1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
|
/* $OpenBSD: zaurus_apm.c,v 1.23 2013/05/30 16:15:01 deraadt Exp $ */
/*
* Copyright (c) 2005 Uwe Stuehler <uwe@bsdx.de>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/timeout.h>
#include <sys/conf.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/sysctl.h>
#include <sys/reboot.h>
#include <arm/xscale/pxa2x0reg.h>
#include <arm/xscale/pxa2x0var.h>
#include <arm/xscale/pxa2x0_apm.h>
#include <arm/xscale/pxa2x0_gpio.h>
#include <zaurus/dev/zaurus_scoopvar.h>
#include <zaurus/dev/zaurus_sspvar.h>
void zssp_init(void); /* XXX */
#include <zaurus/dev/zaurus_apm.h>
#include <dev/wscons/wsdisplayvar.h>
#include "wsdisplay.h"
#if defined(APMDEBUG)
#define DPRINTF(x) printf x
#else
#define DPRINTF(x) /**/
#endif
struct zapm_softc {
struct pxa2x0_apm_softc sc;
struct timeout sc_poll;
struct timeval sc_lastbattchk;
int sc_suspended;
int sc_ac_on;
int sc_charging;
int sc_discharging;
int sc_batt_full;
int sc_batt_volt;
u_int sc_event;
};
int apm_match(struct device *, void *, void *);
void apm_attach(struct device *, struct device *, void *);
int apm_activate(struct device *, int);
struct cfattach apm_pxaip_ca = {
sizeof (struct zapm_softc), apm_match, apm_attach,
NULL, apm_activate
};
extern struct cfdriver apm_cd;
/* MAX1111 command word */
#define MAXCTRL_PD0 (1<<0)
#define MAXCTRL_PD1 (1<<1)
#define MAXCTRL_SGL (1<<2)
#define MAXCTRL_UNI (1<<3)
#define MAXCTRL_SEL_SHIFT 4
#define MAXCTRL_STR (1<<7)
/* MAX1111 ADC channels */
#define BATT_THM 2
#define BATT_AD 4
#define JK_VAD 6
/* battery-related GPIO pins */
#define GPIO_AC_IN_C3000 115 /* 0=AC connected */
#define GPIO_CHRG_CO_C3000 101 /* 1=battery full */
#define GPIO_BATT_COVER_C3000 90 /* 0=unlocked */
/*
* Battery-specific information
*/
struct battery_threshold {
int bt_volt;
int bt_life;
int bt_state;
};
struct battery_info {
int bi_minutes; /* 100% life time */
const struct battery_threshold *bi_thres;
};
const struct battery_threshold zaurus_battery_life_c3000[] = {
#if 0
{224, 125, APM_BATT_HIGH}, /* XXX unverified */
#endif
{194, 100, APM_BATT_HIGH},
{188, 75, APM_BATT_HIGH},
{184, 50, APM_BATT_HIGH},
{180, 25, APM_BATT_LOW},
{178, 5, APM_BATT_LOW},
{0, 0, APM_BATT_CRITICAL},
};
const struct battery_info zaurus_battery_c3000 = {
180 /* minutes; pessimistic estimate */,
zaurus_battery_life_c3000
};
const struct battery_info *zaurus_main_battery = &zaurus_battery_c3000;
/* Restart charging this many times before accepting BATT_FULL. */
#define MIN_BATT_FULL 2
/* Discharge 100 ms before reading the voltage if AC is connected. */
#define DISCHARGE_TIMEOUT (hz / 10)
/* Check battery voltage and "kick charging" every minute. */
const struct timeval zapm_battchkrate = { 60, 0 };
/* Prototypes */
int zapm_acintr(void *);
int zapm_bcintr(void *);
int zapm_ac_on(void);
int max1111_adc_value(int);
