1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
|
#!/usr/bin/perl
# $OpenBSD: parse_structinfo.pl,v 1.1 2013/10/15 19:23:24 guenther Exp $
#
# Copyright (c) 2009 Miodrag Vallat.
# Copyright (c) 2013 Philip Guenther.
#
# Permission to use, copy, modify, and distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
# This ugly script parses the output of objdump -g in order to extract
# structure layout information, to be used by ddb.
#
# The output of this script is the following static data:
# - for each struct:
# - its name
# - its size (individual element size if an array)
# - the number of elements in the array (1 if not)
# - its first and last field indexes
# - for each field:
# - its name
# - its offset and size
# - the index of the struct it is member of
# This allows fast struct -> field information retrieval.
#
# To retrieve information from a field size or offset, we also output
# the following reverse arrays:
# - for each offset, in ascending order, a variable length list of field
# indexes.
# - for each size, in ascending order, a variable length list of field
# indexes.
#
# The compromise here is that I want to minimize linear searches. Memory
# use is considered secondary, hence the back `pointer' to the struct in the
# fields array.
use strict;
use warnings;
use integer;
use constant MAX_COLUMN => 72;
my $depth = 0;
my $ignore = 0;
my $cur_struct;
my $max_offs = 0;
my $max_fsize = 0;
my $max_ssize = 0;
# count of how many times each literal string appears
my %strings;
my @strings_by_len;
sub add_string
{
my $string = shift;
if ($strings{$string}++ == 0) {
push @{ $strings_by_len[ length $string ] }, $string;
}
}
my @structs;
my %offs_to_fields;
my %size_to_fields;
my @fields = ( {
name => "",
offs => 0,
size => 0,
items => 0,
struct => 0,
} );
sub new_field
{
my($name, $offs, $size, $items) = @_;
add_string($name);
push @fields, {
name => $name,
offs => $offs,
size => $size,
items => $items // 1,
struct => scalar(@structs),
};
$max_offs = $offs if $offs > $max_offs;
$max_fsize = $size if $size > $max_fsize;
push @{ $offs_to_fields{$offs} }, $#fields;
push @{ $size_to_fields{$size} }, $#fields;
}
while (<>) {
chomp; # strip record separator
if (m!^struct (\w+) \{ /\* size (\d+) !) {
$depth = 1;
$cur_struct = {
name => $1,
size => $2,
fieldmin => scalar(@fields)
};
next
}
if (/^};/) {
if ($depth == 0) {
$ignore--;
next
}
$depth = 0;
if (scalar(@fields) == $cur_struct->{fieldmin}) {
# empty struct, ignore it
undef $cur_struct;
next
}
$cur_struct->{fieldmax} = $#fields;
add_string( $cur_struct->{name} );
$max_ssize = $cur_struct->{size} if $cur_struct->{size} > $max_ssize;
push @structs, $cur_struct;
next
}
next if /\{.*\}/; # single line enum
if (/\{/) {
# subcomponent
if ($depth) {
$depth++;
} else {
$ignore++;
}
next
}
if (/\}/) {
if ($ignore) {
$ignore--;
next
}
$depth--;
next if $depth != 1;
# FALL THROUGH
}
if (/bitsize (\d+), bitpos (\d+)/) {
next if $ignore;
next if $depth != 1;
# Bitfields are a PITA... From a ddb point of view, we can't really
# access storage units smaller than a byte.
# So we'll report all bitfields as having size 0, and the
# rounded down byte position where they start.
my $cursize = ($1 % 8) ? 0 : ($1 / 8);
my $curoffs = $2 / 8;
# Try and gather the field name.
# The most common case: not a function pointer or array
if (m!\s\**(\w+);\s/\* bitsize!) {
new_field($1, $curoffs, $cursize);
next
}
# How about a function pointer?
if (m!\s\**\(\*+(\w+)\) \(/\* unknown \*/\);\s/\* bitsize!) {
new_field($1, $curoffs, $cursize);
next
}
# Maybe it's an array
if (m!\s\**([][:\w]+);\s/\* bitsize!) {
my $name = $1;
my $items = 1;
while ($name =~ s/\[(\d+)\]:\w+//) {
$items *= $1;
}
new_field($name, $curoffs, $cursize / $items, $items);
next
}
# skip any anonymous unions {
next if m!\}; /\*!;
# Should be nothing left
print STDERR "unknown member type: $_\n";
next
}
}
print <<EOM;
/*
* THIS IS A GENERATED FILE. DO NOT EDIT!
