWO_T1CMP) =
	    pcc2_timer_us2lim(tick);
	*(volatile u_int32_t *)(OBIO_START + PCC2_BASE + PCCTWO_T1COUNT) = 0;
	*(volatile u_int8_t *)(OBIO_START + PCC2_BASE + PCCTWO_T1CTL) =
	    PCC2_TCTL_CEN | PCC2_TCTL_COC | PCC2_TCTL_COVF;
	*(volatile u_int8_t *)(OBIO_START + PCC2_BASE + PCCTWO_T1ICR) =
	    prof_reset;

}

/*
 * clockintr: ack intr and call hardclock
 */
int
sbc_clockintr(void *eframe)
{
	*(volatile u_int8_t *)(OBIO_START + PCC2_BASE + PCCTWO_T1ICR) =
	    prof_reset;

	intrcnt[M88K_CLK_IRQ]++;

	hardclock(eframe);
#if NBUGTTY > 0
	bugtty_chkinput();
#endif /* NBUGTTY */

	return (1);
}

void
sbc_initstatclock(void)
{
	int statint, minint;

#ifdef CLOCK_DEBUG
	printf("SBC statclock init\n");
#endif
	if (stathz == 0)
		stathz = hz;
	if (1000000 % stathz) {
		printf("cannot get %d Hz statclock; using 100 Hz\n", stathz);
		stathz = 100;
	}
	profhz = stathz;		/* always */

	statint = 1000000 / stathz;
	minint = statint / 2 + 100;
	while (statvar > minint)
		statvar >>= 1;

	/* statclock */
	*(volatile u_int8_t *)(OBIO_START + PCC2_BASE + PCCTWO_T2CTL) = 0;
	*(volatile u_int32_t *)(OBIO_START + PCC2_BASE + PCCTWO_T2CMP) =
	    pcc2_timer_us2lim(tick);
	*(volatile u_int32_t *)(OBIO_START + PCC2_BASE + PCCTWO_T2COUNT) = 0;
	*(volatile u_int8_t *)(OBIO_START + PCC2_BASE + PCCTWO_T2CTL) =
	    PCC2_TCTL_CEN | PCC2_TCTL_COC | PCC2_TCTL_COVF;
	*(volatile u_int8_t *)(OBIO_START + PCC2_BASE + PCCTWO_T2ICR) =
	    stat_reset;

	statmin = statint - (statvar >> 1);
}

int
sbc_statintr(void *eframe)
{
	u_long newint, r, var;

	*(volatile u_int8_t *)(OBIO_START + PCC2_BASE + PCCTWO_T2ICR) =
	    stat_reset;

	intrcnt[M88K_SCLK_IRQ]++;

	statclock((struct clockframe *)eframe);

	/*
	 * Compute new randomized interval.  The intervals are uniformly
	 * distributed on [statint - statvar / 2, statint + statvar / 2],
	 * and therefore have mean statint, giving a stathz frequency clock.
	 */
	var = statvar;
	do {
		r = random() & (var - 1);
	} while (r == 0);
	newint = statmin + r;

	*(volatile u_int8_t *)(OBIO_START + PCC2_BASE + PCCTWO_T2CTL) = 0;
	*(volatile u_int32_t *)(OBIO_START + PCC2_BASE + PCCTWO_T2CMP) =
	    pcc2_timer_us2lim(tick);
	*(volatile u_int32_t *)(OBIO_START + PCC2_BASE + PCCTWO_T2COUNT) = 0;
	*(volatile u_int8_t *)(OBIO_START + PCC2_BASE + PCCTWO_T2ICR) =
	    stat_reset;
	*(volatile u_int8_t *)(OBIO_START + PCC2_BASE + PCCTWO_T2CTL) =
	    PCC2_TCTL_CEN | PCC2_TCTL_COC;
	return (1);
}

#endif /* NPCCTWO */

#if NSYSCON > 0
int
m188_clockintr(void *eframe)
{
	volatile int tmp;

