1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
|
/* $OpenBSD: pmap.c,v 1.7 2014/11/16 12:30:58 deraadt Exp $ */
/*
* Copyright (c) 2005, Miodrag Vallat
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* KAP physical memory management code.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/pool.h>
#include <sys/proc.h>
#include <uvm/uvm.h>
#include <machine/idt.h>
#include <machine/kap.h>
#include <machine/prom.h>
#include <sparc/sparc/asm.h>
#include <sparc/sparc/cache.h>
#include <sparc/sparc/cpuvar.h>
#include <sparc/dev/if_lereg.h>
#ifdef PMAPDEBUG
#define PDB_ACTIVATE 0x000001
#define PDB_CLEAR_M 0x000002
#define PDB_CLEAR_U 0x000004
#define PDB_COLLECT 0x000008
#define PDB_COPY 0x000010
#define PDB_CREATE 0x000020
#define PDB_DESTROY 0x000040
#define PDB_ENTER 0x000080
#define PDB_EXTRACT 0x000100
#define PDB_IS_M 0x000200
#define PDB_IS_U 0x000400
#define PDB_KENTER 0x000800
#define PDB_KREMOVE 0x001000
#define PDB_PROTECT 0x002000
#define PDB_REFERENCE 0x004000
#define PDB_RELEASE 0x008000
#define PDB_REMOVE 0x010000
#define PDB_UNWIRE 0x020000
#define PDB_ZERO 0x040000
#define DPRINTF(flg,stmt) \
do { \
if (pmapdebug & (flg)) \
printf stmt; \
} while (0)
u_int _pmapdebug_cold = 0;
u_int _pmapdebug = -1;
#define pmapdebug ((cold) ? _pmapdebug_cold : _pmapdebug)
#else
#define DPRINTF(flg,stmt) do { } while (0)
#endif
/* pmap and pde/pte pool allocators */
struct pool pmappool, pvpool;
struct pmap kernel_pmap_store;
pt_entry_t *pmap_grow_pte(struct pmap *, vaddr_t);
static pd_entry_t *pmap_pde(pmap_t, vaddr_t);
static pt_entry_t *pde_pte(pd_entry_t *, vaddr_t);
pt_entry_t *pmap_pte(pmap_t, vaddr_t);
void pg_flushcache(struct vm_page *);
void tlb_flush(vaddr_t);
void tlb_flush_all(void);
vaddr_t virtual_avail;
vaddr_t virtual_end;
vaddr_t vreserve; /* two reserved pages for copy and zero operations... */
pt_entry_t *ptereserve; /* ...and their PTEs */
vaddr_t lance_va; /* a fixed buffer for the on-board lance */
/*
* Attribute caching
*/
typedef struct pvlist *pv_entry_t;
static pv_entry_t pg_to_pvl(struct vm_page *);
static __inline__
pv_entry_t
pg_to_pvl(struct vm_page *pg)
{
return (&pg->mdpage.pv_head);
}
/*
* TLB operations
*/
void
tlb_flush(vaddr_t va)
{
#if 0
u_int32_t fvar;
fvar = lda(0, ASI_FVAR);
#endif
sta(0, ASI_PID, 0);
sta(0, ASI_FVAR, va);
sta(0, ASI_GTLB_INVAL_ENTRY, 0);
#if 0
sta(0, ASI_FVAR, fvar);
#endif
}
void
tlb_flush_all()
{
/*
* Note that loaded TLB for PTEs with PG_G do NOT get invalidated
* by this command (because they are common to all PID), and need
* to be invalidated with ASI_GTLB_INVAL_ENTRY.
* This does not matter to us, as we don't use PG_G for now.
*/
sta(0, ASI_PID, 0);
sta(0, ASI_GTLB_INVALIDATE, 0);
}
/*
* Simple pde and pte access routines.
*/
#define trunc_seg(va) ((va) & PDT_INDEX_MASK)
static __inline__
pd_entry_t *
pmap_pde(pmap_t pmap, vaddr_t va)
{
return (&pmap->pm_segtab[va >> PDT_INDEX_SHIFT]);
}
static __inline__
pt_entry_t *
pde_pte(pd_entry_t *pde, vaddr_t va)
{
pt_entry_t *pte;
pte = (pt_entry_t *)pde->pde_va;
pte += (va & PT_INDEX_MASK) >> PT_INDEX_SHIFT;
return (pte);
}
pt_entry_t *
pmap_pte(pmap_t pmap, vaddr_t va)
{
pd_entry_t *pde;
pde = pmap_pde(pmap, va);
if (pde->pde_va == NULL)
return (NULL);
return (pde_pte(pde, va));
}
/*
* Setup virtual memory for the kernel. The new tables are not activated yet,
* they will be in locore.s after bootstrap() returns.
*/
void
pmap_bootstrap(size_t promdata)
{
extern caddr_t end;
extern vaddr_t esym;
u_int32_t icuconf;
u_int8_t imcmcr;
vaddr_t ekern;
vaddr_t va, eva;
paddr_t pa;
unsigned int tabidx;
pd_entry_t *pde;
pt_entry_t *pte;
struct sb_prom *sp;
paddr_t prompa;
psize_t promlen;
extern vaddr_t prom_data;
/*
* Compute memory size by checking the iCU for the number of iMC,
* then each iMC for its status.
