1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
|
/* $OpenBSD: zaurus_flash.c,v 1.2 2007/06/05 00:38:20 deraadt Exp $ */
/*
* Copyright (c) 2005 Uwe Stuehler <uwe@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Samsung NAND flash controlled by some unspecified CPLD device.
*/
#include <sys/param.h>
#include <sys/buf.h>
#include <sys/device.h>
#include <sys/disk.h>
#include <sys/disklabel.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/systm.h>
#include <dev/flashvar.h>
#include <dev/rndvar.h>
#include <machine/zaurus_var.h>
#include <arch/arm/xscale/pxa2x0var.h>
#define DEBUG
#ifdef DEBUG
#define DPRINTF(x) printf x
#else
#define DPRINTF(x)
#endif
/* CPLD register definitions */
#define CPLD_REG_ECCLPLB 0x00
#define CPLD_REG_ECCLPUB 0x04
#define CPLD_REG_ECCCP 0x08
#define CPLD_REG_ECCCNTR 0x0c
#define CPLD_REG_ECCCLRR 0x10
#define CPLD_REG_FLASHIO 0x14
#define CPLD_REG_FLASHCTL 0x18
#define FLASHCTL_NCE0 (1<<0)
#define FLASHCTL_CLE (1<<1)
#define FLASHCTL_ALE (1<<2)
#define FLASHCTL_NWP (1<<3)
#define FLASHCTL_NCE1 (1<<4)
#define FLASHCTL_RYBY (1<<5)
#define FLASHCTL_NCE (FLASHCTL_NCE0|FLASHCTL_NCE1)
/* CPLD register accesses */
#define CPLD_READ(sc, r) \
bus_space_read_1((sc)->sc_iot, (sc)->sc_ioh, (r))
#define CPLD_WRITE(sc, r, v) \
bus_space_write_1((sc)->sc_iot, (sc)->sc_ioh, (r), (v))
#define CPLD_SET(sc, r, v) \
CPLD_WRITE((sc), (r), CPLD_READ((sc), (r)) | (v))
#define CPLD_CLR(sc, r, v) \
CPLD_WRITE((sc), (r), CPLD_READ((sc), (r)) & ~(v))
#define CPLD_SETORCLR(sc, r, m, v) \
((v) ? CPLD_SET((sc), (r), (m)) : CPLD_CLR((sc), (r), (m)))
/* Offsets into OOB data. */
#define OOB_JFFS2_ECC0 0
#define OOB_JFFS2_ECC1 1
#define OOB_JFFS2_ECC2 2
#define OOB_JFFS2_ECC3 3
#define OOB_JFFS2_ECC4 6
#define OOB_JFFS2_ECC5 7
#define OOB_LOGADDR_0_LO 8
#define OOB_LOGADDR_0_HI 9
#define OOB_LOGADDR_1_LO 10
#define OOB_LOGADDR_1_HI 11
#define OOB_LOGADDR_2_LO 12
#define OOB_LOGADDR_2_HI 13
/*
* Structure for managing logical blocks in a partition; allocated on
* first use of each partition on a "safe" flash device.