int max1111_adc_value_avg(int, int);
#if 0
int zapm_jkvad_voltage(void);
int zapm_batt_temp(void);
#endif
int zapm_batt_volt(void);
int zapm_batt_state(int);
int zapm_batt_life(int);
int zapm_batt_minutes(int);
void zapm_enable_charging(struct zapm_softc *, int);
int zapm_charge_complete(struct zapm_softc *);
void zapm_poll(void *);
int zapm_get_event(struct pxa2x0_apm_softc *, u_int *);
void zapm_power_info(struct pxa2x0_apm_softc *, struct apm_power_info *);
void zapm_suspend(struct pxa2x0_apm_softc *);
int zapm_resume(struct pxa2x0_apm_softc *);
void pxa2x0_setperf(int);
int pxa2x0_cpuspeed(int *);
int
apm_match(struct device *parent, void *match, void *aux)
{
return (1);
}
void
apm_attach(struct device *parent, struct device *self, void *aux)
{
struct zapm_softc *sc = (struct zapm_softc *)self;
pxa2x0_gpio_set_function(GPIO_AC_IN_C3000, GPIO_IN);
pxa2x0_gpio_set_function(GPIO_CHRG_CO_C3000, GPIO_IN);
pxa2x0_gpio_set_function(GPIO_BATT_COVER_C3000, GPIO_IN);
(void)pxa2x0_gpio_intr_establish(GPIO_AC_IN_C3000,
IST_EDGE_BOTH, IPL_BIO, zapm_acintr, sc, "apm_ac");
(void)pxa2x0_gpio_intr_establish(GPIO_BATT_COVER_C3000,
IST_EDGE_BOTH, IPL_BIO, zapm_bcintr, sc, "apm_bc");
sc->sc_event = APM_NOEVENT;
sc->sc.sc_get_event = zapm_get_event;
sc->sc.sc_power_info = zapm_power_info;
sc->sc.sc_suspend = zapm_suspend;
sc->sc.sc_resume = zapm_resume;
timeout_set(&sc->sc_poll, &zapm_poll, sc);
/* Get initial battery voltage. */
zapm_enable_charging(sc, 0);
if (zapm_ac_on()) {
/* C3000: discharge 100 ms when AC is on. */
scoop_discharge_battery(1);
delay(100000);
}
sc->sc_batt_volt = zapm_batt_volt();
scoop_discharge_battery(0);
pxa2x0_apm_attach_sub(&sc->sc);
cpu_setperf = pxa2x0_setperf;
cpu_cpuspeed = pxa2x0_cpuspeed;
}
int
apm_activate(struct device *self, int act)
{
struct zapm_softc *sc = (struct zapm_softc *)self;
int ret = 0;
switch (act) {
case DVACT_POWERDOWN:
zapm_enable_charging(sc, 0);
break;
}
return (ret);
}
int
zapm_acintr(void *v)
{
zapm_poll(v);
return (1);
}
int
zapm_bcintr(void *v)
{
zapm_poll(v);
return (1);
}
int
zapm_ac_on(void)
{
return (!pxa2x0_gpio_get_bit(GPIO_AC_IN_C3000));
}
int
max1111_adc_value(int chan)
{
return ((int)zssp_ic_send(ZSSP_IC_MAX1111, MAXCTRL_PD0 |
MAXCTRL_PD1 | MAXCTRL_SGL | MAXCTRL_UNI |
(chan << MAXCTRL_SEL_SHIFT) | MAXCTRL_STR));
}
/* XXX simplify */
int
max1111_adc_value_avg(int chan, int pause)
{
int val[5];
int i, j, k, x;
int sum = 0;
for (i = 0; i < 5; i++) {
val[i] = max1111_adc_value(chan);
if (i != 4)
delay(pause * 1000);
}
x = val[0];
j = 0;
for (i = 1; i < 5; i++) {
if (x < val[i]) {
x = val[i];
j = i;
}
}
x = val[4];
k = 4;
for (i = 3; i >= 0; i--) {
if (x > val[i]) {
x = val[i];
k = i;
}
}
for (i = 0; i < 5; i++) {
if (i == j || i == k)
continue;
sum += val[i];
}
return (sum / 3);
}
#if 0
/*
* Return the voltage available for charging. This will be zero,
* unless A/C power is connected.