*/
icuconf = lda(ICU_CONF, ASI_PHYS_IO);
physmem = 0;
#if 0
imcmcr = lduba(MC0_MCR, ASI_PHYS_IO);
#else
imcmcr = *(u_int8_t *)MC0_MCR;
#endif
if (imcmcr & MCR_BANK0_AVAIL)
physmem += (imcmcr & MCR_BANK0_32M) ? 32 : 8;
if (imcmcr & MCR_BANK1_AVAIL)
physmem += (imcmcr & MCR_BANK1_32M) ? 32 : 8;
if ((icuconf & CONF_NO_EXTRA_MEMORY) == 0) {
#if 0
imcmcr = lduba(MC1_MCR, ASI_PHYS_IO);
#else
imcmcr = *(u_int8_t *)MC1_MCR;
#endif
if (imcmcr & MCR_BANK0_AVAIL)
physmem += (imcmcr & MCR_BANK0_32M) ? 32 : 8;
if (imcmcr & MCR_BANK1_AVAIL)
physmem += (imcmcr & MCR_BANK1_32M) ? 32 : 8;
}
/* scale to pages */
physmem <<= (20 - PAGE_SHIFT);
/*
* Get a grip on the PROM communication area.
*/
sp = (struct sb_prom *)PROM_DATA_VA;
/*
* Set virtual page size.
*/
uvmexp.pagesize = PAGE_SIZE;
uvm_setpagesize();
/*
* Initialize kernel pmap.
*/
simple_lock_init(&pmap_kernel()->pm_lock);
pmap_kernel()->pm_refcount = 1;
/*
* Compute kernel fixed memory usage.
*/
ekern = (vaddr_t)&end;
#if defined(DDB) || NKSYMS > 0
if (esym != 0)
ekern = esym;
#endif
/*
* Reserve room for the prom data we're interested in.
*/
prom_data = ekern;
ekern += promdata;
/*
* From then on, all allocations will be multiples of the
* page size.
*/
ekern = round_page(ekern);
/*
* Reserve buffers for the on-board Lance chip - the whole buffer
* must be in the same 128KB segment.
* This should disappear once iCU is tamed...
*/
if ((ekern >> 17) != ((ekern + MEMSIZE) >> 17))
ekern = roundup(ekern, 1 << 17);
lance_va = ekern;
ekern += MEMSIZE;
/*
* Initialize fixed mappings.
* We want to keep the PTW mapping the kernel for now, but all
* devices needed during early bootstrap needs to have their own
* mappings.
*/
/*
* Step 1: reserve memory for the kernel pde.
*/
bzero((caddr_t)ekern, PDT_SIZE);
pmap_kernel()->pm_segtab = (pd_entry_t *)ekern;
pmap_kernel()->pm_psegtab = PTW1_TO_PHYS(ekern);
ekern += PDT_SIZE; /* not rounded anymore ! */
/*
* Step 2: create as many pages tables as necessary.
* We'll provide page tables for the kernel virtual memory range
* and the top of memory (i.e. PTW1, PTW2 and I/O maps), so that
* we can invoke mapdev() early in the boot process.
*
* For the early console, we will also provide an 1:1 mapping
* of the I/O space.
*/
tabidx = 0;
va = VM_MIN_KERNEL_ADDRESS;
while (va != 0) {
pde = pmap_pde(pmap_kernel(), va);
pde->pde_va = (pt_entry_t *)(ekern + tabidx * PT_SIZE);
pde->pde_pa = PTW1_TO_PHYS((vaddr_t)pde->pde_va);
tabidx++;
va += NBSEG;
}
va = (vaddr_t)OBIO_PA_START;
while (va < (vaddr_t)OBIO_PA_END) {
pde = pmap_pde(pmap_kernel(), va);
pde->pde_va = (pt_entry_t *)(ekern + tabidx * PT_SIZE);
pde->pde_pa = PTW1_TO_PHYS((vaddr_t)pde->pde_va);
tabidx++;
va += NBSEG;
}
va = IOSPACE_BASE;
while (va < IOSPACE_BASE + IOSPACE_LEN) {
pde = pmap_pde(pmap_kernel(), va);
pde->pde_va = (pt_entry_t *)(ekern + tabidx * PT_SIZE);
pde->pde_pa = PTW1_TO_PHYS((vaddr_t)pde->pde_va);
tabidx++;
/* watch out for wraparound! */
if ((va += NBSEG) == 0)
break;
}
bzero((caddr_t)ekern, tabidx * PT_SIZE);
ekern += tabidx * PT_SIZE;
ekern = round_page(ekern);
/*
* Step 3: fill them. We fill the page tables backing PTW1 and
* PTW2 to simplify pmap_extract(), by not having to check if
* the va is in a PTW.