*/
struct zflash_safe {
dev_t sp_dev;
u_long sp_pblks; /* physical block count */
u_long sp_lblks; /* logical block count */
u_int16_t *sp_phyuse; /* physical block usage */
u_int *sp_logmap; /* logical to physical */
u_int sp_pnext; /* next physical block */
};
struct zflash_softc {
struct flash_softc sc_flash;
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh;
int sc_ioobbadblk;
int sc_ioobpostbadblk;
struct zflash_safe *sc_safe[MAXPARTITIONS];
};
int zflashmatch(struct device *, void *, void *);
void zflashattach(struct device *, struct device *, void *);
int zflashdetach(struct device *, int);
u_int8_t zflash_reg8_read(void *, int);
int zflash_regx_read_page(void *, caddr_t, caddr_t);
void zflash_reg8_write(void *, int, u_int8_t);
int zflash_regx_write_page(void *, caddr_t, caddr_t);
void zflash_default_disklabel(void *, dev_t, struct disklabel *,
struct cpu_disklabel *);
int zflash_safe_strategy(void *, struct buf *);
int zflash_safe_start(struct zflash_softc *, dev_t);
void zflash_safe_stop(struct zflash_softc *, dev_t);
struct cfattach flash_pxaip_ca = {
sizeof(struct zflash_softc), zflashmatch, zflashattach,
zflashdetach, flashactivate
};
struct flash_ctl_tag zflash_ctl_tag = {
zflash_reg8_read,
zflash_regx_read_page,
zflash_reg8_write,
zflash_regx_write_page,
zflash_default_disklabel,
zflash_safe_strategy
};
int
zflashmatch(struct device *parent, void *match, void *aux)
{
/* XXX call flashprobe(), yet to be implemented */
return ZAURUS_ISC3000;
}
void
zflashattach(struct device *parent, struct device *self, void *aux)
{
struct zflash_softc *sc = (struct zflash_softc *)self;
struct pxaip_attach_args *pxa = aux;
bus_addr_t addr = pxa->pxa_addr;
bus_size_t size = pxa->pxa_size;
sc->sc_iot = pxa->pxa_iot;
if ((int)addr == -1 || (int)size == 0) {
addr = 0x0c000000;
size = 0x00001000;
}
if (bus_space_map(sc->sc_iot, addr, size, 0, &sc->sc_ioh) != 0) {
printf(": failed to map controller\n");
return;
}
/* Disable and write-protect the chip. */
CPLD_WRITE(sc, CPLD_REG_FLASHCTL, FLASHCTL_NCE);
flashattach(&sc->sc_flash, &zflash_ctl_tag, sc);
switch (sc->sc_flash.sc_flashdev->id) {
case FLASH_DEVICE_SAMSUNG_K9F2808U0C: /* C3000 */
sc->sc_ioobpostbadblk = 4;
sc->sc_ioobbadblk = 5;
break;
case FLASH_DEVICE_SAMSUNG_K9F1G08U0A: /* C3100 */
sc->sc_ioobpostbadblk = 4;
sc->sc_ioobbadblk = 0;
break;
}
}
int
zflashdetach(struct device *self, int flags)
{
struct zflash_softc *sc = (struct zflash_softc *)self;
int part;
for (part = 0; part < MAXPARTITIONS; part++)
zflash_safe_stop(sc, part);
return (flashdetach(self, flags));
}
u_int8_t
zflash_reg8_read(void *arg, int reg)
{
struct zflash_softc *sc = arg;
u_int8_t value;
switch (reg) {
case FLASH_REG_DATA:
value = CPLD_READ(sc, CPLD_REG_FLASHIO);
break;
case FLASH_REG_READY:
value = (CPLD_READ(sc, CPLD_REG_FLASHCTL) &
FLASHCTL_RYBY) != 0;
break;
default:
#ifdef DIAGNOSTIC
printf("%s: read from pseudo-register %02x\n",
sc->sc_flash.sc_dev.dv_xname, reg);
#endif
value = 0;
break;
}
return value;
}
void
zflash_reg8_write(void *arg, int reg, u_int8_t value)
{
struct zflash_softc *sc = arg;
switch (reg) {
case FLASH_REG_DATA:
case FLASH_REG_COL:
case FLASH_REG_ROW:
case FLASH_REG_CMD:
CPLD_WRITE(sc, CPLD_REG_FLASHIO, value);
break;
case FLASH_REG_ALE:
CPLD_SETORCLR(sc, CPLD_REG_FLASHCTL, FLASHCTL_ALE, value);
break;
case FLASH_REG_CLE:
CPLD_SETORCLR(sc, CPLD_REG_FLASHCTL, FLASHCTL_CLE, value);
break;
case FLASH_REG_CE:
CPLD_SETORCLR(sc, CPLD_REG_FLASHCTL, FLASHCTL_NCE, !value);
break;
case FLASH_REG_WP:
CPLD_SETORCLR(sc, CPLD_REG_FLASHCTL, FLASHCTL_NWP, !value);
break;
#ifdef DIAGNOSTIC
default:
printf("%s: write to pseudo-register %02x\n",
sc->sc_flash.sc_dev.dv_xname, reg);
#endif
}
}
int
zflash_regx_read_page(void *arg, caddr_t data, caddr_t oob)
{
struct zflash_softc *sc = arg;
if (oob == NULL || sc->sc_flash.sc_flashdev->pagesize != 512) {
flash_reg8_read_page(&sc->sc_flash, data, oob);
return 0;
}
flash_reg8_read_page(&sc->sc_flash, data, oob);
oob[OOB_JFFS2_ECC0] = 0xff;
oob[OOB_JFFS2_ECC1] = 0xff;
oob[OOB_JFFS2_ECC2] = 0xff;
oob[OOB_JFFS2_ECC3] = 0xff;
oob[OOB_JFFS2_ECC4] = 0xff;
oob[OOB_JFFS2_ECC5] = 0xff;
return 0;
}
int
zflash_regx_write_page(void *arg, caddr_t data, caddr_t oob)
{
struct zflash_softc *sc = arg;
int i;
if (oob == NULL || sc->sc_flash.sc_flashdev->pagesize != 512) {
flash_reg8_write_page(&sc->sc_flash, data, oob);
return 0;
}
if (oob[OOB_JFFS2_ECC0] != 0xff || oob[OOB_JFFS2_ECC1] != 0xff ||
oob[OOB_JFFS2_ECC2] != 0xff || oob[OOB_JFFS2_ECC3] != 0xff ||
oob[OOB_JFFS2_ECC4] != 0xff || oob[OOB_JFFS2_ECC5] != 0xff) {
#ifdef DIAGNOSTIC
printf("%s: non-FF ECC bytes in OOB data\n",
sc->sc_flash.sc_dev.dv_xname);
#endif
return EINVAL;
}
CPLD_WRITE(sc, CPLD_REG_ECCCLRR, 0x00);
for (i = 0; i < sc->sc_flash.sc_flashdev->pagesize / 2; i++)
flash_reg8_write(&sc->sc_flash, FLASH_REG_DATA, data[i]);
oob[OOB_JFFS2_ECC0] = ~CPLD_READ(sc, CPLD_REG_ECCLPUB);
oob[OOB_JFFS2_ECC1] = ~CPLD_READ(sc, CPLD_REG_ECCLPLB);
oob[OOB_JFFS2_ECC2] = (~CPLD_READ(sc, CPLD_REG_ECCCP) << 2) | 0x03;
if (CPLD_READ(sc, CPLD_REG_ECCCNTR) != 0) {
printf("%s: ECC failed\n", sc->sc_flash.sc_dev.dv_xname);
oob[OOB_JFFS2_ECC0] = 0xff;
oob[OOB_JFFS2_ECC1] = 0xff;
oob[OOB_JFFS2_ECC2] = 0xff;
return EIO;
}
CPLD_WRITE(sc, CPLD_REG_ECCCLRR, 0x00);
for (; i < sc->sc_flash.sc_flashdev->pagesize; i++)
flash_reg8_write(&sc->sc_flash, FLASH_REG_DATA, data[i]);
oob[OOB_JFFS2_ECC3] = ~CPLD_READ(sc, CPLD_REG_ECCLPUB);
oob[OOB_JFFS2_ECC4] = ~CPLD_READ(sc, CPLD_REG_ECCLPLB);
oob[OOB_JFFS2_ECC5] = (~CPLD_READ(sc, CPLD_REG_ECCCP) << 2) | 0x03;
if (CPLD_READ(sc, CPLD_REG_ECCCNTR) != 0) {
printf("%s: ECC failed\n", sc->sc_flash.sc_dev.dv_xname);
oob[OOB_JFFS2_ECC0] = 0xff;
oob[OOB_JFFS2_ECC1] = 0xff;
oob[OOB_JFFS2_ECC2] = 0xff;
oob[OOB_JFFS2_ECC3] = 0xff;
oob[OOB_JFFS2_ECC4] = 0xff;
oob[OOB_JFFS2_ECC5] = 0xff;
return EIO;
}
for (i = 0; i < sc->sc_flash.sc_flashdev->oobsize; i++)
flash_reg8_write(&sc->sc_flash, FLASH_REG_DATA, oob[i]);
oob[OOB_JFFS2_ECC0] = 0xff;
oob[OOB_JFFS2_ECC1] = 0xff;
oob[OOB_JFFS2_ECC2] = 0xff;
oob[OOB_JFFS2_ECC3] = 0xff;
oob[OOB_JFFS2_ECC4] = 0xff;
oob[OOB_JFFS2_ECC5] = 0xff;
return 0;
}
/*
* A default disklabel with only one RAW_PART spanning the whole
* device is passed to us. We add the partitions besides RAW_PART.