*/
int
zapm_jkvad_voltage(void)
{
return (max1111_adc_value_avg(JK_VAD, 10));
}
int
zapm_batt_temp(void)
{
int temp;
scoop_battery_temp_adc(1);
delay(10000);
temp = max1111_adc_value_avg(BATT_THM, 1);
scoop_battery_temp_adc(0);
return (temp);
}
#endif
int
zapm_batt_volt(void)
{
return (max1111_adc_value_avg(BATT_AD, 10));
}
int
zapm_batt_state(int volt)
{
const struct battery_threshold *bthr;
int i;
bthr = zaurus_main_battery->bi_thres;
for (i = 0; bthr[i].bt_volt > 0; i++)
if (bthr[i].bt_volt <= volt)
break;
return (bthr[i].bt_state);
}
int
zapm_batt_life(int volt)
{
const struct battery_threshold *bthr;
int i;
bthr = zaurus_main_battery->bi_thres;
for (i = 0; bthr[i].bt_volt > 0; i++)
if (bthr[i].bt_volt <= volt)
break;
if (i == 0)
return (bthr[i].bt_life);
return (bthr[i].bt_life +
((volt - bthr[i].bt_volt) * 100) /
(bthr[i-1].bt_volt - bthr[i].bt_volt) *
(bthr[i-1].bt_life - bthr[i].bt_life) / 100);
}
int
zapm_batt_minutes(int life)
{
return (zaurus_main_battery->bi_minutes * life / 100);
}
void
zapm_enable_charging(struct zapm_softc *sc, int enable)
{
scoop_discharge_battery(0);
scoop_charge_battery(enable, 0);
scoop_led_set(SCOOP_LED_ORANGE, enable);
}
/*
* Return non-zero if the charge complete signal indicates that the
* battery is fully charged. Restart charging to clear this signal.
*/
int
zapm_charge_complete(struct zapm_softc *sc)
{
if (sc->sc_charging && sc->sc_batt_full < MIN_BATT_FULL) {
if (pxa2x0_gpio_get_bit(GPIO_CHRG_CO_C3000) != 0) {
if (++sc->sc_batt_full < MIN_BATT_FULL) {
DPRINTF(("battery almost full\n"));
zapm_enable_charging(sc, 0);
delay(15000);
zapm_enable_charging(sc, 1);
}
} else if (sc->sc_batt_full > 0) {
/* false alarm */
sc->sc_batt_full = 0;
zapm_enable_charging(sc, 0);
delay(15000);
zapm_enable_charging(sc, 1);
}
}
return (sc->sc_batt_full >= MIN_BATT_FULL);
}
/*
* Poll power-management related GPIO inputs, update battery life
* in softc, and/or control battery charging.
*/
void
zapm_poll(void *v)
{
struct zapm_softc *sc = v;
int ac_on;
int bc_lock;
int charging;
int volt;
int s;
s = splhigh();
/* Check positition of battery compartment lock switch. */
bc_lock = pxa2x0_gpio_get_bit(GPIO_BATT_COVER_C3000) ? 1 : 0;
/* Stop discharging. */
if (sc->sc_discharging) {
sc->sc_discharging = 0;
volt = zapm_batt_volt();
ac_on = zapm_ac_on();
charging = 0;
DPRINTF(("zapm_poll: discharge off volt %d\n", volt));
} else {
ac_on = zapm_ac_on();
charging = sc->sc_charging;
volt = sc->sc_batt_volt;
}
/* Start or stop charging as necessary. */
if (ac_on && bc_lock) {
if (charging) {
if (zapm_charge_complete(sc)) {
DPRINTF(("zapm_poll: batt full\n"));
charging = 0;
zapm_enable_charging(sc, 0);
}
} else if (!zapm_charge_complete(sc)) {
charging = 1;
volt = zapm_batt_volt();
zapm_enable_charging(sc, 1);
DPRINTF(("zapm_poll: start charging volt %d\n", volt));
}
} else {
if (charging) {
charging = 0;
zapm_enable_charging(sc, 0);
timerclear(&sc->sc_lastbattchk);
DPRINTF(("zapm_poll: stop charging\n"));
}
sc->sc_batt_full = 0;
}
/*
* Restart charging once in a while. Discharge a few milliseconds
* before updating the voltage in our softc if A/C is connected.
