1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
|
/* $OpenBSD: imxccm.c,v 1.14 2019/03/13 09:49:46 patrick Exp $ */
/*
* Copyright (c) 2012-2013 Patrick Wildt <patrick@blueri.se>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/queue.h>
#include <sys/malloc.h>
#include <sys/sysctl.h>
#include <sys/device.h>
#include <sys/evcount.h>
#include <sys/socket.h>
#include <sys/timeout.h>
#include <machine/intr.h>
#include <machine/bus.h>
#include <machine/fdt.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_clock.h>
#include <dev/ofw/ofw_misc.h>
#include <dev/ofw/ofw_regulator.h>
#include <dev/ofw/fdt.h>
#include <dev/fdt/imxanatopvar.h>
/* registers */
#define CCM_CCR 0x00
#define CCM_CCDR 0x04
#define CCM_CSR 0x08
#define CCM_CCSR 0x0c
#define CCM_CACRR 0x10
#define CCM_CBCDR 0x14
#define CCM_CBCMR 0x18
#define CCM_CSCMR1 0x1c
#define CCM_CSCMR2 0x20
#define CCM_CSCDR1 0x24
#define CCM_CS1CDR 0x28
#define CCM_CS2CDR 0x2c
#define CCM_CDCDR 0x30
#define CCM_CHSCCDR 0x34
#define CCM_CSCDR2 0x38
#define CCM_CSCDR3 0x3c
#define CCM_CSCDR4 0x40
#define CCM_CDHIPR 0x48
#define CCM_CDCR 0x4c
#define CCM_CTOR 0x50
#define CCM_CLPCR 0x54
#define CCM_CISR 0x58
#define CCM_CIMR 0x5c
#define CCM_CCOSR 0x60
#define CCM_CGPR 0x64
#define CCM_CCGR0 0x68
#define CCM_CCGR1 0x6c
#define CCM_CCGR2 0x70
#define CCM_CCGR3 0x74
#define CCM_CCGR4 0x78
#define CCM_CCGR5 0x7c
#define CCM_CCGR6 0x80
#define CCM_CCGR7 0x84
#define CCM_CMEOR 0x88
/* bits and bytes */
#define CCM_CCSR_PLL3_SW_CLK_SEL (1 << 0)
#define CCM_CCSR_PLL2_SW_CLK_SEL (1 << 1)
#define CCM_CCSR_PLL1_SW_CLK_SEL (1 << 2)
#define CCM_CCSR_STEP_SEL (1 << 8)
#define CCM_CBCDR_IPG_PODF_SHIFT 8
#define CCM_CBCDR_IPG_PODF_MASK 0x3
#define CCM_CBCDR_AHB_PODF_SHIFT 10
#define CCM_CBCDR_AHB_PODF_MASK 0x7
#define CCM_CBCDR_PERIPH_CLK_SEL_SHIFT 25
#define CCM_CBCDR_PERIPH_CLK_SEL_MASK 0x1
#define CCM_CBCMR_PERIPH_CLK2_SEL_SHIFT 12
#define CCM_CBCMR_PERIPH_CLK2_SEL_MASK 0x3
#define CCM_CBCMR_PRE_PERIPH_CLK_SEL_SHIFT 18
#define CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK 0x3
#define CCM_CSCDR1_USDHCx_CLK_SEL_SHIFT(x) ((x) + 15)
#define CCM_CSCDR1_USDHCx_CLK_SEL_MASK 0x1
#define CCM_CSCDR1_USDHCx_PODF_MASK 0x7
#define CCM_CSCDR1_UART_PODF_MASK 0x7
#define CCM_CSCDR2_ECSPI_PODF_SHIFT 19
#define CCM_CSCDR2_ECSPI_PODF_MASK 0x7
#define CCM_CCGR1_ENET (3 << 10)
#define CCM_CCGR4_125M_PCIE (3 << 0)
#define CCM_CCGR5_100M_SATA (3 << 4)
#define CCM_CSCMR1_PERCLK_CLK_PODF_MASK 0x1f
#define CCM_CSCMR1_PERCLK_CLK_SEL_MASK (1 << 6)
/* Analog registers */
#define CCM_ANALOG_PLL_USB1 0x0010
#define CCM_ANALOG_PLL_USB1_SET 0x0014
#define CCM_ANALOG_PLL_USB1_CLR 0x0018
#define CCM_ANALOG_PLL_USB1_LOCK (1U << 31)
#define CCM_ANALOG_PLL_USB1_BYPASS (1 << 16)
#define CCM_ANALOG_PLL_USB1_ENABLE (1 << 13)
#define CCM_ANALOG_PLL_USB1_POWER (1 << 12)
#define CCM_ANALOG_PLL_USB1_EN_USB_CLKS (1 << 6)
#define CCM_ANALOG_PLL_USB2 0x0020
#define CCM_ANALOG_PLL_USB2_SET 0x0024
#define CCM_ANALOG_PLL_USB2_CLR 0x0028
#define CCM_ANALOG_PLL_USB2_LOCK (1U << 31)
#define CCM_ANALOG_PLL_USB2_BYPASS (1 << 16)
#define CCM_ANALOG_PLL_USB2_ENABLE (1 << 13)
#define CCM_ANALOG_PLL_USB2_POWER (1 << 12)
#define CCM_ANALOG_PLL_USB2_EN_USB_CLKS (1 << 6)
#define CCM_ANALOG_PLL_ENET 0x00e0
#define CCM_ANALOG_PLL_ENET_SET 0x00e4
#define CCM_ANALOG_PLL_ENET_CLR 0x00e8
#define CCM_ANALOG_PLL_ENET_LOCK (1U << 31)
#define CCM_ANALOG_PLL_ENET_ENABLE_100M (1 << 20) /* i.MX6 */
#define CCM_ANALOG_PLL_ENET_BYPASS (1 << 16)
#define CCM_ANALOG_PLL_ENET_ENABLE (1 << 13) /* i.MX6 */
#define CCM_ANALOG_PLL_ENET_POWERDOWN (1 << 12) /* i.MX6 */
#define CCM_ANALOG_PLL_ENET_ENABLE_CLK_125MHZ (1 << 10) /* i.MX7 */
/* Frac PLL */
#define CCM_FRAC_IMX8M_ARM_PLL0 0x28
#define CCM_FRAC_IMX8M_ARM_PLL1 0x2c
#define CCM_FRAC_PLL_LOCK (1 << 31)
#define CCM_FRAC_PLL_ENABLE (1 << 21)
#define CCM_FRAC_PLL_POWERDOWN (1 << 19)
#define CCM_FRAC_PLL_REFCLK_SEL_SHIFT 16
#define CCM_FRAC_PLL_REFCLK_SEL_MASK 0x3
#define CCM_FRAC_PLL_LOCK_SEL (1 << 15)
#define CCM_FRAC_PLL_BYPASS (1 << 14)
#define CCM_FRAC_PLL_COUNTCLK_SEL (1 << 13)