	/* acknowledge the timer interrupt */
	tmp = *(int *volatile)DART_ISR;

	/* stop the timer while the interrupt is being serviced */
	tmp = *(int *volatile)DART_STOPC;

	intrcnt[M88K_CLK_IRQ]++;

	hardclock(eframe);
#if NBUGTTY > 0
	bugtty_chkinput();
#endif /* NBUGTTY */

	tmp = *(int *volatile)DART_STARTC;

#ifdef CLOCK_DEBUG
	if (*(int *volatile)MVME188_IST & DTI_BIT) {
		printf("DTI not clearing!\n");
	}
#endif

	return (1);
}

void
m188_initclock(void)
{
#ifdef CLOCK_DEBUG
	printf("VME188 clock init\n");
#endif
	if (1000000 % hz) {
		printf("cannot get %d Hz clock; using 100 Hz\n", hz);
		hz = 100;
		tick = 1000000 / hz;
	}
	m188_timer_init(tick);
}

void
m188_timer_init(unsigned period)
{
	volatile int imr;
	int counter;

	/* make sure the counter range is proper. */
	if (period < 9)
		counter = 2;
	else if (period > 284421)
		counter = 65535;
	else
		counter	= period / 4.34;
#ifdef CLOCK_DEBUG
	printf("tick == %d, period == %d\n", tick, period);
	printf("timer will interrupt every %d usec\n", (int) (counter * 4.34));
#endif
	/* clear the counter/timer output OP3 while we program the DART */
	*((int *volatile)DART_OPCR) = 0x00;

	/* do the stop counter/timer command */
	imr = *((int *volatile)DART_STOPC);

	/* set counter/timer to counter mode, clock/16 */
	*((int *volatile)DART_ACR) = 0x30;

	*((int *volatile)DART_CTUR) = counter / 256;	/* set counter MSB */
	*((int *volatile)DART_CTLR) = counter % 256;	/* set counter LSB */
	/* set interrupt vec */
	*((int *volatile)DART_IVR) = SYSCON_VECT + SYSCV_TIMER1;

	/* give the start counter/timer command */
	/* (yes, this is supposed to be a read) */
	imr = *((int *volatile)DART_STARTC);

	/* set the counter/timer output OP3 */
	*((int *volatile)DART_OPCR) = 0x04;
}

int
m188_statintr(void *eframe)
{
	u_long newint, r, var;

	CIO_LOCK;

	intrcnt[M88K_SCLK_IRQ]++;

	statclock((struct clockframe *)eframe);
	write_cio(CIO_CSR1, CIO_GCB | CIO_CIP);  /* Ack the interrupt */

	/*
	 * Compute new randomized interval.  The intervals are uniformly
	 * distributed on [statint - statvar / 2, statint + statvar / 2],
	 * and therefore have mean statint, giving a stathz frequency clock.
	 */
	var = statvar;
	do {
		r = random() & (var - 1);
	} while (r == 0);
	newint = statmin + r;

	/* Load time constant CTC #1 */
	write_cio(CIO_CT1MSB, (newint & 0xff00) >> 8);
	write_cio(CIO_CT1LSB, newint & 0xff);

	/* Start CTC #1 running */
	write_cio(CIO_CSR1, CIO_GCB | CIO_CIP);

	CIO_UNLOCK;
	return (1);
}

void
m188_initstatclock(void)
{
	int statint, minint;

#ifdef CLOCK_DEBUG
	printf("VME188 clock init\n");
#endif
	simple_lock_init(&cio_lock);
	if (stathz == 0)
		stathz = hz;
	if (1000000 % stathz) {
		printf("cannot get %d Hz statclock; using 100 Hz\n", stathz);
		stathz = 100;
	}
	profhz = stathz;		/* always */

	statint = 1000000 / stathz;
	minint = statint / 2 + 100;
	while (statvar > minint)
		statvar >>= 1;
	m188_cio_init(statint);
	statmin = statint - (statvar >> 1);
}