*/
void
zflash_default_disklabel(void *arg, dev_t dev, struct disklabel *lp,
struct cpu_disklabel *clp)
{
struct zflash_softc *sc = arg;
long bsize = sc->sc_flash.sc_flashdev->pagesize;
switch (sc->sc_flash.sc_flashdev->id) {
case FLASH_DEVICE_SAMSUNG_K9F2808U0C:
DL_SETPSIZE(&lp->d_partitions[8], 7*1024*1024 / bsize);
DL_SETPSIZE(&lp->d_partitions[9], 5*1024*1024 / bsize);
DL_SETPSIZE(&lp->d_partitions[10], 4*1024*1024 / bsize);
break;
case FLASH_DEVICE_SAMSUNG_K9F1G08U0A:
DL_SETPSIZE(&lp->d_partitions[8], 7*1024*1024 / bsize);
DL_SETPSIZE(&lp->d_partitions[9], 32*1024*1024 / bsize);
DL_SETPSIZE(&lp->d_partitions[10], 89*1024*1024 / bsize);
break;
default:
return;
}
/* The "smf" partition uses logical addressing. */
DL_SETPOFFSET(&lp->d_partitions[8], 0);
lp->d_partitions[8].p_fstype = FS_OTHER;
/* The "root" partition uses physical addressing. */
DL_SETPSIZE(&lp->d_partitions[9], DL_GETPSIZE(&lp->d_partitions[8]));
lp->d_partitions[9].p_fstype = FS_OTHER;
/* The "home" partition uses physical addressing. */
DL_SETPOFFSET(&lp->d_partitions[10],
DL_GETPOFFSET(&lp->d_partitions[9]) + DL_GETPSIZE(&lp->d_partitions[9]));
lp->d_partitions[10].p_fstype = FS_OTHER;
lp->d_npartitions = 11;
/* Re-calculate the checksum. */
lp->d_checksum = dkcksum(lp);
}
/*
* Sharp's access strategy for bad blocks management and wear-leveling.
*/
#define PHYUSE_STATUS(v) ((v) & 0x00ff)
#define P_BADBLOCK 0x0000
#define P_POSTBADBLOCK 0x00f0
#define P_NORMALBLOCK 0x00ff
#define PHYUSE_WRITTEN(v) ((v) & 0xff00)
#define P_DUST 0x0000
#define P_LOGICAL 0x0100
#define P_JFFS2 0x0300
void zflash_write_strategy(struct zflash_softc *, struct buf *,
struct zflash_safe *, u_int, u_int);
u_int zflash_safe_next_block(struct zflash_safe *);
u_char zflash_oob_status_decode(u_char);
u_int16_t zflash_oob_status(struct zflash_softc *, u_char *);
u_int zflash_oob_logno(struct zflash_softc *, u_char *);
void zflash_oob_set_status(struct zflash_softc *, u_char *, u_int16_t);
void zflash_oob_set_logno(struct zflash_softc *, u_char *, u_int);
int
zflash_safe_strategy(void *arg, struct buf *bp)
{
struct zflash_softc *sc = arg;
struct zflash_safe *sp;
u_int logno;
u_int blkofs;
u_int blkno;
int error;
int part;
int i;
/* Initialize logical blocks management on the fly. */
/* XXX toss everything when the disklabel has changed. */
if ((error = zflash_safe_start(sc, bp->b_dev)) != 0) {
bp->b_error = error;
bp->b_flags |= B_ERROR;
return 0;
}
part = flashpart(bp->b_dev);
sp = sc->sc_safe[part];
logno = bp->b_blkno / (sc->sc_flash.sc_flashdev->blkpages *
sc->sc_flash.sc_flashdev->pagesize / DEV_BSIZE);
blkofs = bp->b_blkno % (sc->sc_flash.sc_flashdev->blkpages *
sc->sc_flash.sc_flashdev->pagesize / DEV_BSIZE);
/* If exactly at end of logical flash, return EOF, else error. */
if (logno == sp->sp_lblks && blkofs == 0) {
bp->b_resid = bp->b_bcount;
return 0;