*/
#include <sys/param.h>
#include <sys/types.h>
struct ddb_struct_info {
u_short name;
u_short size;
u_short fmin, fmax;
};
struct ddb_field_info {
u_short name;
u_short sidx;
u_short offs;
u_short size;
u_short nitems;
};
struct ddb_field_offsets {
u_short offs;
u_short list;
};
struct ddb_field_sizes {
u_short size;
u_short list;
};
EOM
my $prefix = qq(static const char ddb_structfield_strings[] =\n\t"\\0);
my %string_to_offset = ( "" => 0 );
my $soff = 1;
for (my $len = $#strings_by_len; $len > 0; $len--) {
foreach my $string (@{ $strings_by_len[$len] }) {
next if exists $string_to_offset{$string};
my $off = $string_to_offset{$string} = $soff;
$soff += $len + 1; # for the NUL
print $prefix, $string;
$prefix = qq(\\0"\n\t");
# check for suffixes that are also strings
for (my $o = 1; $o < $len; $o++) {
my $sstr = substr($string, $o);
next unless exists $strings{$sstr};
next if exists $string_to_offset{$sstr};
$string_to_offset{$sstr} = $off + $o;
#print STDERR "found $sstr inside $string\n";
}
}
}
print qq(";\n);
sub resolve_string
{
my $string = shift;
if (! exists $string_to_offset{$string}) {
die "no mapping for $string";
}
return $string_to_offset{$string};
}
# Check for overflow and, if so, print some stats
if ($soff > 65535 || $max_offs > 65535 || $max_fsize > 65535 ||
$max_ssize > 65535 || @structs > 65535 || @fields > 65535) {
print STDERR <<EOM;
ERROR: value of range of u_short Time to change types?
max string offset: $soff
max field offset: $max_offs
max field size: $max_fsize
max struct size: $max_ssize
number of structs: ${\scalar(@structs)}
number of fields: ${\scalar(@fields)}
EOM
exit 1
}
print "#define NSTRUCT ", scalar(@structs), "\n";
print "static const struct ddb_struct_info ddb_struct_info[NSTRUCT] = {\n";
foreach my $s (@structs) {
my $name = resolve_string($s->{name});
print "\t{ ",
join(", ", $name, @{$s}{qw( size fieldmin fieldmax )}),
" },\n";
}
printf "};\n\n";
print "#define NFIELD ", scalar(@fields), "\n";
print "static const struct ddb_field_info ddb_field_info[NFIELD] = {\n";
foreach my $f (@fields) {
my $name = resolve_string($f->{name});
print "\t{ ",
join(", ", $name, @{$f}{qw( struct offs size items )}),
" },\n";
}
printf "};\n\n";
# Given a mapping from values to fields that have that value, generate
# two C arrays, one containing lists of fields which each value, in order,
# the other indexing into that one for each value. I.e., to get the
# fields that have a given value, find the value in the second array and
# then iterate from where that points into the first array until you hit
# an entry with field==0.
sub print_reverse_mapping
{
my($prefix, $map, $max) = @_;
print "static const u_short ddb_fields_by_${prefix}[] = {";
my @heads;
my $w = 0;
foreach my $val (sort { $a <=> $b } keys %$map) {
push @heads, [$val, $w];
foreach my $field (@{ $map->{$val} }, 0) {
print( ($w++ % 10) == 0 ? "\n\t" : " ", $field, ",");
}
}
print "\n};\n\n";
print "#define $max ", scalar(@heads), "\n";
print "static const struct ddb_field_${prefix}s",
" ddb_field_${prefix}s[$max] = {\n";
foreach my $h (@heads) {
#print "\t{ $h->[0], ddb_fields_by_${prefix} + $h->[1] },\n";
print "\t{ $h->[0], $h->[1] },\n";
}
print "};\n";
}
# reverse arrays
print_reverse_mapping("offset", \%offs_to_fields, "NOFFS");
print "\n";
# The size->field mapping isn't used by ddb currently, so don't output it
# print_reverse_mapping("size", \%size_to_fields, "NSIZES");
|