*/
va = PTW1_BASE;
pa = PHYSMEM_BASE;
while (va < PTW1_BASE + PTW_WINDOW_SIZE) {
pde = pmap_pde(pmap_kernel(), va);
eva = trunc_seg(va) + NBSEG;
if (eva > PTW1_BASE + PTW_WINDOW_SIZE)
eva = PTW1_BASE + PTW_WINDOW_SIZE;
pte = pde_pte(pde, va);
while (va < eva) {
*pte++ = pa | PG_V | PG_S | PG_U | PG_CACHE;
va += PAGE_SIZE;
pa += PAGE_SIZE;
}
}
va = PTW2_BASE;
pa = PHYSMEM_BASE;
while (va < PTW2_BASE + PTW_WINDOW_SIZE) {
pde = pmap_pde(pmap_kernel(), va);
eva = trunc_seg(va) + NBSEG;
if (eva > PTW2_BASE + PTW_WINDOW_SIZE)
eva = PTW2_BASE + PTW_WINDOW_SIZE;
pte = pde_pte(pde, va);
while (va < eva) {
*pte++ = pa | PG_V | PG_S | PG_U | PG_SHARED;
va += PAGE_SIZE;
pa += PAGE_SIZE;
}
}
va = (vaddr_t)OBIO_PA_START;
while (va < (vaddr_t)OBIO_PA_END) {
pde = pmap_pde(pmap_kernel(), va);
eva = trunc_seg(va) + NBSEG;
if (eva > OBIO_PA_END)
eva = OBIO_PA_END;
pte = pde_pte(pde, va);
for (; va < eva; va += PAGE_SIZE)
*pte++ = va | PG_V | PG_S | PG_U | PG_IO;
}
/*
* Compute the virtual memory space.
* Note that the kernel is mapped by PTW1 and PTW2, and is outside
* this range.
*/
virtual_avail = VM_MIN_KERNEL_ADDRESS;
virtual_end = VM_MAX_KERNEL_ADDRESS;
/*
* Reserve two _virtual_ pages for copy and zero operations.
* Since we need to be able to tweak their PTE, they need to be
* outside PTW1 and PTW2. We'll steal them from the top of the
* virtual space; thus we are sure they will be in the same
* segment as well.
*/
virtual_end -= 2* PAGE_SIZE;
vreserve = virtual_end;
ptereserve = pmap_pte(pmap_kernel(), vreserve);
/*
* Tell the VM system about the available memory.
* Physical memory starts at PHYSMEM_BASE; kernel uses space
* from PTW1_TO_PHYS(KERNBASE) to ekern at this point.
*
* The physical memory below the kernel is reserved for the PROM
* data and bss, and need to be left intact when invoking it, so
* we do not upload (manage) it.
*
* The PROM communication area may claim another area, way above
* the kernel (usually less than 200 KB, immediately under 8MB
* physical).
*/
if (sp->sp_interface >= PROM_INTERFACE) {
prompa = atop(PHYSMEM_BASE) + sp->sp_reserve_start;
promlen = sp->sp_reserve_len;
} else
promlen = 0;
if (promlen != 0) {
#ifdef DIAGNOSTIC
if (PTW1_TO_PHYS(ekern) > ptoa(prompa))
panic("kernel overlaps PROM reserved area");
#endif
uvm_page_physload(
atop(PTW1_TO_PHYS(ekern)), prompa,
atop(PTW1_TO_PHYS(ekern)), prompa, 0);
uvm_page_physload(
prompa + promlen, atop(PHYSMEM_BASE) + physmem,
prompa + promlen, atop(PHYSMEM_BASE) + physmem, 0);
} else {
uvm_page_physload(
atop(PTW1_TO_PHYS(ekern)), atop(PHYSMEM_BASE) + physmem,
atop(PTW1_TO_PHYS(ekern)), atop(PHYSMEM_BASE) + physmem, 0);
}
}
/*
* Return the virtual area range available to the kernel.
*/
void
pmap_virtual_space(vaddr_t *v_start, vaddr_t *v_end)
{
*v_start = virtual_avail;
*v_end = virtual_end;
}
/*
* Secondary initialization, at uvm_init() time.
* We can now create the pools we'll use for pmap and pvlist allocations.
*/
void
pmap_init()
{
pool_init(&pmappool, sizeof(struct pmap), 0, 0, 0, "pmappl",
&pool_allocator_nointr);
pool_init(&pvpool, sizeof(struct pvlist), 0, 0, 0, "pvpl", NULL);
}
/*
* Create a new pmap.
*
* We initialize pmaps with an empty pde, and a shadow of the kernel
* space (VM_MIN_KERNEL_ADDRESS onwards).
*/
pmap_t
pmap_create()
{
pmap_t pmap;
u_int pde;
DPRINTF(PDB_CREATE, ("pmap_create()"));
pmap = pool_get(&pmappool, PR_WAITOK | PR_ZERO);
pmap->pm_refcount = 1;
simple_lock_init(&pmap->pm_lock);
/*
* Allocate the page directory.
*/
pmap->pm_segtab = (pd_entry_t *)uvm_km_zalloc(kernel_map, PDT_SIZE);
if (pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_segtab,
&pmap->pm_psegtab) == FALSE)
panic("pmap_create: pmap_extract failed!");
/*
* Shadow the kernel map in all user pmaps.
*/
for (pde = (VM_MIN_KERNEL_ADDRESS >> PDT_INDEX_SHIFT);
pde < NBR_PDE; pde++) {
pmap->pm_segtab[pde].pde_pa =
pmap_kernel()->pm_segtab[pde].pde_pa;
pmap->pm_segtab[pde].pde_va =
pmap_kernel()->pm_segtab[pde].pde_va;
}
DPRINTF(PDB_CREATE, (" -> %p\n", pmap));
return (pmap);
}
/*
* Destroy a pmap.
* Its mappings will not actually be removed until the reference count
* drops to zero.
*/
void
pmap_destroy(struct pmap *pmap)
{
int count;
DPRINTF(PDB_DESTROY, ("pmap_destroy(%p)\n", pmap));
simple_lock(&pmap->pm_lock);
count = --pmap->pm_refcount;
simple_unlock(&pmap->pm_lock);
if (count == 0) {
pmap_release(pmap);
pool_put(&pmappool, pmap);
}
}
/*
* Release all mappings and resources associated to a given pmap.