#define CCM_FRAC_PLL_NEWDIV_VAL (1 << 12)
#define CCM_FRAC_PLL_NEWDIV_ACK (1 << 11)
#define CCM_FRAC_PLL_REFCLK_DIV_VAL_SHIFT 5
#define CCM_FRAC_PLL_REFCLK_DIV_VAL_MASK 0x3f
#define CCM_FRAC_PLL_OUTPUT_DIV_VAL_SHIFT 0
#define CCM_FRAC_PLL_OUTPUT_DIV_VAL_MASK 0x1f
#define CCM_FRAC_PLL_FRAC_DIV_CTL_SHIFT 7
#define CCM_FRAC_PLL_FRAC_DIV_CTL_MASK 0x1ffffff
#define CCM_FRAC_PLL_INT_DIV_CTL_SHIFT 0
#define CCM_FRAC_PLL_INT_DIV_CTL_MASK 0x7f
#define CCM_FRAC_PLL_DENOM (1 << 24)
#define CCM_FRAC_IMX8M_PLLOUT_DIV_CFG 0x78
#define CCM_FRAC_IMX8M_PLLOUT_DIV_CFG_ARM_SHIFT 20
#define CCM_FRAC_IMX8M_PLLOUT_DIV_CFG_ARM_MASK 0x7
#define HCLK_FREQ 24000000
#define PLL3_60M 60000000
#define PLL3_80M 80000000
#define HREAD4(sc, reg) \
(bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg)))
#define HWRITE4(sc, reg, val) \
bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
#define HSET4(sc, reg, bits) \
HWRITE4((sc), (reg), HREAD4((sc), (reg)) | (bits))
#define HCLR4(sc, reg, bits) \
HWRITE4((sc), (reg), HREAD4((sc), (reg)) & ~(bits))
struct imxccm_gate {
uint16_t reg;
uint8_t pos;
uint16_t parent;
};
struct imxccm_divider {
uint16_t reg;
uint16_t shift;
uint16_t mask;
uint16_t parent;
uint16_t fixed;
};
struct imxccm_mux {
uint16_t reg;
uint16_t shift;
uint16_t mask;
};
#include "imxccm_clocks.h"
struct imxccm_softc {
struct device sc_dev;
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh;
int sc_node;
uint32_t sc_phandle;
struct regmap *sc_anatop;
struct imxccm_gate *sc_gates;
int sc_ngates;
struct imxccm_divider *sc_divs;
int sc_ndivs;
struct imxccm_mux *sc_muxs;
int sc_nmuxs;
struct clock_device sc_cd;
};
int imxccm_match(struct device *, void *, void *);
void imxccm_attach(struct device *parent, struct device *self, void *args);
struct cfattach imxccm_ca = {
sizeof (struct imxccm_softc), imxccm_match, imxccm_attach
};
struct cfdriver imxccm_cd = {
NULL, "imxccm", DV_DULL
};
uint32_t imxccm_get_armclk(struct imxccm_softc *);
void imxccm_armclk_set_parent(struct imxccm_softc *, enum imxanatop_clocks);
uint32_t imxccm_get_usdhx(struct imxccm_softc *, int x);
uint32_t imxccm_get_periphclk(struct imxccm_softc *);
uint32_t imxccm_get_ahbclk(struct imxccm_softc *);
uint32_t imxccm_get_ipgclk(struct imxccm_softc *);
uint32_t imxccm_get_ipg_perclk(struct imxccm_softc *);
uint32_t imxccm_get_uartclk(struct imxccm_softc *);
uint32_t imxccm_imx8mq_ecspi(struct imxccm_softc *sc, uint32_t);
uint32_t imxccm_imx8mq_enet(struct imxccm_softc *sc, uint32_t);
uint32_t imxccm_imx8mq_i2c(struct imxccm_softc *sc, uint32_t);
uint32_t imxccm_imx8mq_pwm(struct imxccm_softc *sc, uint32_t);
uint32_t imxccm_imx8mq_uart(struct imxccm_softc *sc, uint32_t);
uint32_t imxccm_imx8mq_usdhc(struct imxccm_softc *sc, uint32_t);
uint32_t imxccm_imx8mq_usb(struct imxccm_softc *sc, uint32_t);
void imxccm_enable(void *, uint32_t *, int);
uint32_t imxccm_get_frequency(void *, uint32_t *);
int imxccm_set_frequency(void *, uint32_t *, uint32_t);
int imxccm_set_parent(void *, uint32_t *, uint32_t *);
int
imxccm_match(struct device *parent, void *match, void *aux)
{
struct fdt_attach_args *faa = aux;
return (OF_is_compatible(faa->fa_node, "fsl,imx6q-ccm") ||
OF_is_compatible(faa->fa_node, "fsl,imx6sl-ccm") ||
OF_is_compatible(faa->fa_node, "fsl,imx6sx-ccm") ||
OF_is_compatible(faa->fa_node, "fsl,imx6ul-ccm") ||
OF_is_compatible(faa->fa_node, "fsl,imx7d-ccm") ||
OF_is_compatible(faa->fa_node, "fsl,imx8mq-ccm"));
}
void
imxccm_attach(struct device *parent, struct device *self, void *aux)
{
struct imxccm_softc *sc = (struct imxccm_softc *)self;
struct fdt_attach_args *faa = aux;
KASSERT(faa->fa_nreg >= 1);
sc->sc_node = faa->fa_node;
sc->sc_iot = faa->fa_iot;
if (bus_space_map(sc->sc_iot, faa->fa_reg[0].addr,
faa->fa_reg[0].size, 0, &sc->sc_ioh))
panic("%s: bus_space_map failed!", __func__);
sc->sc_phandle = OF_getpropint(sc->sc_node, "phandle", 0);
if (OF_is_compatible(sc->sc_node, "fsl,imx8mq-ccm")) {
sc->sc_anatop = regmap_bycompatible("fsl,imx8mq-anatop");
KASSERT(sc->sc_anatop != NULL);
sc->sc_gates = imx8mq_gates;
