1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
|
/* $OpenBSD: rtsx.c,v 1.14 2016/05/05 11:01:08 kettenis Exp $ */
/*
* Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
* Copyright (c) 2012 Stefan Sperling <stsp@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Realtek RTS52xx/RTL84xx Card Reader driver.
*/
#include <sys/param.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <dev/ic/rtsxreg.h>
#include <dev/ic/rtsxvar.h>
#include <dev/sdmmc/sdmmcvar.h>
#include <dev/sdmmc/sdmmc_ioreg.h>
/*
* We use two DMA buffers, a command buffer and a data buffer.
*
* The command buffer contains a command queue for the host controller,
* which describes SD/MMC commands to run, and other parameters. The chip
* runs the command queue when a special bit in the RTSX_HCBAR register is set
* and signals completion with the TRANS_OK interrupt.
* Each command is encoded as a 4 byte sequence containing command number
* (read, write, or check a host controller register), a register address,
* and a data bit-mask and value.
*
* The data buffer is used to transfer data sectors to or from the SD card.
* Data transfer is controlled via the RTSX_HDBAR register. Completion is
* also signalled by the TRANS_OK interrupt.
*
* The chip is unable to perform DMA above 4GB.
*
* SD/MMC commands which do not transfer any data from/to the card only use
* the command buffer.
*/
#define RTSX_DMA_MAX_SEGSIZE 0x80000
#define RTSX_HOSTCMD_MAX 256
#define RTSX_HOSTCMD_BUFSIZE (sizeof(u_int32_t) * RTSX_HOSTCMD_MAX)
#define RTSX_DMA_DATA_BUFSIZE MAXPHYS
#define READ4(sc, reg) \
(bus_space_read_4((sc)->iot, (sc)->ioh, (reg)))
#define WRITE4(sc, reg, val) \
bus_space_write_4((sc)->iot, (sc)->ioh, (reg), (val))
#define RTSX_READ(sc, reg, val) \
do { \
int err = rtsx_read((sc), (reg), (val)); \
if (err) \
return (err); \
} while (0)
#define RTSX_WRITE(sc, reg, val) \
do { \
int err = rtsx_write((sc), (reg), 0xff, (val)); \
if (err) \
return (err); \
} while (0)
#define RTSX_CLR(sc, reg, bits) \
do { \
int err = rtsx_write((sc), (reg), (bits), 0); \
if (err) \
return (err); \
} while (0)
#define RTSX_SET(sc, reg, bits) \
do { \
int err = rtsx_write((sc), (reg), (bits), 0xff);\
if (err) \
return (err); \
} while (0)
int rtsx_host_reset(sdmmc_chipset_handle_t);
u_int32_t rtsx_host_ocr(sdmmc_chipset_handle_t);
int rtsx_host_maxblklen(sdmmc_chipset_handle_t);
int rtsx_card_detect(sdmmc_chipset_handle_t);
int rtsx_bus_power(sdmmc_chipset_handle_t, u_int32_t);
int rtsx_bus_clock(sdmmc_chipset_handle_t, int, int);
void rtsx_exec_command(sdmmc_chipset_handle_t, struct sdmmc_command *);
int rtsx_init(struct rtsx_softc *, int);
void rtsx_soft_reset(struct rtsx_softc *);
int rtsx_bus_power_off(struct rtsx_softc *);
int rtsx_bus_power_on(struct rtsx_softc *);
int rtsx_set_bus_width(struct rtsx_softc *, int);
int rtsx_stop_sd_clock(struct rtsx_softc *);
int rtsx_switch_sd_clock(struct rtsx_softc *, u_int8_t, int, int);
int rtsx_wait_intr(struct rtsx_softc *, int, int);
int rtsx_read(struct rtsx_softc *, u_int16_t, u_int8_t *);
int rtsx_write(struct rtsx_softc *, u_int16_t, u_int8_t, u_int8_t);
#ifdef notyet
int rtsx_read_phy(struct rtsx_softc *, u_int8_t, u_int16_t *);
#endif
int rtsx_write_phy(struct rtsx_softc *, u_int8_t, u_int16_t);
int rtsx_read_cfg(struct rtsx_softc *, u_int8_t, u_int16_t, u_int32_t *);
#ifdef notyet
int rtsx_write_cfg(struct rtsx_softc *, u_int8_t, u_int16_t, u_int32_t,
u_int32_t);
#endif
void rtsx_hostcmd(u_int32_t *, int *, u_int8_t, u_int16_t, u_int8_t,
u_int8_t);
int rtsx_hostcmd_send(struct rtsx_softc *, int);
u_int8_t rtsx_response_type(u_int16_t);
int rtsx_xfer(struct rtsx_softc *, struct sdmmc_command *, u_int32_t *);
void rtsx_card_insert(struct rtsx_softc *);
void rtsx_card_eject(struct rtsx_softc *);
int rtsx_led_enable(struct rtsx_softc *);
int rtsx_led_disable(struct rtsx_softc *);
void rtsx_save_regs(struct rtsx_softc *);
void rtsx_restore_regs(struct rtsx_softc *);
#ifdef RTSX_DEBUG
int rtsxdebug = 0;
#define DPRINTF(n,s) do { if ((n) <= rtsxdebug) printf s; } while (0)
#else
#define DPRINTF(n,s) do {} while(0)
#endif
struct sdmmc_chip_functions rtsx_functions = {
/* host controller reset */
rtsx_host_reset,
/* host controller capabilities */
rtsx_host_ocr,
rtsx_host_maxblklen,
/* card detection */
rtsx_card_detect,
/* bus power and clock frequency */
rtsx_bus_power,
rtsx_bus_clock,
NULL,
/* command execution */
rtsx_exec_command,
/* card interrupt */
NULL, NULL
};
struct cfdriver rtsx_cd = {
NULL, "rtsx", DV_DULL
};
/*
* Called by attachment driver.