*/
void
pmap_release(struct pmap *pmap)
{
u_int pde;
pt_entry_t *pdeva;
#ifdef DIAGNOSTIC
u_int pte;
#endif
DPRINTF(PDB_RELEASE, ("pmap_release(%p)\n", pmap));
/*
* Free all page tables.
*/
for (pde = 0; pde < (VM_MIN_KERNEL_ADDRESS >> PDT_INDEX_SHIFT); pde++) {
if ((pdeva = pmap->pm_segtab[pde].pde_va) != NULL) {
#ifdef DIAGNOSTIC
for (pte = 0; pte < NBR_PTE; pte++)
if (pdeva[pte] & PG_V) {
DPRINTF(PDB_RELEASE,
("pmap_release: unreleased pte "
"%p (%08x)\n",
pdeva + pte, pdeva[pte]));
}
#endif
uvm_km_free(kernel_map, (vaddr_t)pdeva, PT_SIZE);
}
}
/*
* Free the page directory.
*/
uvm_km_free(kernel_map, (vaddr_t)pmap->pm_segtab, PDT_SIZE);
}
/*
* Returns a preferred virtual address for the given address, which
* does not cause a VAC aliasing situation.
*/
vaddr_t
pmap_prefer(vaddr_t foff, vaddr_t va)
{
/* XXX assume no cache aliasing yet */
return va;
}
/*
* Activate the pmap associated to a given process.
* Called from the scheduler.
*/
void
pmap_activate(struct proc *p)
{
pmap_t pmap = p->p_vmspace->vm_map.pmap;
int s;
DPRINTF(PDB_ACTIVATE,
("pmap_activate(%p/pmap %p/segtab pa %08x va %08x)\n",
p, pmap, pmap->pm_psegtab, (vaddr_t)pmap->pm_segtab));
s = splvm();
if (p == curproc) {
write_user_windows();
cache_flush_context();
sta(0, ASI_PID, 0);
sta(0, ASI_PDBR, pmap->pm_psegtab);
tlb_flush_all();
}
splx(s);
}
/*
* Increment the pmap reference counter.
*/
void
pmap_reference(struct pmap *pmap)
{
DPRINTF(PDB_REFERENCE, ("pmap_reference(%p)\n", pmap));
simple_lock(&pmap->pm_lock);
pmap->pm_refcount++;
simple_unlock(&pmap->pm_lock);
}
/*
* Remove a range of virtual addresses from the given pmap.
* Addresses are expected to be page-aligned.
*/
void
pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t e)
{
vaddr_t va, eva;
paddr_t pa;
pd_entry_t *pde;
pt_entry_t *pte, opte;
struct vm_page *pg;
struct pvlist *pvl, *prev, *cur;
int s;
s = splvm();
DPRINTF(PDB_REMOVE, ("pmap_remove(%p,%08x,%08x)\n", pmap, sva, e));
va = sva;
while (va != e) {
pde = pmap_pde(pmap, va);
eva = trunc_seg(va) + NBSEG;
if (eva > e || eva == 0)
eva = e;
if (pde == NULL) {
va = eva;
continue;
}
pte = pde_pte(pde, va);
for (; va != eva; va += PAGE_SIZE, pte++) {
opte = *pte;
if ((opte & PG_V) == 0)
continue;
pmap->pm_stats.resident_count--;
pa = opte & PG_FRAME;
#ifdef DIAGNOSTIC
if (opte & PG_W) {
printf("pmap_remove(%p): wired mapping for %08x",
pmap, va);
pmap->pm_stats.wired_count--;
}
#endif
*pte = PG_NV;
tlb_flush(va);
pg = PHYS_TO_VM_PAGE(pa);
if (pg == NULL)
continue;
/*
* Remove the mapping from the pvlist for this
* physical page.
*/
pvl = pg_to_pvl(pg);
#ifdef DIAGNOSTIC
if (pvl->pv_pmap == NULL)
panic("pmap_remove: NULL pmap in pvlist");
#endif
prev = NULL;
for (cur = pvl; cur != NULL; cur = cur->pv_next) {
if (cur->pv_va == va && cur->pv_pmap == pmap)
break;
prev = cur;
}
#ifdef DIAGNOSTIC
if (cur == NULL) {
panic("pmap_remove: va not in pvlist");
}
#endif
if (prev == NULL) {
cur = cur->pv_next;
if (cur != NULL) {
cur->pv_flags = pvl->pv_flags;
*pvl = *cur;
pool_put(&pvpool, cur);
} else {
pvl->pv_pmap = NULL;
}
} else {
prev->pv_next = cur->pv_next;
pool_put(&pvpool, cur);
}
/* update saved attributes for managed page */
pvl->pv_flags |= (opte & (PG_U | PG_M));
}
}
splx(s);
}
/*
* Release any unnecessary management resources for the given pmap,
* before swapping it out.
*/
void
pmap_collect(struct pmap *pmap)
{
u_int pde, pte;
pt_entry_t *pdeva;
int s;
s = splvm();
DPRINTF(PDB_COLLECT, ("pmap_collect(%p)\n", pmap));
/*
* Free all empty page tables.
*/
for (pde = 0; pde < (VM_MIN_KERNEL_ADDRESS >> PDT_INDEX_SHIFT); pde++) {
if ((pdeva = pmap->pm_segtab[pde].pde_va) == NULL)
continue;
for (pte = 0; pte < NBR_PTE; pte++)
if (pdeva[pte] & PG_V)
break;
if (pte != NBR_PTE)
continue;
/*
* Free the unused page table.