sc->sc_ngates = nitems(imx8mq_gates);
sc->sc_divs = imx8mq_divs;
sc->sc_ndivs = nitems(imx8mq_divs);
sc->sc_muxs = imx8mq_muxs;
sc->sc_nmuxs = nitems(imx8mq_muxs);
} else if (OF_is_compatible(sc->sc_node, "fsl,imx7d-ccm")) {
sc->sc_gates = imx7d_gates;
sc->sc_ngates = nitems(imx7d_gates);
sc->sc_divs = imx7d_divs;
sc->sc_ndivs = nitems(imx7d_divs);
sc->sc_muxs = imx7d_muxs;
sc->sc_nmuxs = nitems(imx7d_muxs);
} else if (OF_is_compatible(sc->sc_node, "fsl,imx6ul-ccm")) {
sc->sc_gates = imx6ul_gates;
sc->sc_ngates = nitems(imx6ul_gates);
} else {
sc->sc_gates = imx6_gates;
sc->sc_ngates = nitems(imx6_gates);
}
printf("\n");
sc->sc_cd.cd_node = faa->fa_node;
sc->sc_cd.cd_cookie = sc;
sc->sc_cd.cd_enable = imxccm_enable;
sc->sc_cd.cd_get_frequency = imxccm_get_frequency;
sc->sc_cd.cd_set_frequency = imxccm_set_frequency;
sc->sc_cd.cd_set_parent = imxccm_set_parent;
clock_register(&sc->sc_cd);
}
uint32_t
imxccm_get_armclk(struct imxccm_softc *sc)
{
uint32_t ccsr = HREAD4(sc, CCM_CCSR);
if (!(ccsr & CCM_CCSR_PLL1_SW_CLK_SEL))
return imxanatop_decode_pll(ARM_PLL1, HCLK_FREQ);
else if (ccsr & CCM_CCSR_STEP_SEL)
return imxanatop_get_pll2_pfd(2);
else
return HCLK_FREQ;
}
void
imxccm_armclk_set_parent(struct imxccm_softc *sc, enum imxanatop_clocks clock)
{
switch (clock)
{
case ARM_PLL1:
/* jump onto pll1 */
HCLR4(sc, CCM_CCSR, CCM_CCSR_PLL1_SW_CLK_SEL);
/* put step clk on OSC, power saving */
HCLR4(sc, CCM_CCSR, CCM_CCSR_STEP_SEL);
break;
case OSC:
/* put step clk on OSC */
HCLR4(sc, CCM_CCSR, CCM_CCSR_STEP_SEL);
/* jump onto step clk */
HSET4(sc, CCM_CCSR, CCM_CCSR_PLL1_SW_CLK_SEL);
break;
case SYS_PLL2_PFD2:
/* put step clk on pll2-pfd2 400 MHz */
HSET4(sc, CCM_CCSR, CCM_CCSR_STEP_SEL);
/* jump onto step clk */
HSET4(sc, CCM_CCSR, CCM_CCSR_PLL1_SW_CLK_SEL);
break;
default:
panic("%s: parent not possible for arm clk", __func__);
}
}
uint32_t
imxccm_get_ecspiclk(struct imxccm_softc *sc)
{
uint32_t clkroot = PLL3_60M;
uint32_t podf = HREAD4(sc, CCM_CSCDR2);
podf >>= CCM_CSCDR2_ECSPI_PODF_SHIFT;
podf &= CCM_CSCDR2_ECSPI_PODF_MASK;
return clkroot / (podf + 1);
}
unsigned int
imxccm_get_usdhx(struct imxccm_softc *sc, int x)
{
uint32_t cscmr1 = HREAD4(sc, CCM_CSCMR1);
uint32_t cscdr1 = HREAD4(sc, CCM_CSCDR1);
uint32_t podf, clkroot;
// Odd bitsetting. Damn you.
if (x == 1)
podf = ((cscdr1 >> 11) & CCM_CSCDR1_USDHCx_PODF_MASK);
else
podf = ((cscdr1 >> (10 + 3*x)) & CCM_CSCDR1_USDHCx_PODF_MASK);
if (cscmr1 & (1 << CCM_CSCDR1_USDHCx_CLK_SEL_SHIFT(x)))
clkroot = imxanatop_get_pll2_pfd(0); // 352 MHz
else
clkroot = imxanatop_get_pll2_pfd(2); // 396 MHz
return clkroot / (podf + 1);
}
uint32_t
imxccm_get_uartclk(struct imxccm_softc *sc)
{
uint32_t clkroot = PLL3_80M;
uint32_t podf = HREAD4(sc, CCM_CSCDR1) & CCM_CSCDR1_UART_PODF_MASK;
return clkroot / (podf + 1);
}
uint32_t
imxccm_get_periphclk(struct imxccm_softc *sc)
{
if ((HREAD4(sc, CCM_CBCDR) >> CCM_CBCDR_PERIPH_CLK_SEL_SHIFT)
& CCM_CBCDR_PERIPH_CLK_SEL_MASK) {
switch((HREAD4(sc, CCM_CBCMR)
>> CCM_CBCMR_PERIPH_CLK2_SEL_SHIFT) & CCM_CBCMR_PERIPH_CLK2_SEL_MASK) {
case 0:
return imxanatop_decode_pll(USB1_PLL3, HCLK_FREQ);
case 1:
case 2:
return HCLK_FREQ;
default:
return 0;
}
} else {
switch((HREAD4(sc, CCM_CBCMR)
>> CCM_CBCMR_PRE_PERIPH_CLK_SEL_SHIFT) & CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK) {
default:
case 0:
return imxanatop_decode_pll(SYS_PLL2, HCLK_FREQ);
case 1:
return imxanatop_get_pll2_pfd(2); // 396 MHz
case 2:
return imxanatop_get_pll2_pfd(0); // 352 MHz
case 3:
return imxanatop_get_pll2_pfd(2) / 2; // 198 MHz
}
}
}
uint32_t
imxccm_get_ahbclk(struct imxccm_softc *sc)
{
uint32_t ahb_podf;
ahb_podf = (HREAD4(sc, CCM_CBCDR) >> CCM_CBCDR_AHB_PODF_SHIFT)
& CCM_CBCDR_AHB_PODF_MASK;
return imxccm_get_periphclk(sc) / (ahb_podf + 1);
}
uint32_t
imxccm_get_ipgclk(struct imxccm_softc *sc)
{
uint32_t ipg_podf;
ipg_podf = (HREAD4(sc, CCM_CBCDR) >> CCM_CBCDR_IPG_PODF_SHIFT)
& CCM_CBCDR_IPG_PODF_MASK;
return imxccm_get_ahbclk(sc) / (ipg_podf + 1);
}
uint32_t
imxccm_get_ipg_perclk(struct imxccm_softc *sc)
{
uint32_t cscmr1 = HREAD4(sc, CCM_CSCMR1);