} else if (logno >= sp->sp_lblks) {
bp->b_error = EINVAL;
bp->b_flags |= B_ERROR;
return 0;
}
/* Writing is more complicated, so handle it separately. */
if ((bp->b_flags & B_READ) == 0) {
flash_chip_enable(&sc->sc_flash);
zflash_write_strategy(sc, bp, sp, logno, blkofs);
flash_chip_disable(&sc->sc_flash);
return 0;
}
/* Get the physical flash block number for this logical one. */
blkno = sp->sp_logmap[logno];
/* Unused logical blocks read as all 0xff. */
if ((bp->b_flags & B_READ) != 0 && blkno == UINT_MAX) {
for (i = 0; i < sc->sc_flash.sc_flashdev->pagesize; i++)
((u_char *)bp->b_data)[i] = 0xff;
bp->b_resid = bp->b_bcount -
sc->sc_flash.sc_flashdev->pagesize;
return 0;
}
/* Update the block number in the buffer with the physical one. */
bp->b_blkno = blkno * (sc->sc_flash.sc_flashdev->blkpages *
sc->sc_flash.sc_flashdev->pagesize / DEV_BSIZE) + blkofs;
/* Process the modified transfer buffer normally. */
return 1;
}
void
zflash_write_strategy(struct zflash_softc *sc, struct buf *bp,
struct zflash_safe *sp, u_int logno, u_int logofs)
{
size_t bufsize;
u_char *buf = NULL;
size_t oobsize;
u_char *oob = NULL;
u_int oblkno;
u_int nblkno;
int error;
/* Not efficient, but we always transfer one page for now. */
if (bp->b_bcount < sc->sc_flash.sc_flashdev->pagesize) {
bp->b_error = EINVAL;
goto bad;
}
/* Allocate a temporary buffer for one flash block. */
bufsize = sc->sc_flash.sc_flashdev->blkpages *
sc->sc_flash.sc_flashdev->pagesize;
buf = (u_char *)malloc(bufsize, M_DEVBUF, M_NOWAIT);
if (buf == NULL) {
bp->b_error = ENOMEM;
goto bad;
}
/* Allocate a temporary buffer for one spare area. */
oobsize = sc->sc_flash.sc_flashdev->oobsize;
oob = (u_char *)malloc(oobsize, M_DEVBUF, M_NOWAIT);
if (oob == NULL) {
bp->b_error = ENOMEM;
goto bad;
}
/* Read the old logical block into the temporary buffer. */
oblkno = sp->sp_logmap[logno];
if (oblkno != UINT_MAX) {
error = flash_chip_read_block(&sc->sc_flash, oblkno, buf);
if (error != 0) {
bp->b_error = error;
goto bad;
}
} else
/* Unused logical blocks read as all 0xff. */
memset(buf, 0xff, bufsize);
/* Transfer the page into the logical block buffer. */
bcopy(bp->b_data, buf + logofs * sc->sc_flash.sc_flashdev->pagesize,
sc->sc_flash.sc_flashdev->pagesize);
/* Generate OOB data for the spare area of this logical block. */
memset(oob, 0xff, oobsize);
zflash_oob_set_status(sc, oob, P_NORMALBLOCK);
zflash_oob_set_logno(sc, oob, logno);
while (1) {
/* Search for a free physical block. */
nblkno = zflash_safe_next_block(sp);
if (nblkno == UINT_MAX) {
printf("%s: no spare block, giving up on logical"
" block %u\n", sc->sc_flash.sc_dev.dv_xname,
logno);
bp->b_error = ENOSPC;
goto bad;
}
#if 0
DPRINTF(("%s: moving logical block %u from physical %u to %u\n",
sc->sc_flash.sc_dev.dv_xname, logno, oblkno, nblkno));
#endif
/* Erase the free physical block. */
if (flash_chip_erase_block(&sc->sc_flash, nblkno) != 0) {