*/
if (bc_lock && ratecheck(&sc->sc_lastbattchk, &zapm_battchkrate)) {
if (sc->sc_suspended) {
DPRINTF(("zapm_poll: suspended %lu %lu\n",
sc->sc_lastbattchk.tv_sec,
pxa2x0_rtc_getsecs()));
if (charging) {
zapm_enable_charging(sc, 0);
delay(15000);
zapm_enable_charging(sc, 1);
pxa2x0_rtc_setalarm(pxa2x0_rtc_getsecs() +
zapm_battchkrate.tv_sec + 1);
}
} else if (ac_on && sc->sc_batt_full == 0) {
DPRINTF(("zapm_poll: discharge on\n"));
if (charging)
zapm_enable_charging(sc, 0);
sc->sc_discharging = 1;
scoop_discharge_battery(1);
timeout_add(&sc->sc_poll, DISCHARGE_TIMEOUT);
} else if (!ac_on) {
volt = zapm_batt_volt();
DPRINTF(("zapm_poll: volt %d\n", volt));
}
}
/* Update the cached power state in our softc. */
if (ac_on != sc->sc_ac_on || charging != sc->sc_charging ||
volt != sc->sc_batt_volt) {
sc->sc_ac_on = ac_on;
sc->sc_charging = charging;
sc->sc_batt_volt = volt;
if (sc->sc_event == APM_NOEVENT)
sc->sc_event = APM_POWER_CHANGE;
}
/* Detect battery low conditions. */
if (!ac_on) {
if (zapm_batt_life(volt) < 5)
sc->sc_event = APM_BATTERY_LOW;
if (zapm_batt_state(volt) == APM_BATT_CRITICAL)
sc->sc_event = APM_CRIT_SUSPEND_REQ;
}
#ifdef APMDEBUG
if (sc->sc_event != APM_NOEVENT)
DPRINTF(("zapm_poll: power event %d\n", sc->sc_event));
#endif
splx(s);
}
/*
* apm_thread() calls this routine approximately once per second.
*/
int
zapm_get_event(struct pxa2x0_apm_softc *pxa_sc, u_int *typep)
{
struct zapm_softc *sc = (struct zapm_softc *)pxa_sc;
int s;
s = splsoftclock();
/* Don't interfere with discharging. */
if (sc->sc_discharging)
*typep = sc->sc_event;
else if (sc->sc_event == APM_NOEVENT) {
zapm_poll(sc);
*typep = sc->sc_event;
}
sc->sc_event = APM_NOEVENT;
splx(s);
return (*typep == APM_NOEVENT);
}
/*
* Return power status to the generic APM driver.
*/
void
zapm_power_info(struct pxa2x0_apm_softc *pxa_sc, struct apm_power_info *power)
{
struct zapm_softc *sc = (struct zapm_softc *)pxa_sc;
int s;
int ac_on;
int volt;
int charging;
s = splsoftclock();
ac_on = sc->sc_ac_on;
volt = sc->sc_batt_volt;
charging = sc->sc_charging;
splx(s);
power->ac_state = ac_on ? APM_AC_ON : APM_AC_OFF;
if (charging)
power->battery_state = APM_BATT_CHARGING;
else
power->battery_state = zapm_batt_state(volt);
power->battery_life = zapm_batt_life(volt);
power->minutes_left = zapm_batt_minutes(power->battery_life);
}
/*
* Called before suspending when all ca_activate functions are done.
*/
void
zapm_suspend(struct pxa2x0_apm_softc *pxa_sc)
{
struct zapm_softc *sc = (struct zapm_softc *)pxa_sc;
bufq_quiesce();
config_suspend(TAILQ_FIRST(&alldevs), DVACT_QUIESCE);
/* Poll in suspended mode and forget the discharge timeout. */
sc->sc_suspended = 1;
timeout_del(&sc->sc_poll);
/* Make sure charging is enabled and RTC alarm is set. */
timerclear(&sc->sc_lastbattchk);
zapm_poll(sc);
#if 0
pxa2x0_rtc_setalarm(pxa2x0_rtc_getsecs() + 5);
#endif
pxa2x0_wakeup_config(PXA2X0_WAKEUP_ALL, 1);
}
/*
* Called after wake-up from suspend with interrupts still disabled,
* before any ca_activate functions are done.