*/
pmap->pm_segtab[pde].pde_va = NULL;
pmap->pm_segtab[pde].pde_pa = 0;
uvm_km_free(kernel_map, (vaddr_t)pdeva, PT_SIZE);
}
splx(s);
}
/*
* Change the protection for a given vm_page. The protection can only
* become more strict, i.e. protection rights get removed.
*
* Note that this pmap does not manage execution protection yet.
*/
void
pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
{
struct pvlist *pvl;
int s;
if ((prot & PROT_READ) == PROT_NONE) { /* remove all */
s = splvm();
pvl = pg_to_pvl(pg);
DPRINTF(PDB_REMOVE, ("pmap_page_protect(%p/pmap %p,%x)\n",
pg, pvl->pv_pmap, prot));
while (pvl->pv_pmap != NULL) {
pmap_remove(pvl->pv_pmap, pvl->pv_va,
pvl->pv_va + PAGE_SIZE);
}
splx(s);
} else if ((prot & PROT_WRITE) == PROT_NONE) {
s = splvm();
pvl = pg_to_pvl(pg);
DPRINTF(PDB_REMOVE, ("pmap_page_protect(%p/pmap %p,%x)\n",
pg, pvl->pv_pmap, prot));
if (pvl->pv_pmap != NULL)
for (; pvl != NULL; pvl = pvl->pv_next)
pmap_protect(pvl->pv_pmap, pvl->pv_va,
pvl->pv_va + PAGE_SIZE, prot);
splx(s);
} else {
DPRINTF(PDB_REMOVE, ("pmap_page_protect(%p,%x)\n", pg, prot));
}
}
/*
* Set the protection for a virtual address range in the given pmap.
*
* Note that this pmap does not manage execution protection yet.
*/
void
pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t e, vm_prot_t prot)
{
vaddr_t va, eva;
pd_entry_t *pde;
pt_entry_t *pte, opte, npte;
int s;
s = splvm();
DPRINTF(PDB_PROTECT,
("pmap_protect(%p,%08x,%08x,%x)\n", pmap, sva, e, prot));
if ((prot & PROT_READ) == PROT_NONE) {
pmap_remove(pmap, sva, e);
splx(s);
return;
}
va = sva;
while (va != e) {
pde = pmap_pde(pmap, va);
eva = trunc_seg(va) + NBSEG;
if (eva > e || eva == 0)
eva = e;
if (pde == NULL) {
va = eva;
continue;
}
pte = pde_pte(pde, va);
for (; va != eva; va += PAGE_SIZE, pte++) {
opte = *pte;
if ((opte & PG_V) == 0)
continue;
npte = (opte & ~PG_RO) |
(prot & PROT_WRITE) ? PG_RW : PG_RO;
if (opte != npte) {
*pte = npte;
tlb_flush(va);
}
}
}
splx(s);
}
/*
* Expand a pmap, if necessary, to include a pte.
*/
pt_entry_t *
pmap_grow_pte(struct pmap *pmap, vaddr_t va)
{
pd_entry_t *pde;
pde = pmap_pde(pmap, va);
if (pde->pde_va == NULL) {
pde->pde_va = (pt_entry_t *)uvm_km_zalloc(kernel_map, PT_SIZE);
if (pde->pde_va == NULL)
return (NULL);
if (pmap_extract(pmap_kernel(), (vaddr_t)pde->pde_va,
(paddr_t *)&pde->pde_pa) == FALSE)
panic("pmap_grow_pte: pmap_extract on PT failed!");
tlb_flush((vaddr_t)pmap->pm_segtab);
}
return (pde_pte(pde, va));
}
/*
* Create or update a mapping for the page at the given physical and
* virtual addresses, for the given pmap.
*/
int
pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
{
pt_entry_t *pte, opte, npte;
struct vm_page *pg;
struct pvlist *pvl, *cur;
int s;
s = splvm();
DPRINTF(PDB_ENTER,
("pmap_enter(%p,%08x,%08x,%x,%x)", pmap, va, pa, prot, flags));
if ((pte = pmap_grow_pte(pmap, va)) == NULL) {
DPRINTF(PDB_ENTER, (" -> pmap_grow_pte failed\n"));
if (flags & PMAP_CANFAIL)
return (ENOMEM);
else
panic("pmap_enter: unable to allocate PT");
}
opte = *pte;
DPRINTF(PDB_ENTER, (" opte %08x", opte));
/*
* Enable cache, by default, if on physical memory, unless
* PMAP_NC has been passed in pa.
*/
switch (pa & PAGE_MASK) {
case PMAP_NC:
npte = PG_IO;
break;
case PMAP_BWS:
npte = PG_BYTE_SHARED;
break;
default:
if (pa >= PHYSMEM_BASE && pa < PHYSMEM_BASE + ptoa(physmem))
npte = PG_CACHE;
else
npte = PG_IO;
break;
}
pa = trunc_page(pa);
npte |= pa | PG_V | (prot & PROT_WRITE ? PG_RW : PG_RO);
pg = PHYS_TO_VM_PAGE(pa);
if (pg != NULL) {
/*
* For a managed page, enter the mapping in the pvlist.
*/
pvl = pg_to_pvl(pg);
if (pvl->pv_pmap == NULL) {
/*
* We are the first mapping.