printf("%s: can't erase block %u, retrying\n",
sc->sc_flash.sc_dev.dv_xname, nblkno);
sp->sp_phyuse[nblkno] = P_POSTBADBLOCK | P_DUST;
continue;
}
/* Write the logical block to the free physical block. */
if (flash_chip_write_block(&sc->sc_flash, nblkno, buf, oob)) {
printf("%s: can't write block %u, retrying\n",
sc->sc_flash.sc_dev.dv_xname, nblkno);
goto trynext;
}
/* Yeah, we re-wrote that logical block! */
break;
trynext:
sp->sp_phyuse[nblkno] = P_POSTBADBLOCK | P_DUST;
(void)flash_chip_erase_block(&sc->sc_flash, nblkno);
}
/* Map the new physical block. */
sp->sp_logmap[logno] = nblkno;
sp->sp_phyuse[nblkno] = PHYUSE_STATUS(sp->sp_phyuse[nblkno])
| P_LOGICAL;
/* Erase the old physical block. */
if (oblkno != UINT_MAX) {
sp->sp_phyuse[oblkno] = PHYUSE_STATUS(sp->sp_phyuse[oblkno])
| P_DUST;
error = flash_chip_erase_block(&sc->sc_flash, oblkno);
if (error != 0) {
printf("%s: can't erase old block %u\n",
sc->sc_flash.sc_dev.dv_xname, oblkno);
bp->b_error = error;
goto bad;
}
}
bp->b_resid = bp->b_bcount - sc->sc_flash.sc_flashdev->pagesize;
free(oob, M_DEVBUF);
free(buf, M_DEVBUF);
return;
bad:
bp->b_flags |= B_ERROR;
if (oob != NULL)
free(oob, M_DEVBUF);
if (buf != NULL)
free(buf, M_DEVBUF);
}
int
zflash_safe_start(struct zflash_softc *sc, dev_t dev)
{
u_char oob[FLASH_MAXOOBSIZE];
struct disklabel *lp = sc->sc_flash.sc_dk.dk_label;
struct zflash_safe *sp;
u_int16_t *phyuse;
u_int *logmap;
u_int blksect;
u_int blkno;
u_int logno;
u_int unusable;
int part;
part = flashpart(dev);
if (sc->sc_safe[part] != NULL)
return 0;
/* We can only handle so much OOB data here. */
if (sc->sc_flash.sc_flashdev->oobsize > FLASH_MAXOOBSIZE)
return EIO;
/* Safe partitions must start on a flash block boundary. */
blksect = (sc->sc_flash.sc_flashdev->blkpages *
sc->sc_flash.sc_flashdev->pagesize) / lp->d_secsize;
if (DL_GETPOFFSET(&lp->d_partitions[part]) % blksect)
return EIO;
MALLOC(sp, struct zflash_safe *, sizeof(struct zflash_safe),
M_DEVBUF, M_NOWAIT);
if (sp == NULL)
return ENOMEM;
bzero(sp, sizeof(struct zflash_safe));
sp->sp_dev = dev;
sp->sp_pblks = DL_GETPSIZE(&lp->d_partitions[part]) / blksect;
sp->sp_lblks = sp->sp_pblks;
/* Try to reserve a number of spare physical blocks. */
switch (sc->sc_flash.sc_flashdev->id) {
case FLASH_DEVICE_SAMSUNG_K9F2808U0C:
sp->sp_lblks -= 24; /* C3000 */
break;
case FLASH_DEVICE_SAMSUNG_K9F1G08U0A:
sp->sp_lblks -= 4; /* C3100 */
break;
}
DPRINTF(("pblks %u lblks %u\n", sp->sp_pblks, sp->sp_lblks));
/* Next physical block to use; randomize for wear-leveling. */
sp->sp_pnext = arc4random() % sp->sp_pblks;
/* Allocate physical block usage map. */
phyuse = (u_int16_t *)malloc(sp->sp_pblks * sizeof(u_int16_t),
M_DEVBUF, M_NOWAIT);
if (phyuse == NULL) {
FREE(sp, M_DEVBUF);
return ENOMEM;
}
sp->sp_phyuse = phyuse;
/* Allocate logical to physical block map. */