*/
int
rtsx_attach(struct rtsx_softc *sc, bus_space_tag_t iot,
bus_space_handle_t ioh, bus_size_t iosize, bus_dma_tag_t dmat, int flags)
{
struct sdmmcbus_attach_args saa;
u_int32_t sdio_cfg;
sc->iot = iot;
sc->ioh = ioh;
sc->dmat = dmat;
sc->flags = flags;
if (rtsx_init(sc, 1))
return 1;
if (rtsx_read_cfg(sc, 0, RTSX_SDIOCFG_REG, &sdio_cfg) == 0) {
if ((sdio_cfg & RTSX_SDIOCFG_SDIO_ONLY) ||
(sdio_cfg & RTSX_SDIOCFG_HAVE_SDIO))
sc->flags |= RTSX_F_SDIO_SUPPORT;
}
if (bus_dmamap_create(sc->dmat, RTSX_HOSTCMD_BUFSIZE, 1,
RTSX_DMA_MAX_SEGSIZE, 0, BUS_DMA_NOWAIT,
&sc->dmap_cmd) != 0)
return 1;
if (bus_dmamap_create(sc->dmat, RTSX_DMA_DATA_BUFSIZE, 1,
RTSX_DMA_MAX_SEGSIZE, 0, BUS_DMA_NOWAIT,
&sc->dmap_data) != 0)
return 1;
/*
* Attach the generic SD/MMC bus driver. (The bus driver must
* not invoke any chipset functions before it is attached.)
*/
bzero(&saa, sizeof(saa));
saa.saa_busname = "sdmmc";
saa.sct = &rtsx_functions;
saa.sch = sc;
saa.flags = SMF_STOP_AFTER_MULTIPLE;
sc->sdmmc = config_found(&sc->sc_dev, &saa, NULL);
if (sc->sdmmc == NULL)
return 1;
/* Now handle cards discovered during attachment. */
if (ISSET(sc->flags, RTSX_F_CARD_PRESENT))
rtsx_card_insert(sc);
return 0;
}
int
rtsx_init(struct rtsx_softc *sc, int attaching)
{
u_int32_t status;
u_int8_t version;
int error;
/* Read IC version from dummy register. */
if (sc->flags & RTSX_F_5229) {
RTSX_READ(sc, RTSX_DUMMY_REG, &version);
switch (version & 0x0F) {
case RTSX_IC_VERSION_A:
case RTSX_IC_VERSION_B:
case RTSX_IC_VERSION_D:
break;
case RTSX_IC_VERSION_C:
sc->flags |= RTSX_F_5229_TYPE_C;
break;
default:
printf("rtsx_init: unknown ic %02x\n", version);
return (1);
}
}
/* Enable interrupt write-clear (default is read-clear). */
RTSX_CLR(sc, RTSX_NFTS_TX_CTRL, RTSX_INT_READ_CLR);
/* Clear any pending interrupts. */
status = READ4(sc, RTSX_BIPR);
WRITE4(sc, RTSX_BIPR, status);
/* Check for cards already inserted at attach time. */
if (attaching && (status & RTSX_SD_EXIST))
sc->flags |= RTSX_F_CARD_PRESENT;
/* Enable interrupts. */
WRITE4(sc, RTSX_BIER,
RTSX_TRANS_OK_INT_EN | RTSX_TRANS_FAIL_INT_EN | RTSX_SD_INT_EN);
/* Power on SSC clock. */
RTSX_CLR(sc, RTSX_FPDCTL, RTSX_SSC_POWER_DOWN);
delay(200);
/* XXX magic numbers from linux driver */
if (sc->flags & RTSX_F_5209)
error = rtsx_write_phy(sc, 0x00, 0xB966);
else
error = rtsx_write_phy(sc, 0x00, 0xBA42);
if (error) {
printf("%s: cannot write phy register\n", DEVNAME(sc));
return (1);
}
RTSX_SET(sc, RTSX_CLK_DIV, 0x07);
/* Disable sleep mode. */
RTSX_CLR(sc, RTSX_HOST_SLEEP_STATE,
RTSX_HOST_ENTER_S1 | RTSX_HOST_ENTER_S3);
/* Disable card clock. */
RTSX_CLR(sc, RTSX_CARD_CLK_EN, RTSX_CARD_CLK_EN_ALL);
RTSX_CLR(sc, RTSX_CHANGE_LINK_STATE,
RTSX_FORCE_RST_CORE_EN | RTSX_NON_STICKY_RST_N_DBG | 0x04);
RTSX_WRITE(sc, RTSX_SD30_DRIVE_SEL, RTSX_SD30_DRIVE_SEL_3V3);
/* Enable SSC clock. */
RTSX_WRITE(sc, RTSX_SSC_CTL1, RTSX_SSC_8X_EN | RTSX_SSC_SEL_4M);
RTSX_WRITE(sc, RTSX_SSC_CTL2, 0x12);