uint32_t freq, ipg_podf;
if (sc->sc_gates == imx6ul_gates &&
cscmr1 & CCM_CSCMR1_PERCLK_CLK_SEL_MASK)
freq = HCLK_FREQ;
else
freq = imxccm_get_ipgclk(sc);
ipg_podf = cscmr1 & CCM_CSCMR1_PERCLK_CLK_PODF_MASK;
return freq / (ipg_podf + 1);
}
void
imxccm_imx6_enable_pll_enet(struct imxccm_softc *sc, int on)
{
KASSERT(on);
regmap_write_4(sc->sc_anatop, CCM_ANALOG_PLL_ENET_CLR,
CCM_ANALOG_PLL_ENET_POWERDOWN);
/* Wait for the PLL to lock. */
while ((regmap_read_4(sc->sc_anatop,
CCM_ANALOG_PLL_ENET) & CCM_ANALOG_PLL_ENET_LOCK) == 0)
;
regmap_write_4(sc->sc_anatop, CCM_ANALOG_PLL_ENET_CLR,
CCM_ANALOG_PLL_ENET_BYPASS);
}
void
imxccm_imx6_enable_pll_usb1(struct imxccm_softc *sc, int on)
{
KASSERT(on);
regmap_write_4(sc->sc_anatop, CCM_ANALOG_PLL_USB1_SET,
CCM_ANALOG_PLL_USB1_POWER);
/* Wait for the PLL to lock. */
while ((regmap_read_4(sc->sc_anatop,
CCM_ANALOG_PLL_USB1) & CCM_ANALOG_PLL_USB1_LOCK) == 0)
;
regmap_write_4(sc->sc_anatop, CCM_ANALOG_PLL_USB1_CLR,
CCM_ANALOG_PLL_USB1_BYPASS);
}
void
imxccm_imx6_enable_pll_usb2(struct imxccm_softc *sc, int on)
{
KASSERT(on);
regmap_write_4(sc->sc_anatop, CCM_ANALOG_PLL_USB2_SET,
CCM_ANALOG_PLL_USB2_POWER);
/* Wait for the PLL to lock. */
while ((regmap_read_4(sc->sc_anatop,
CCM_ANALOG_PLL_USB2) & CCM_ANALOG_PLL_USB2_LOCK) == 0)
;
regmap_write_4(sc->sc_anatop, CCM_ANALOG_PLL_USB2_CLR,
CCM_ANALOG_PLL_USB2_BYPASS);
}
uint32_t
imxccm_imx7d_enet(struct imxccm_softc *sc, uint32_t idx)
{
uint32_t mux;
if (idx >= sc->sc_nmuxs || sc->sc_muxs[idx].reg == 0)
return 0;
mux = HREAD4(sc, sc->sc_muxs[idx].reg);
mux >>= sc->sc_muxs[idx].shift;
mux &= sc->sc_muxs[idx].mask;
switch (mux) {
case 0:
return clock_get_frequency(sc->sc_node, "osc");
case 7:
return 392000000; /* pll_sys_pfd4_clk XXX not fixed */
default:
printf("%s: 0x%08x 0x%08x\n", __func__, idx, mux);
return 0;
}
}
uint32_t
imxccm_imx7d_i2c(struct imxccm_softc *sc, uint32_t idx)
{
uint32_t mux;
if (idx >= sc->sc_nmuxs || sc->sc_muxs[idx].reg == 0)
return 0;
mux = HREAD4(sc, sc->sc_muxs[idx].reg);
mux >>= sc->sc_muxs[idx].shift;
mux &= sc->sc_muxs[idx].mask;
switch (mux) {
case 0:
return clock_get_frequency(sc->sc_node, "osc");
case 1:
return 120000000; /* pll_sys_main_120m_clk */
default:
printf("%s: 0x%08x 0x%08x\n", __func__, idx, mux);
return 0;
}
}
uint32_t
imxccm_imx7d_uart(struct imxccm_softc *sc, uint32_t idx)
{
uint32_t mux;
if (idx >= sc->sc_nmuxs || sc->sc_muxs[idx].reg == 0)
return 0;
mux = HREAD4(sc, sc->sc_muxs[idx].reg);
mux >>= sc->sc_muxs[idx].shift;
mux &= sc->sc_muxs[idx].mask;
switch (mux) {
case 0:
return clock_get_frequency(sc->sc_node, "osc");
default:
printf("%s: 0x%08x 0x%08x\n", __func__, idx, mux);
return 0;
}
}
uint32_t
imxccm_imx7d_usdhc(struct imxccm_softc *sc, uint32_t idx)
{
uint32_t mux;
if (idx >= sc->sc_nmuxs || sc->sc_muxs[idx].reg == 0)
return 0;
mux = HREAD4(sc, sc->sc_muxs[idx].reg);
mux >>= sc->sc_muxs[idx].shift;
mux &= sc->sc_muxs[idx].mask;
switch (mux) {
case 0:
return clock_get_frequency(sc->sc_node, "osc");
case 1:
return 392000000; /* pll_sys_pfd0_392m_clk */
default:
printf("%s: 0x%08x 0x%08x\n", __func__, idx, mux);
return 0;
}
}
uint32_t
imxccm_imx8mq_ecspi(struct imxccm_softc *sc, uint32_t idx)
{
uint32_t mux;
if (idx >= sc->sc_nmuxs || sc->sc_muxs[idx].reg == 0)
return 0;
mux = HREAD4(sc, sc->sc_muxs[idx].reg);
mux >>= sc->sc_muxs[idx].shift;
mux &= sc->sc_muxs[idx].mask;
switch (mux) {
case 0:
return clock_get_frequency(sc->sc_node, "osc_25m");
case 1:
return 200 * 1000 * 1000; /* sys2_pll_200m */
default:
printf("%s: 0x%08x 0x%08x\n", __func__, idx, mux);
return 0;
}
}
uint32_t
imxccm_imx8mq_enet(struct imxccm_softc *sc, uint32_t idx)
{
uint32_t mux;
if (idx >= sc->sc_nmuxs || sc->sc_muxs[idx].reg == 0)
return 0;
mux = HREAD4(sc, sc->sc_muxs[idx].reg);
mux >>= sc->sc_muxs[idx].shift;
mux &= sc->sc_muxs[idx].mask;
switch (mux) {
case 0:
return clock_get_frequency(sc->sc_node, "osc_25m");
case 1:
return 266 * 1000 * 1000; /* sys1_pll_266m */
default:
printf("%s: 0x%08x 0x%08x\n", __func__, idx, mux);
return 0;
}
}
uint32_t
imxccm_imx8mq_i2c(struct imxccm_softc *sc, uint32_t idx)