logmap = (u_int *)malloc(sp->sp_lblks * sizeof(u_int),
M_DEVBUF, M_NOWAIT);
if (logmap == NULL) {
FREE(phyuse, M_DEVBUF);
FREE(sp, M_DEVBUF);
return ENOMEM;
}
sp->sp_logmap = logmap;
/* Initialize the physical and logical block maps. */
for (blkno = 0; blkno < sp->sp_pblks; blkno++)
phyuse[blkno] = P_BADBLOCK | P_DUST;
for (blkno = 0; blkno < sp->sp_lblks; blkno++)
logmap[blkno] = UINT_MAX;
/* Update physical block usage map with real data. */
unusable = 0;
flash_chip_enable(&sc->sc_flash);
for (blkno = 0; blkno < sp->sp_pblks; blkno++) {
long pageno;
pageno = blkno * sc->sc_flash.sc_flashdev->blkpages;
if (flash_chip_read_oob(&sc->sc_flash, pageno, oob) != 0) {
DPRINTF(("blkno %u: can't read oob data\n", blkno));
phyuse[blkno] = P_POSTBADBLOCK | P_DUST;
unusable++;
continue;
}
phyuse[blkno] = zflash_oob_status(sc, oob);
if (PHYUSE_STATUS(phyuse[blkno]) != P_NORMALBLOCK) {
DPRINTF(("blkno %u: badblock status %x\n", blkno,
PHYUSE_STATUS(phyuse[blkno])));
phyuse[blkno] |= P_DUST;
unusable++;
continue;
}
logno = zflash_oob_logno(sc, oob);
if (logno == UINT_MAX) {
DPRINTF(("blkno %u: can't read logno\n", blkno));
phyuse[blkno] |= P_JFFS2;
unusable++;
continue;
}
if (logno == USHRT_MAX) {
phyuse[blkno] |= P_DUST;
/* Block is usable and available. */
continue;
}
if (logno >= sp->sp_lblks) {
DPRINTF(("blkno %u: logno %u too big\n", blkno,
logno));
phyuse[blkno] |= P_JFFS2;
unusable++;
continue;
}
if (logmap[logno] == UINT_MAX) {
phyuse[blkno] |= P_LOGICAL;
logmap[logno] = blkno;
} else {
/* Duplicate logical block! */
DPRINTF(("blkno %u: duplicate logno %u\n", blkno,
logno));
phyuse[blkno] |= P_DUST;
}
}
flash_chip_disable(&sc->sc_flash);
if (unusable > 0)
printf("%s: %u unusable blocks\n",
sc->sc_flash.sc_dev.dv_xname, unusable);
sc->sc_safe[part] = sp;
return 0;
}
void
zflash_safe_stop(struct zflash_softc *sc, dev_t dev)
{
struct zflash_safe *sp;
int part;
part = flashpart(dev);
if (sc->sc_safe[part] == NULL)
return;
sp = sc->sc_safe[part];
free(sp->sp_phyuse, M_DEVBUF);
free(sp->sp_logmap, M_DEVBUF);
FREE(sp, M_DEVBUF);
sc->sc_safe[part] = NULL;
}
u_int
zflash_safe_next_block(struct zflash_safe *sp)
{
u_int blkno;
for (blkno = sp->sp_pnext; blkno < sp->sp_pblks; blkno++)
if (sp->sp_phyuse[blkno] == (P_NORMALBLOCK|P_DUST)) {
sp->sp_pnext = blkno + 1;
return blkno;
}
for (blkno = 0; blkno < sp->sp_pnext; blkno++)
if (sp->sp_phyuse[blkno] == (P_NORMALBLOCK|P_DUST)) {
sp->sp_pnext = blkno + 1;
return blkno;
}
return UINT_MAX;
}
/*
* Correct single bit errors in the block's status byte.
*/
u_char
zflash_oob_status_decode(u_char status)
{
u_char bit;
int count;
/* Speed-up. */
if (status == 0xff)
return 0xff;
/* Count the number of bits set in the byte. */
for (count = 0, bit = 0x01; bit != 0x00; bit <<= 1)
if ((status & bit) != 0)
count++;
return (count > 6) ? 0xff : 0x00;
}
/*
* Decode the block's status byte into a value for the phyuse map.