*/
int
zapm_resume(struct pxa2x0_apm_softc *pxa_sc)
{
struct zapm_softc *sc = (struct zapm_softc *)pxa_sc;
int a, b;
u_int wsrc;
int wakeup = 0;
/* C3000 */
a = pxa2x0_gpio_get_bit(97) ? 1 : 0;
b = pxa2x0_gpio_get_bit(96) ? 2 : 0;
wsrc = pxa2x0_wakeup_status();
/* Resume only if the lid is not closed. */
if ((a | b) != 3 && (wsrc & PXA2X0_WAKEUP_POWERON) != 0) {
int timeout = 100; /* 10 ms */
/* C3000 */
while (timeout-- > 0 && pxa2x0_gpio_get_bit(95) != 0) {
if (timeout == 0) {
wakeup = 1;
break;
}
delay(100);
}
}
/* Initialize the SSP unit before using the MAX1111 again. */
zssp_init();
zapm_poll(sc);
if (wakeup) {
/* Resume normal polling. */
sc->sc_suspended = 0;
pxa2x0_rtc_setalarm(0);
} else {
#if 0
DPRINTF(("zapm_resume: suspended %lu %lu\n",
sc->sc_lastbattchk.tv_sec, pxa2x0_rtc_getsecs()));
pxa2x0_rtc_setalarm(pxa2x0_rtc_getsecs() + 5);
#endif
}
return (wakeup);
}
void
zapm_poweroff(void)
{
struct pxa2x0_apm_softc *sc;
int s;
KASSERT(apm_cd.cd_ndevs > 0 && apm_cd.cd_devs[0] != NULL);
sc = apm_cd.cd_devs[0];
#if NWSDISPLAY > 0
wsdisplay_suspend();
#endif /* NWSDISPLAY > 0 */
s = splhigh();
config_suspend(TAILQ_FIRST(&alldevs), DVACT_SUSPEND);
/* XXX
* Flag to disk drivers that they should "power down" the disk
* when we get to DVACT_POWERDOWN.
*/
boothowto |= RB_POWERDOWN;
config_suspend(TAILQ_FIRST(&alldevs), DVACT_POWERDOWN);
boothowto &= ~RB_POWERDOWN;
/* XXX enable charging during suspend */
/* XXX keep power LED state during suspend */
/* XXX do the same thing for GPIO 43 (BTTXD) */
/* XXX scoop power down */
/* XXX set PGSRn and GPDRn */
pxa2x0_wakeup_config(PXA2X0_WAKEUP_ALL, 1);
do {
pxa2x0_apm_sleep(sc);
} while (!zapm_resume(sc));
zapm_restart();
/* NOTREACHED */
config_suspend(TAILQ_FIRST(&alldevs), DVACT_RESUME);
splx(s);
bufq_restart();
#if NWSDISPLAY > 0
wsdisplay_resume();
#endif /* NWSDISPLAY > 0 */
}
/*
* Do a GPIO reset, immediately causing the processor to begin the normal
* boot sequence. See 2.7 Reset in the PXA27x Developer's Manual for the
* summary of effects of this kind of reset.
*/
void
zapm_restart(void)
{
if (apm_cd.cd_ndevs > 0 && apm_cd.cd_devs[0] != NULL) {
struct pxa2x0_apm_softc *sc = apm_cd.cd_devs[0];
int rv;
/*
* Reduce the ROM Delay Next Access and ROM Delay First
* Access times for synchronous flash connected to nCS1.
*/
rv = bus_space_read_4(sc->sc_iot, sc->sc_memctl_ioh,
MEMCTL_MSC0);
if ((rv & 0xffff0000) == 0x7ff00000)
bus_space_write_4(sc->sc_iot, sc->sc_memctl_ioh,
MEMCTL_MSC0, (rv & 0xffff) | 0x7ee00000);
}
/* External reset circuit presumably asserts nRESET_GPIO. */
pxa2x0_gpio_set_function(89, GPIO_OUT | GPIO_SET);
delay(1000000);
}
|