{
uint32_t mux;
if (idx >= sc->sc_nmuxs || sc->sc_muxs[idx].reg == 0)
return 0;
mux = HREAD4(sc, sc->sc_muxs[idx].reg);
mux >>= sc->sc_muxs[idx].shift;
mux &= sc->sc_muxs[idx].mask;
switch (mux) {
case 0:
return clock_get_frequency(sc->sc_node, "osc_25m");
default:
printf("%s: 0x%08x 0x%08x\n", __func__, idx, mux);
return 0;
}
}
uint32_t
imxccm_imx8mq_pwm(struct imxccm_softc *sc, uint32_t idx)
{
uint32_t mux;
if (idx >= sc->sc_nmuxs || sc->sc_muxs[idx].reg == 0)
return 0;
mux = HREAD4(sc, sc->sc_muxs[idx].reg);
mux >>= sc->sc_muxs[idx].shift;
mux &= sc->sc_muxs[idx].mask;
switch (mux) {
case 0:
return clock_get_frequency(sc->sc_node, "osc_25m");
case 1:
return 100 * 1000 * 1000; /* sys1_pll_100m */
case 2:
return 160 * 1000 * 1000; /* sys1_pll_160m */
case 3:
return 40 * 1000 * 1000; /* sys1_pll_40m */
default:
printf("%s: 0x%08x 0x%08x\n", __func__, idx, mux);
return 0;
}
}
uint32_t
imxccm_imx8mq_uart(struct imxccm_softc *sc, uint32_t idx)
{
uint32_t mux;
if (idx >= sc->sc_nmuxs || sc->sc_muxs[idx].reg == 0)
return 0;
mux = HREAD4(sc, sc->sc_muxs[idx].reg);
mux >>= sc->sc_muxs[idx].shift;
mux &= sc->sc_muxs[idx].mask;
switch (mux) {
case 0:
return clock_get_frequency(sc->sc_node, "osc_25m");
default:
printf("%s: 0x%08x 0x%08x\n", __func__, idx, mux);
return 0;
}
}
uint32_t
imxccm_imx8mq_usdhc(struct imxccm_softc *sc, uint32_t idx)
{
uint32_t mux;
if (idx >= sc->sc_nmuxs || sc->sc_muxs[idx].reg == 0)
return 0;
mux = HREAD4(sc, sc->sc_muxs[idx].reg);
mux >>= sc->sc_muxs[idx].shift;
mux &= sc->sc_muxs[idx].mask;
switch (mux) {
case 0:
return clock_get_frequency(sc->sc_node, "osc_25m");
case 1:
return 400 * 1000 * 1000; /* sys1_pll_400m */
default:
printf("%s: 0x%08x 0x%08x\n", __func__, idx, mux);
return 0;
}
}
uint32_t
imxccm_imx8mq_usb(struct imxccm_softc *sc, uint32_t idx)
{
uint32_t mux;
if (idx >= sc->sc_nmuxs || sc->sc_muxs[idx].reg == 0)
return 0;
mux = HREAD4(sc, sc->sc_muxs[idx].reg);
mux >>= sc->sc_muxs[idx].shift;
mux &= sc->sc_muxs[idx].mask;
switch (mux) {
case 0:
return clock_get_frequency(sc->sc_node, "osc_25m");
case 1:
if (idx == IMX8MQ_CLK_USB_CORE_REF_SRC ||
idx == IMX8MQ_CLK_USB_PHY_REF_SRC)
return 100 * 1000 * 1000; /* sys1_pll_100m */
if (idx == IMX8MQ_CLK_USB_BUS_SRC)
return 500 * 1000 * 1000; /* sys2_pll_500m */
printf("%s: 0x%08x 0x%08x\n", __func__, idx, mux);
return 0;
default:
printf("%s: 0x%08x 0x%08x\n", __func__, idx, mux);
return 0;
}
}
uint32_t
imxccm_imx8mq_get_pll(struct imxccm_softc *sc, uint32_t idx)
{
uint32_t divr_val, divq_val, divf_val;
uint32_t divff, divfi;
uint32_t pllout_div;
uint32_t pll0, pll1;
uint32_t freq;
uint32_t mux;
pllout_div = regmap_read_4(sc->sc_anatop, CCM_FRAC_IMX8M_PLLOUT_DIV_CFG);
switch (idx) {
case IMX8MQ_ARM_PLL:
pll0 = regmap_read_4(sc->sc_anatop, CCM_FRAC_IMX8M_ARM_PLL0);
pll1 = regmap_read_4(sc->sc_anatop, CCM_FRAC_IMX8M_ARM_PLL1);
pllout_div >>= CCM_FRAC_IMX8M_PLLOUT_DIV_CFG_ARM_SHIFT;
pllout_div &= CCM_FRAC_IMX8M_PLLOUT_DIV_CFG_ARM_MASK;
break;
default:
printf("%s: 0x%08x\n", __func__, idx);
return 0;
}
if (pll0 & CCM_FRAC_PLL_POWERDOWN)
return 0;
if ((pll0 & CCM_FRAC_PLL_ENABLE) == 0)
return 0;
mux = (pll0 >> CCM_FRAC_PLL_REFCLK_SEL_SHIFT) &
CCM_FRAC_PLL_REFCLK_SEL_MASK;
switch (mux) {
case 0:
freq = clock_get_frequency(sc->sc_node, "osc_25m");
break;
case 1:
case 2:
freq = clock_get_frequency(sc->sc_node, "osc_27m");
break;
default:
printf("%s: 0x%08x 0x%08x\n", __func__, idx, mux);
return 0;
}
if (pll0 & CCM_FRAC_PLL_BYPASS)
return freq;
divr_val = (pll0 >> CCM_FRAC_PLL_REFCLK_DIV_VAL_SHIFT) &
CCM_FRAC_PLL_REFCLK_DIV_VAL_MASK;
divq_val = pll0 & CCM_FRAC_PLL_OUTPUT_DIV_VAL_MASK;
divff = (pll1 >> CCM_FRAC_PLL_FRAC_DIV_CTL_SHIFT) &
CCM_FRAC_PLL_FRAC_DIV_CTL_MASK;
divfi = pll1 & CCM_FRAC_PLL_INT_DIV_CTL_MASK;
divf_val = 1 + divfi + divff / CCM_FRAC_PLL_DENOM;
freq = freq / (divr_val + 1) * 8 * divf_val / ((divq_val + 1) * 2);
return freq / (pllout_div + 1);
}
int
imxccm_imx8mq_set_pll(struct imxccm_softc *sc, uint32_t idx, uint64_t freq)
{
uint64_t divff, divfi, divr;
uint32_t pllout_div;