*/
u_int16_t
zflash_oob_status(struct zflash_softc *sc, u_char *oob)
{
u_char status;
status = zflash_oob_status_decode(oob[sc->sc_ioobbadblk]);
if (status != 0xff)
return P_BADBLOCK;
status = zflash_oob_status_decode(oob[sc->sc_ioobpostbadblk]);
if (status != 0xff)
return P_POSTBADBLOCK;
return P_NORMALBLOCK;
}
/*
* Extract the 16-bit logical block number corresponding to a physical
* block from the physical block's OOB data.
*/
u_int
zflash_oob_logno(struct zflash_softc *sc, u_char *oob)
{
int idx_lo, idx_hi;
u_int16_t word;
u_int16_t bit;
int parity;
/* Find a matching pair of high and low bytes. */
if (oob[OOB_LOGADDR_0_LO] == oob[OOB_LOGADDR_1_LO] &&
oob[OOB_LOGADDR_0_HI] == oob[OOB_LOGADDR_1_HI]) {
idx_lo = OOB_LOGADDR_0_LO;
idx_hi = OOB_LOGADDR_0_HI;
} else if (oob[OOB_LOGADDR_1_LO] == oob[OOB_LOGADDR_2_LO] &&
oob[OOB_LOGADDR_1_HI] == oob[OOB_LOGADDR_2_HI]) {
idx_lo = OOB_LOGADDR_1_LO;
idx_hi = OOB_LOGADDR_1_HI;
} else if (oob[OOB_LOGADDR_2_LO] == oob[OOB_LOGADDR_0_LO] &&
oob[OOB_LOGADDR_2_HI] == oob[OOB_LOGADDR_0_HI]) {
idx_lo = OOB_LOGADDR_2_LO;
idx_hi = OOB_LOGADDR_2_HI;
} else
/* Block's OOB data may be invalid. */
return UINT_MAX;
word = ((u_int16_t)oob[idx_lo] << 0) |
((u_int16_t)oob[idx_hi] << 8);
/* Check for parity error in the logical block number. */
for (parity = 0, bit = 0x0001; bit != 0x0000; bit <<= 1)
if ((word & bit) != 0)
parity++;
if ((parity & 1) != 0)
return UINT_MAX;
/* No logical block number assigned to this block? */
if (word == USHRT_MAX)
return word;
/* Return the validated logical block number. */
return (word & 0x07fe) >> 1;
}
void
zflash_oob_set_status(struct zflash_softc *sc, u_char *oob, u_int16_t phyuse)
{
switch (PHYUSE_STATUS(phyuse)) {
case P_NORMALBLOCK:
oob[sc->sc_ioobbadblk] = 0xff;
oob[sc->sc_ioobpostbadblk] = 0xff;
break;
case P_BADBLOCK:
oob[sc->sc_ioobbadblk] = 0x00;
oob[sc->sc_ioobpostbadblk] = 0x00;
break;
case P_POSTBADBLOCK:
oob[sc->sc_ioobbadblk] = 0xff;
oob[sc->sc_ioobpostbadblk] = 0x00;
break;
}
}
void
zflash_oob_set_logno(struct zflash_softc *sc, u_char *oob, u_int logno)
{
u_int16_t word;
u_int16_t bit;
u_char lo;
u_char hi;
int parity;
/* Why do we set the most significant bit? */
word = ((logno & 0x03ff) << 1) | 0x1000;
/* Calculate the parity. */
for (bit = 0x0001; bit != 0x0000; bit <<= 1)
if ((word & bit) != 0)
parity++;
if ((parity & 1) != 0)
word |= 0x0001;
lo = word & 0x00ff;
hi = (word & 0xff00) >> 8;
oob[OOB_LOGADDR_0_LO] = lo;
oob[OOB_LOGADDR_0_HI] = hi;
oob[OOB_LOGADDR_1_LO] = lo;
oob[OOB_LOGADDR_1_HI] = hi;
oob[OOB_LOGADDR_2_LO] = lo;
oob[OOB_LOGADDR_2_HI] = hi;
}
|