*/
pvl->pv_pmap = pmap;
pvl->pv_va = va;
pvl->pv_next = NULL;
} else {
/*
* Add ourselves to the list.
* Note that, if we are only changing attributes
* and/or protection, we are already in the list!
*/
for (cur = pvl; cur != NULL; cur = cur->pv_next) {
if (pmap == cur->pv_pmap && va == cur->pv_va)
break;
}
if (cur == NULL) {
cur = pool_get(&pvpool, PR_NOWAIT);
if (cur == NULL) {
if (flags & PMAP_CANFAIL)
return (ENOMEM);
else
panic("pmap_enter: "
"pvlist pool exhausted");
}
/*
* Add the new entry after the header.
*/
cur->pv_pmap = pmap;
cur->pv_va = va;
cur->pv_flags = 0;
cur->pv_next = pvl->pv_next;
pvl->pv_next = cur;
}
}
}
if (flags & PMAP_WIRED) {
npte |= PG_W;
if ((opte & PG_W) == 0)
pmap->pm_stats.wired_count++;
} else {
if ((opte & PG_W) != 0)
pmap->pm_stats.wired_count--;
}
if ((opte & PG_V) == 0)
pmap->pm_stats.resident_count++;
if (pa >= VM_MIN_KERNEL_ADDRESS)
npte |= PG_S;
/*
* Now update the pte.
*/
if (opte != npte) {
DPRINTF(PDB_ENTER, (" -> npte %08x", npte));
*pte = npte;
tlb_flush(va);
}
DPRINTF(PDB_ENTER, ("\n"));
splx(s);
return (0);
}
/*
* Specific flavour of pmap_enter() for unmanaged wired mappings in the
* kernel pmap.
*/
void
pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
{
pt_entry_t *pte, opte, npte;
int s;
s = splvm();
DPRINTF(PDB_KENTER,
("pmap_kenter_pa(%08x,%08x,%x)", va, pa, prot));
if ((pte = pmap_grow_pte(pmap_kernel(), va)) == NULL) {
DPRINTF(PDB_KENTER, (" -> pmap_grow_pte failed\n"));
panic("pmap_kenter_pa: unable to allocate PT");
}
opte = *pte;
DPRINTF(PDB_KENTER, (" opte %08x", opte));
/*
* Enable cache, by default, if on physical memory, unless
* PMAP_NC has been passed in pa.
*/
switch (pa & PAGE_MASK) {
case PMAP_NC:
npte = PG_IO;
break;
case PMAP_BWS:
npte = PG_BYTE_SHARED;
break;
default:
if (pa >= PHYSMEM_BASE && pa < PHYSMEM_BASE + ptoa(physmem))
npte = PG_CACHE;
else
npte = PG_IO;
break;
}
pa = trunc_page(pa);
npte |= pa | PG_V | PG_W | (prot & PROT_WRITE ? PG_RW : PG_RO);
if ((opte & PG_W) == 0)
pmap_kernel()->pm_stats.wired_count++;
if ((opte & PG_V) == 0)
pmap_kernel()->pm_stats.resident_count++;
if (pa >= VM_MIN_KERNEL_ADDRESS)
npte |= PG_S;
/*
* Now update the pte.
*/
if (opte != npte) {
DPRINTF(PDB_KENTER, (" -> npte %08x", npte));
*pte = npte;
tlb_flush(va);
}
DPRINTF(PDB_KENTER, ("\n"));
splx(s);
}
/*
* Specific flavour of pmap_remove for unmanaged wired mappings in the
* kernel pmap.
*/
void
pmap_kremove(vaddr_t va, vsize_t len)
{
vaddr_t e, eva;
pd_entry_t *pde;
pt_entry_t *pte, opte;
int s;
s = splvm();
DPRINTF(PDB_KREMOVE, ("pmap_kremove(%08x,%08x)\n", va, len));
e = va + len;
while (va != e) {
pde = pmap_pde(pmap_kernel(), va);
eva = trunc_seg(va) + NBSEG;
if (eva > e || eva == 0)
eva = e;
if (pde == NULL) {
va = eva;
continue;
}
pte = pde_pte(pde, va);
for (; va != eva; va += PAGE_SIZE, pte++) {
opte = *pte;
if ((opte & PG_V) == 0)
continue;
pmap_kernel()->pm_stats.resident_count--;
#ifdef DIAGNOSTIC
if (!(opte & PG_W)) {
printf("pmap_kremove: non-wired mapping for %08x",
va);
} else
#endif
pmap_kernel()->pm_stats.wired_count--;
*pte = PG_NV;
tlb_flush(va);
}
}
splx(s);
}
/*
* Remove the wiring state of a page in the given pmap.
*/
void
pmap_unwire(struct pmap *pmap, vaddr_t va)
{
pt_entry_t *pte;
int s;
s = splvm();
DPRINTF(PDB_UNWIRE, ("pmap_unwire(%p,%08x)\n", pmap, va));
pte = pmap_pte(pmap, va);
if (*pte & PG_V)
if (*pte & PG_W) {
pmap->pm_stats.wired_count--;
/* No need to flush TLB, it's a software flag */
*pte &= ~PG_W;
}
splx(s);
}
/*
* Compute the physical address of a given virtual address in the given pmap.
* If the physical address is not mapped by this pmap, FALSE is returned.