uint32_t pll0, pll1;
uint32_t mux, reg;
uint64_t pfreq;
int i;
pllout_div = regmap_read_4(sc->sc_anatop, CCM_FRAC_IMX8M_PLLOUT_DIV_CFG);
switch (idx) {
case IMX8MQ_ARM_PLL:
pll0 = CCM_FRAC_IMX8M_ARM_PLL0;
pll1 = CCM_FRAC_IMX8M_ARM_PLL1;
pllout_div >>= CCM_FRAC_IMX8M_PLLOUT_DIV_CFG_ARM_SHIFT;
pllout_div &= CCM_FRAC_IMX8M_PLLOUT_DIV_CFG_ARM_MASK;
/* XXX: Assume fixed divider to ease math. */
KASSERT(pllout_div == 0);
divr = 5;
break;
default:
printf("%s: 0x%08x\n", __func__, idx);
return -1;
}
reg = regmap_read_4(sc->sc_anatop, pll0);
mux = (reg >> CCM_FRAC_PLL_REFCLK_SEL_SHIFT) &
CCM_FRAC_PLL_REFCLK_SEL_MASK;
switch (mux) {
case 0:
pfreq = clock_get_frequency(sc->sc_node, "osc_25m");
break;
case 1:
case 2:
pfreq = clock_get_frequency(sc->sc_node, "osc_27m");
break;
default:
printf("%s: 0x%08x 0x%08x\n", __func__, idx, mux);
return -1;
}
/* Frac divider follows the PLL */
freq *= divr;
/* PLL calculation */
freq *= 2;
pfreq *= 8;
divfi = freq / pfreq;
divff = (uint64_t)(freq - divfi * pfreq);
divff = (divff * CCM_FRAC_PLL_DENOM) / pfreq;
reg = regmap_read_4(sc->sc_anatop, pll1);
reg &= ~(CCM_FRAC_PLL_FRAC_DIV_CTL_MASK << CCM_FRAC_PLL_FRAC_DIV_CTL_SHIFT);
reg |= divff << CCM_FRAC_PLL_FRAC_DIV_CTL_SHIFT;
reg &= ~(CCM_FRAC_PLL_INT_DIV_CTL_MASK << CCM_FRAC_PLL_INT_DIV_CTL_SHIFT);
reg |= (divfi - 1) << CCM_FRAC_PLL_INT_DIV_CTL_SHIFT;
regmap_write_4(sc->sc_anatop, pll1, reg);
reg = regmap_read_4(sc->sc_anatop, pll0);
reg &= ~CCM_FRAC_PLL_OUTPUT_DIV_VAL_MASK;
reg &= ~(CCM_FRAC_PLL_REFCLK_DIV_VAL_MASK << CCM_FRAC_PLL_REFCLK_DIV_VAL_SHIFT);
reg |= (divr - 1) << CCM_FRAC_PLL_REFCLK_DIV_VAL_SHIFT;
regmap_write_4(sc->sc_anatop, pll0, reg);
reg = regmap_read_4(sc->sc_anatop, pll0);
reg |= CCM_FRAC_PLL_NEWDIV_VAL;
regmap_write_4(sc->sc_anatop, pll0, reg);
for (i = 0; i < 5000; i++) {
reg = regmap_read_4(sc->sc_anatop, pll0);
if (reg & CCM_FRAC_PLL_BYPASS)
break;
if (reg & CCM_FRAC_PLL_POWERDOWN)
break;
if (reg & CCM_FRAC_PLL_NEWDIV_ACK)
break;
delay(10);
}
if (i == 5000)
printf("%s: timeout\n", __func__);
reg = regmap_read_4(sc->sc_anatop, pll0);
reg &= ~CCM_FRAC_PLL_NEWDIV_VAL;
regmap_write_4(sc->sc_anatop, pll0, reg);
return 0;
}
void
imxccm_enable_parent(struct imxccm_softc *sc, uint32_t parent, int on)
{
if (on)
imxccm_enable(sc, &parent, on);
}
void
imxccm_enable(void *cookie, uint32_t *cells, int on)
{
struct imxccm_softc *sc = cookie;
uint32_t idx = cells[0], parent;
uint16_t reg;
uint8_t pos;
/* Dummy clock. */
if (idx == 0)
return;
if (sc->sc_gates == imx7d_gates) {
if (sc->sc_anatop == NULL) {
sc->sc_anatop = regmap_bycompatible("fsl,imx7d-anatop");
KASSERT(sc->sc_anatop);
}
switch (idx) {
case IMX7D_PLL_ENET_MAIN_125M_CLK:
regmap_write_4(sc->sc_anatop, CCM_ANALOG_PLL_ENET_SET,
CCM_ANALOG_PLL_ENET_ENABLE_CLK_125MHZ);
return;
default:
break;
}
} else if (sc->sc_gates == imx6_gates) {
if (sc->sc_anatop == NULL) {
sc->sc_anatop = regmap_bycompatible("fsl,imx6q-anatop");
KASSERT(sc->sc_anatop);
}
switch (idx) {
case IMX6_CLK_PLL3:
imxccm_imx6_enable_pll_usb1(sc, on);
return;
case IMX6_CLK_PLL6:
imxccm_imx6_enable_pll_enet(sc, on);
return;
case IMX6_CLK_PLL7:
imxccm_imx6_enable_pll_usb2(sc, on);
return;
case IMX6_CLK_PLL3_USB_OTG:
imxccm_enable_parent(sc, IMX6_CLK_PLL3, on);
regmap_write_4(sc->sc_anatop,
on ? CCM_ANALOG_PLL_USB1_SET : CCM_ANALOG_PLL_USB1_CLR,
CCM_ANALOG_PLL_USB1_ENABLE);
return;
case IMX6_CLK_PLL6_ENET:
imxccm_enable_parent(sc, IMX6_CLK_PLL6, on);
regmap_write_4(sc->sc_anatop,
on ? CCM_ANALOG_PLL_ENET_SET : CCM_ANALOG_PLL_ENET_CLR,
CCM_ANALOG_PLL_ENET_ENABLE);
return;
case IMX6_CLK_PLL7_USB_HOST:
imxccm_enable_parent(sc, IMX6_CLK_PLL7, on);
regmap_write_4(sc->sc_anatop,
on ? CCM_ANALOG_PLL_USB2_SET : CCM_ANALOG_PLL_USB2_CLR,
CCM_ANALOG_PLL_USB2_ENABLE);
return;
case IMX6_CLK_USBPHY1:
/* PLL outputs should alwas be on. */
regmap_write_4(sc->sc_anatop, CCM_ANALOG_PLL_USB1_SET,
CCM_ANALOG_PLL_USB1_EN_USB_CLKS);
imxccm_enable_parent(sc, IMX6_CLK_PLL3_USB_OTG, on);
return;
case IMX6_CLK_USBPHY2:
/* PLL outputs should alwas be on. */
regmap_write_4(sc->sc_anatop, CCM_ANALOG_PLL_USB2_SET,