#define CIO_CNTRL 0xfff8300c

/* Write CIO register */
void
write_cio(int reg, u_int val)
{
	int s;
	volatile int i;
	int *volatile cio_ctrl = (int *volatile)CIO_CNTRL;

	s = splclock();
	CIO_LOCK;

	i = *cio_ctrl;				/* goto state 1 */
	*cio_ctrl = 0;				/* take CIO out of RESET */
	i = *cio_ctrl;				/* reset CIO state machine */

	*cio_ctrl = (reg & 0xff);		/* Select register */
	*cio_ctrl = (val & 0xff);		/* Write the value */

	CIO_UNLOCK;
	splx(s);
}

/* Read CIO register */
u_int
read_cio(int reg)
{
	int c, s;
	volatile int i;
	int *volatile cio_ctrl = (int *volatile)CIO_CNTRL;

	s = splclock();
	CIO_LOCK;

	/* Select register */
	*cio_ctrl = (reg & 0xff);
	/* Delay for a short time to allow 8536 to settle */
	for (i = 0; i < 100; i++)
		;
	/* read the value */
	c = *cio_ctrl;
	CIO_UNLOCK;
	splx(s);
	return (c & 0xff);
}

/*
 * Initialize the CTC (8536)
 * Only the counter/timers are used - the IO ports are un-comitted.
 * Channels 1 and 2 are linked to provide a /32 counter.
 */

void
m188_cio_init(unsigned p)
{
	volatile int i;
	short period;

	CIO_LOCK;

	period = p & 0xffff;

	/* Initialize 8536 CTC */

	/* Start by forcing chip into known state */
	read_cio(CIO_MICR);
	write_cio(CIO_MICR, CIO_MICR_RESET);	/* Reset the CTC */
	for (i = 0; i < 1000; i++)	 	/* Loop to delay */
		;

	/* Clear reset and start init seq. */
	write_cio(CIO_MICR, 0x00);

	/* Wait for chip to come ready */
	while ((read_cio(CIO_MICR) & CIO_MICR_RJA) == 0)
		;

	/* Initialize the 8536 */
	write_cio(CIO_MICR,
	    CIO_MICR_MIE /* | CIO_MICR_NV */ | CIO_MICR_RJA | CIO_MICR_DLC);
	write_cio(CIO_CTMS1, CIO_CTMS_CSC);	/* Continuous count */
	write_cio(CIO_PDCB, 0xff);		/* set port B to input */

	/* Load time constant CTC #1 */
	write_cio(CIO_CT1MSB, (period & 0xff00) >> 8);
	write_cio(CIO_CT1LSB, period & 0xff);

	/* enable counter 1 */
	write_cio(CIO_MCCR, CIO_MCCR_CT1E | CIO_MCCR_PBE);

	/* Start CTC #1 running */
	write_cio(CIO_CSR1, CIO_GCB | CIO_TCB | CIO_IE);

	CIO_UNLOCK;
}
#endif /* NSYSCON */

void
delay(int us)
{
	if (brdtyp == BRD_188) {
		extern int cpuspeed;

		/*
		 * Unable to use a real timer, use a tight loop.
		 * XXX not accurate!
		 */
		volatile int c = (3 * us) / (cpuspeed == 25 ? 4 : 5);
		while (--c > 0)
			;
	} else {
		/*
		 * On MVME187 and MVME197, use the VMEchip for the
		 * delay clock.
		 */
		*(volatile u_int32_t *)(VME2_BASE + VME2_T1CMP) = 0xffffffff;
		*(volatile u_int32_t *)(VME2_BASE + VME2_T1COUNT) = 0;
		*(volatile u_int32_t *)(VME2_BASE + VME2_TCTL) |=
		    VME2_TCTL1_CEN;

		while ((*(volatile u_int32_t *)(VME2_BASE + VME2_T1COUNT)) <
		    (u_int32_t)us)
			;
		*(volatile u_int32_t *)(VME2_BASE + VME2_TCTL) &=
		    ~VME2_TCTL1_CEN;
	}
}