*/
boolean_t
pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
{
pt_entry_t *pte;
paddr_t pa;
boolean_t rv;
int s;
DPRINTF(PDB_EXTRACT, ("pmap_extract(%p,%08x)", pmap, va));
s = splvm();
pte = pmap_pte(pmap, va);
if (pte != NULL && (*pte & PG_V) != 0) {
rv = TRUE;
pa = (*pte & PG_FRAME) | (va & PAGE_MASK);
DPRINTF(PDB_EXTRACT, (" -> %08x\n", pa));
if (pap != NULL)
*pap = pa;
} else {
DPRINTF(PDB_EXTRACT, (" -> FALSE\n"));
rv = FALSE;
}
splx(s);
return (rv);
}
/*
* Walk a vm_page and flush all existing mappings.
*/
void
pg_flushcache(struct vm_page *pg)
{
struct pvlist *pvl;
int s;
s = splvm();
pvl = pg_to_pvl(pg);
if (pvl->pv_pmap == NULL)
return;
/*
* Since cache_flush_page() causes the whole cache to be flushed,
* there is no need to loop - flush once.
*/
/* for (; pvl != NULL; pvl = pvl->pv_next) */
cache_flush_page(pvl->pv_va);
splx(s);
}
/*
* Fill a vm_page with zeroes.
*/
void
pmap_zero_page(struct vm_page *pg)
{
paddr_t pa;
vaddr_t va;
pt_entry_t *pte;
int s;
s = splvm();
pa = VM_PAGE_TO_PHYS(pg);
va = vreserve;
pte = ptereserve;
DPRINTF(PDB_ZERO, ("pmap_zero_page(%p/pa %x) pte %p\n", pg, pa, pte));
pg_flushcache(pg);
*pte = PG_V | PG_S | (pa & PG_FRAME);
tlb_flush(va);
qzero((caddr_t)va, PAGE_SIZE);
cache_flush_page(va);
/* paranoia */
*pte = PG_NV;
tlb_flush(va);
splx(s);
}
/*
* Copy the contents of a vm_page to another.
*/
void
pmap_copy_page(struct vm_page *srcpg, struct vm_page *dstpg)
{
paddr_t srcpa, dstpa;
vaddr_t srcva, dstva;
pt_entry_t *srcpte, *dstpte;
int s;
s = splvm();
DPRINTF(PDB_COPY, ("pmap_copy_page(%p,%p)\n", srcpg, dstpg));
srcpa = VM_PAGE_TO_PHYS(srcpg);
dstpa = VM_PAGE_TO_PHYS(dstpg);
srcva = vreserve;
dstva = srcva + PAGE_SIZE;
dstpte = ptereserve;
srcpte = dstpte++;
pg_flushcache(srcpg);
/*
* Since pg_flushcache() causes the whole cache to be flushed,
* there is no need flush dstpg.
*/
/* pg_flushcache(dstpg); */
*srcpte = PG_V | PG_S | PG_RO | (srcpa & PG_FRAME);
*dstpte = PG_V | PG_S | (dstpa & PG_FRAME);
tlb_flush(srcva);
tlb_flush(dstva);
qcopy((caddr_t)srcva, (caddr_t)dstva, PAGE_SIZE);
cache_flush_page(srcva);
*srcpte = *dstpte = PG_NV;
tlb_flush(srcva);
tlb_flush(dstva);
splx(s);
}
/*
* Clear the modify bits on all mappings associated to the given vm_page.
*/
boolean_t
pmap_clear_modify(struct vm_page *pg)
{
struct pvlist *pvl;
pt_entry_t *pte;
boolean_t rv;
int s;
int flushed;
s = splvm();
pvl = pg_to_pvl(pg);
DPRINTF(PDB_CLEAR_M,
("pmap_clear_modify(%p/pmap %p)\n", pg, pvl->pv_pmap));
if (pvl->pv_flags & PG_M) {
pvl->pv_flags &= ~PG_M;
rv = TRUE;
}
if (pvl->pv_pmap != NULL) {
flushed = 0;
for (; pvl != NULL; pvl = pvl->pv_next) {
pte = pmap_pte(pvl->pv_pmap, pvl->pv_va);
if ((*pte & PG_V) != 0 && (*pte & PG_M) != 0) {
/*
* Since cache_flush_page() causes the whole
* cache to be flushed, only flush once.
*/
if (flushed == 0) {
cache_flush_page(pvl->pv_va);
flushed = 1;
}
rv = TRUE;
/* No need to flush TLB, it's a software flag */
*pte &= ~PG_M;
}
}
}
splx(s);
return (rv);
}
/*
* Clear the reference bits on all mappings associated to the given vm_page.
*/
boolean_t
pmap_clear_reference(struct vm_page *pg)
{
struct pvlist *pvl;
pt_entry_t *pte;
boolean_t rv;
int s;
s = splvm();
pvl = pg_to_pvl(pg);
DPRINTF(PDB_CLEAR_U,
("pmap_clear_reference(%p/pmap %p)\n", pg, pvl->pv_pmap));
if (pvl->pv_flags & PG_U) {
pvl->pv_flags &= ~PG_U;
rv = TRUE;
}
if (pvl->pv_pmap != NULL)
for (; pvl != NULL; pvl = pvl->pv_next) {
pte = pmap_pte(pvl->pv_pmap, pvl->pv_va);
if ((*pte & PG_V) != 0 && (*pte & PG_U) != 0) {
rv = TRUE;
/* No need to flush TLB, it's a software flag */
*pte &= ~PG_U;
}
}
splx(s);
return (rv);
}
/*
* Check the reference bit attribute for the given vm_page.