CCM_ANALOG_PLL_USB2_EN_USB_CLKS);
imxccm_enable_parent(sc, IMX6_CLK_PLL7_USB_HOST, on);
return;
case IMX6_CLK_SATA_REF_100:
imxccm_enable_parent(sc, IMX6_CLK_PLL6_ENET, on);
regmap_write_4(sc->sc_anatop,
on ? CCM_ANALOG_PLL_ENET_SET : CCM_ANALOG_PLL_ENET_CLR,
CCM_ANALOG_PLL_ENET_ENABLE_100M);
return;
case IMX6_CLK_ENET_REF:
imxccm_enable_parent(sc, IMX6_CLK_PLL6_ENET, on);
return;
case IMX6_CLK_IPG:
case IMX6_CLK_IPG_PER:
case IMX6_CLK_ECSPI_ROOT:
/* always on */
return;
default:
break;
}
}
if (on) {
if (idx < sc->sc_ngates && sc->sc_gates[idx].parent) {
parent = sc->sc_gates[idx].parent;
imxccm_enable(sc, &parent, on);
}
if (idx < sc->sc_ndivs && sc->sc_divs[idx].parent) {
parent = sc->sc_divs[idx].parent;
imxccm_enable(sc, &parent, on);
}
}
if (idx >= sc->sc_ngates || sc->sc_gates[idx].reg == 0) {
if ((idx < sc->sc_ndivs && sc->sc_divs[idx].reg != 0) ||
(idx < sc->sc_nmuxs && sc->sc_muxs[idx].reg != 0))
return;
printf("%s: 0x%08x\n", __func__, idx);
return;
}
reg = sc->sc_gates[idx].reg;
pos = sc->sc_gates[idx].pos;
if (on)
HSET4(sc, reg, 0x3 << (2 * pos));
else
HCLR4(sc, reg, 0x3 << (2 * pos));
}
uint32_t
imxccm_get_frequency(void *cookie, uint32_t *cells)
{
struct imxccm_softc *sc = cookie;
uint32_t idx = cells[0];
uint32_t div, parent;
/* Dummy clock. */
if (idx == 0)
return 0;
if (idx < sc->sc_ngates && sc->sc_gates[idx].parent) {
parent = sc->sc_gates[idx].parent;
return imxccm_get_frequency(sc, &parent);
}
if (idx < sc->sc_ndivs && sc->sc_divs[idx].parent) {
div = HREAD4(sc, sc->sc_divs[idx].reg);
div = div >> sc->sc_divs[idx].shift;
div = div & sc->sc_divs[idx].mask;
parent = sc->sc_divs[idx].parent;
return imxccm_get_frequency(sc, &parent) / (div + 1);
}
if (sc->sc_gates == imx8mq_gates) {
switch (idx) {
case IMX8MQ_ARM_PLL:
return imxccm_imx8mq_get_pll(sc, idx);
case IMX8MQ_CLK_A53_SRC:
parent = IMX8MQ_ARM_PLL;
return imxccm_get_frequency(sc, &parent);
case IMX8MQ_CLK_ENET_AXI_SRC:
return imxccm_imx8mq_enet(sc, idx);
case IMX8MQ_CLK_I2C1_SRC:
case IMX8MQ_CLK_I2C2_SRC:
case IMX8MQ_CLK_I2C3_SRC:
case IMX8MQ_CLK_I2C4_SRC:
return imxccm_imx8mq_i2c(sc, idx);
case IMX8MQ_CLK_UART1_SRC:
case IMX8MQ_CLK_UART2_SRC:
case IMX8MQ_CLK_UART3_SRC:
case IMX8MQ_CLK_UART4_SRC:
return imxccm_imx8mq_uart(sc, idx);
case IMX8MQ_CLK_USDHC1_SRC:
case IMX8MQ_CLK_USDHC2_SRC:
return imxccm_imx8mq_usdhc(sc, idx);
case IMX8MQ_CLK_USB_BUS_SRC:
case IMX8MQ_CLK_USB_CORE_REF_SRC:
case IMX8MQ_CLK_USB_PHY_REF_SRC:
return imxccm_imx8mq_usb(sc, idx);
case IMX8MQ_CLK_ECSPI1_SRC:
case IMX8MQ_CLK_ECSPI2_SRC:
case IMX8MQ_CLK_ECSPI3_SRC:
return imxccm_imx8mq_ecspi(sc, idx);
case IMX8MQ_CLK_PWM1_SRC:
case IMX8MQ_CLK_PWM2_SRC:
case IMX8MQ_CLK_PWM3_SRC:
case IMX8MQ_CLK_PWM4_SRC:
return imxccm_imx8mq_pwm(sc, idx);
}
} else if (sc->sc_gates == imx7d_gates) {
switch (idx) {
case IMX7D_ENET_AXI_ROOT_SRC:
return imxccm_imx7d_enet(sc, idx);
case IMX7D_I2C1_ROOT_SRC:
case IMX7D_I2C2_ROOT_SRC:
case IMX7D_I2C3_ROOT_SRC:
case IMX7D_I2C4_ROOT_SRC:
return imxccm_imx7d_i2c(sc, idx);
case IMX7D_UART1_ROOT_SRC:
case IMX7D_UART2_ROOT_SRC:
case IMX7D_UART3_ROOT_SRC:
case IMX7D_UART4_ROOT_SRC:
case IMX7D_UART5_ROOT_SRC:
case IMX7D_UART6_ROOT_SRC:
case IMX7D_UART7_ROOT_SRC:
return imxccm_imx7d_uart(sc, idx);
case IMX7D_USDHC1_ROOT_SRC:
case IMX7D_USDHC2_ROOT_SRC:
case IMX7D_USDHC3_ROOT_SRC:
return imxccm_imx7d_usdhc(sc, idx);
}
} else if (sc->sc_gates == imx6ul_gates) {
switch (idx) {
case IMX6UL_CLK_ARM:
return imxccm_get_armclk(sc);
case IMX6UL_CLK_IPG:
return imxccm_get_ipgclk(sc);
case IMX6UL_CLK_PERCLK:
return imxccm_get_ipg_perclk(sc);
case IMX6UL_CLK_UART1_SERIAL:
return imxccm_get_uartclk(sc);
case IMX6UL_CLK_USDHC1:
case IMX6UL_CLK_USDHC2:
return imxccm_get_usdhx(sc, idx - IMX6UL_CLK_USDHC1 + 1);
}
} else if (sc->sc_gates == imx6_gates) {
switch (idx) {
case IMX6_CLK_AHB:
return imxccm_get_ahbclk(sc);
case IMX6_CLK_ARM:
return imxccm_get_armclk(sc);
case IMX6_CLK_IPG:
return imxccm_get_ipgclk(sc);
case IMX6_CLK_IPG_PER:
return imxccm_get_ipg_perclk(sc);
case IMX6_CLK_ECSPI_ROOT:
return imxccm_get_ecspiclk(sc);
case IMX6_CLK_UART_SERIAL:
return imxccm_get_uartclk(sc);
case IMX6_CLK_USDHC1:
case IMX6_CLK_USDHC2:
case IMX6_CLK_USDHC3:
case IMX6_CLK_USDHC4:
return imxccm_get_usdhx(sc, idx - IMX6_CLK_USDHC1 + 1);
}
}
printf("%s: 0x%08x\n", __func__, idx);
return 0;
}
int
imxccm_set_frequency(void *cookie, uint32_t *cells, uint32_t freq)
{
struct imxccm_softc *sc = cookie;
uint32_t idx = cells[0];
uint32_t reg, div, parent, parent_freq;
uint32_t pcells[2];
int ret;
if (sc->sc_divs == imx8mq_divs) {
switch (idx) {
case IMX8MQ_CLK_A53_DIV:
parent = IMX8MQ_CLK_A53_SRC;
return imxccm_set_frequency(cookie, &parent, freq);
case IMX8MQ_CLK_A53_SRC:
pcells[0] = sc->sc_phandle;
pcells[1] = IMX8MQ_SYS1_PLL_800M;
ret = imxccm_set_parent(cookie, &idx, pcells);
if (ret)
return ret;
ret = imxccm_imx8mq_set_pll(sc, IMX8MQ_ARM_PLL, freq);
pcells[0] = sc->sc_phandle;
pcells[1] = IMX8MQ_ARM_PLL_OUT;
imxccm_set_parent(cookie, &idx, pcells);
return ret;
case IMX8MQ_CLK_USB_BUS_SRC:
case IMX8MQ_CLK_USB_CORE_REF_SRC:
case IMX8MQ_CLK_USB_PHY_REF_SRC:
if (imxccm_get_frequency(sc, cells) != freq)
break;
return 0;
case IMX8MQ_CLK_USDHC1_DIV:
parent = sc->sc_divs[idx].parent;
if (imxccm_get_frequency(sc, &parent) != freq)
break;
imxccm_enable(cookie, &parent, 1);
reg = HREAD4(sc, sc->sc_divs[idx].reg);
reg &= ~(sc->sc_divs[idx].mask << sc->sc_divs[idx].shift);
reg |= (0x0 << sc->sc_divs[idx].shift);
HWRITE4(sc, sc->sc_divs[idx].reg, reg);
return 0;
}
} else if (sc->sc_divs == imx7d_divs) {
switch (idx) {
case IMX7D_USDHC1_ROOT_CLK:
case IMX7D_USDHC2_ROOT_CLK:
case IMX7D_USDHC3_ROOT_CLK:
parent = sc->sc_gates[idx].parent;
return imxccm_set_frequency(sc, &parent, freq);
case IMX7D_USDHC1_ROOT_DIV:
case IMX7D_USDHC2_ROOT_DIV:
case IMX7D_USDHC3_ROOT_DIV:
parent = sc->sc_divs[idx].parent;
parent_freq = imxccm_get_frequency(sc, &parent);
div = 0;
while (parent_freq / (div + 1) > freq)
div++;
reg = HREAD4(sc, sc->sc_divs[idx].reg);
reg &= ~(sc->sc_divs[idx].mask << sc->sc_divs[idx].shift);
reg |= (div << sc->sc_divs[idx].shift);
HWRITE4(sc, sc->sc_divs[idx].reg, reg);
return 0;
}
}
printf("%s: 0x%08x %x\n", __func__, idx, freq);
return -1;
}
int
imxccm_set_parent(void *cookie, uint32_t *cells, uint32_t *pcells)
{
struct imxccm_softc *sc = cookie;
uint32_t idx = cells[0];
uint32_t pidx;
uint32_t mux;
if (pcells[0] != sc->sc_phandle) {
printf("%s: 0x%08x parent 0x%08x\n", __func__, idx, pcells[0]);
return -1;
}
pidx = pcells[1];
if (sc->sc_muxs == imx8mq_muxs) {
switch (idx) {
case IMX8MQ_CLK_A53_SRC:
if (pidx != IMX8MQ_ARM_PLL_OUT &&
pidx != IMX8MQ_SYS1_PLL_800M)
break;
mux = HREAD4(sc, sc->sc_muxs[idx].reg);
mux &= ~(sc->sc_muxs[idx].mask << sc->sc_muxs[idx].shift);
if (pidx == IMX8MQ_ARM_PLL_OUT)
mux |= (0x1 << sc->sc_muxs[idx].shift);
if (pidx == IMX8MQ_SYS1_PLL_800M)
mux |= (0x4 << sc->sc_muxs[idx].shift);
HWRITE4(sc, sc->sc_muxs[idx].reg, mux);
return 0;
case IMX8MQ_CLK_USB_BUS_SRC:
if (pidx != IMX8MQ_SYS2_PLL_500M)
break;
mux = HREAD4(sc, sc->sc_muxs[idx].reg);
mux &= ~(sc->sc_muxs[idx].mask << sc->sc_muxs[idx].shift);
mux |= (0x1 << sc->sc_muxs[idx].shift);
HWRITE4(sc, sc->sc_muxs[idx].reg, mux);
return 0;
case IMX8MQ_CLK_USB_CORE_REF_SRC:
case IMX8MQ_CLK_USB_PHY_REF_SRC:
if (pidx != IMX8MQ_SYS1_PLL_100M)
break;
mux = HREAD4(sc, sc->sc_muxs[idx].reg);
mux &= ~(sc->sc_muxs[idx].mask << sc->sc_muxs[idx].shift);
mux |= (0x1 << sc->sc_muxs[idx].shift);
HWRITE4(sc, sc->sc_muxs[idx].reg, mux);
return 0;
case IMX8MQ_CLK_PCIE1_CTRL_SRC:
case IMX8MQ_CLK_PCIE2_CTRL_SRC:
if (pidx != IMX8MQ_SYS2_PLL_250M)
break;
mux = HREAD4(sc, sc->sc_muxs[idx].reg);
mux &= ~(sc->sc_muxs[idx].mask << sc->sc_muxs[idx].shift);
mux |= (0x1 << sc->sc_muxs[idx].shift);
HWRITE4(sc, sc->sc_muxs[idx].reg, mux);
return 0;
case IMX8MQ_CLK_PCIE1_PHY_SRC:
case IMX8MQ_CLK_PCIE2_PHY_SRC:
if (pidx != IMX8MQ_SYS2_PLL_100M)
break;
mux = HREAD4(sc, sc->sc_muxs[idx].reg);
mux &= ~(sc->sc_muxs[idx].mask << sc->sc_muxs[idx].shift);
mux |= (0x1 << sc->sc_muxs[idx].shift);
HWRITE4(sc, sc->sc_muxs[idx].reg, mux);
return 0;
}
}
printf("%s: 0x%08x 0x%08x\n", __func__, idx, pidx);
return -1;
}
|