*/
boolean_t
pmap_is_referenced(struct vm_page *pg)
{
struct pvlist *pvl;
boolean_t rv;
int s;
s = splvm();
pvl = pg_to_pvl(pg);
rv = (pvl->pv_flags & PG_U) != 0;
DPRINTF(PDB_IS_U,
("pmap_is_referenced(%p/pmap %p) -> %d\n", pg, pvl->pv_pmap, rv));
splx(s);
return (rv);
}
/*
* Check the modify bit attribute for the given vm_page.
*/
boolean_t
pmap_is_modified(struct vm_page *pg)
{
struct pvlist *pvl;
boolean_t rv;
int s;
s = splvm();
pvl = pg_to_pvl(pg);
rv = (pvl->pv_flags & PG_M) != 0;
DPRINTF(PDB_IS_M,
("pmap_is_modified(%p/pmap %p) -> %d\n", pg, pvl->pv_pmap, rv));
splx(s);
return (rv);
}
/*
* Flush instruction cache on the given dirty area.
*
* The KAP is the only sparc implementation OpenBSD runs on with independent
* instruction and data caches; for now, we won't add a function pointer
* to the cpu structure, but will directly invoke the necessary operation.
*/
void
pmap_proc_iflush(struct proc *p, vaddr_t va, vsize_t len)
{
/* There is no way to invalidate a subset of the icache */
sta(0, ASI_ICACHE_INVAL, 0);
}
/*
* The following routines are not part of the MI pmap API, but are
* necessary to use the common sparc code.
*/
/*
* Enable caching of the page tables if necessary.
*/
void
pmap_cache_enable()
{
/* nothing to do */
}
/*
* Change the protection for a specific kernel mapping.
* Used by machdep.c only.
*/
void
pmap_changeprot(struct pmap *pmap, vaddr_t va, vm_prot_t prot, int wired)
{
pt_entry_t *pte, npte;
int s;
s = splvm();
npte = PG_S | (prot & PROT_WRITE ? PG_RW : PG_RO);
pte = pmap_pte(pmap, va);
if ((*pte & PG_PROT) != npte) {
*pte = (*pte & ~PG_PROT) | npte;
tlb_flush(va);
}
splx(s);
}
/*
* Set a ``red zone'' below the kernel.
*/
void
pmap_redzone()
{
}
/*
* Write a given byte in a protected page; used by the ddb breakpoints.
*/
void
pmap_writetext(unsigned char *dst, int ch)
{
pt_entry_t *pte, opte;
int s;
/*
* Check for a PTW hit first.
*/
switch ((vaddr_t)dst >> PTW_WINDOW_SHIFT) {
case PTW1_WINDOW:
case PTW2_WINDOW:
*dst = (unsigned char)ch;
cpuinfo.cache_flush(dst, 1);
return;
}
s = splvm();
pte = pmap_pte(pmap_kernel(), (vaddr_t)dst);
if (pte != NULL) {
opte = *pte;
if ((opte & PG_V) != 0) {
cpuinfo.cache_flush(dst, 1);
if ((opte & PG_RO) != 0) {
*pte &= ~PG_RO;
tlb_flush(trunc_page((vaddr_t)dst));
}
*dst = (unsigned char)ch;
if ((opte & PG_RO) != 0) {
*pte = opte;
tlb_flush(trunc_page((vaddr_t)dst));
}
cpuinfo.cache_flush(dst, 1);
}
}
splx(s);
}
/*
* Enable or disable cache for the given number of pages at the given
* virtual address.
*/
void
kvm_setcache(caddr_t addr, int npages, int cached)
{
pt_entry_t *pte, opte;
vaddr_t va = (vaddr_t)addr;
int s;
int flushed;
#ifdef DIAGNOSTIC
if (va & PAGE_MASK) {
printf("kvm_setcache: unaligned va %08x\n", va);
va = trunc_page(va);
}
#endif
#ifdef DIAGNOSTIC
/*
* Check for a PTW hit first.
*/
switch (va >> PTW_WINDOW_SHIFT) {
case PTW1_WINDOW:
case PTW2_WINDOW:
printf("kvm_setcache(%08x, %08x, %d) in a PTW\n",
va, npages << PAGE_SHIFT, cached);
return;
}
#endif
s = splvm();
pte = pmap_pte(pmap_kernel(), va);
flushed = 0;
for (; --npages >= 0; va += PAGE_SIZE, pte++) {
opte = *pte & ~PG_MA;
if (cached)
opte |= PG_CACHE;
else
opte |= PG_IO;
*pte = opte;
tlb_flush(va);
/*
* Since cache_flush_page() causes the whole
* cache to be flushed, only flush once.
*/
if (flushed == 0) {
cache_flush_page(va);
flushed = 1;
}
}
splx(s);
}
/*
* Simple wrapper around pmap_kenter_pa() for multiple pages.
*/
vaddr_t
pmap_map(vaddr_t va, paddr_t pa, paddr_t epa, int prot)
{
while (pa < epa) {
pmap_kenter_pa(va, pa, (vm_prot_t)prot);
va += PAGE_SIZE;
pa += PAGE_SIZE;
}
return (va);
}
/*
* Checks whether a given physical address is in physical memory or
* in device space.
* Used by mem.c.
*/
int
pmap_pa_exists(paddr_t pa)
{
return (pa >= PHYSMEM_BASE && pa < PHYSMEM_BASE + ptoa(physmem));
}
|