RTSX_SET(sc, RTSX_CHANGE_LINK_STATE, RTSX_MAC_PHY_RST_N_DBG);
RTSX_SET(sc, RTSX_IRQSTAT0, RTSX_LINK_READY_INT);
RTSX_WRITE(sc, RTSX_PERST_GLITCH_WIDTH, 0x80);
/* Set RC oscillator to 400K. */
RTSX_CLR(sc, RTSX_RCCTL, RTSX_RCCTL_F_2M);
/* Request clock by driving CLKREQ pin to zero. */
RTSX_SET(sc, RTSX_PETXCFG, RTSX_PETXCFG_CLKREQ_PIN);
/* Set up LED GPIO. */
if (sc->flags & RTSX_F_5209) {
RTSX_WRITE(sc, RTSX_CARD_GPIO, 0x03);
RTSX_WRITE(sc, RTSX_CARD_GPIO_DIR, 0x03);
} else {
RTSX_SET(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON);
/* Switch LDO3318 source from DV33 to 3V3. */
RTSX_CLR(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_DV33);
RTSX_SET(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_3V3);
/* Set default OLT blink period. */
RTSX_SET(sc, RTSX_OLT_LED_CTL, RTSX_OLT_LED_PERIOD);
}
return (0);
}
int
rtsx_activate(struct device *self, int act)
{
struct rtsx_softc *sc = (struct rtsx_softc *)self;
int rv = 0;
switch (act) {
case DVACT_SUSPEND:
rv = config_activate_children(self, act);
rtsx_save_regs(sc);
break;
case DVACT_RESUME:
rtsx_restore_regs(sc);
/* Handle cards ejected/inserted during suspend. */
if (READ4(sc, RTSX_BIPR) & RTSX_SD_EXIST)
rtsx_card_insert(sc);
else
rtsx_card_eject(sc);
rv = config_activate_children(self, act);
break;
default:
rv = config_activate_children(self, act);
break;
}
return (rv);
}
int
rtsx_led_enable(struct rtsx_softc *sc)
{
if (sc->flags & RTSX_F_5209) {
RTSX_CLR(sc, RTSX_CARD_GPIO, RTSX_CARD_GPIO_LED_OFF);
RTSX_WRITE(sc, RTSX_CARD_AUTO_BLINK,
RTSX_LED_BLINK_EN | RTSX_LED_BLINK_SPEED);
} else {
RTSX_SET(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON);
RTSX_SET(sc, RTSX_OLT_LED_CTL, RTSX_OLT_LED_AUTOBLINK);
}
return 0;
}
int
rtsx_led_disable(struct rtsx_softc *sc)
{
if (sc->flags & RTSX_F_5209) {
RTSX_CLR(sc, RTSX_CARD_AUTO_BLINK, RTSX_LED_BLINK_EN);
RTSX_WRITE(sc, RTSX_CARD_GPIO, RTSX_CARD_GPIO_LED_OFF);
} else {
RTSX_CLR(sc, RTSX_OLT_LED_CTL, RTSX_OLT_LED_AUTOBLINK);
RTSX_CLR(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON);
}
return 0;
}
/*
* Reset the host controller. Called during initialization, when
* cards are removed, upon resume, and during error recovery.
*/
int
rtsx_host_reset(sdmmc_chipset_handle_t sch)
{
struct rtsx_softc *sc = sch;
int s;
DPRINTF(1,("%s: host reset\n", DEVNAME(sc)));
s = splsdmmc();
if (ISSET(sc->flags, RTSX_F_CARD_PRESENT))
rtsx_soft_reset(sc);
if (rtsx_init(sc, 0)) {
splx(s);
return 1;
}
splx(s);
return 0;
}
u_int32_t
rtsx_host_ocr(sdmmc_chipset_handle_t sch)
{
return RTSX_SUPPORT_VOLTAGE;
}
int
rtsx_host_maxblklen(sdmmc_chipset_handle_t sch)
{
return 512;
}
/*
* Return non-zero if the card is currently inserted.
*/
int
rtsx_card_detect(sdmmc_chipset_handle_t sch)
{
struct rtsx_softc *sc = sch;
return ISSET(sc->flags, RTSX_F_CARD_PRESENT);
}
/*
* Notice that the meaning of RTSX_PWR_GATE_CTRL changes between RTS5209 and
* RTS5229. In RTS5209 it is a mask of disabled power gates, while in RTS5229
* it is a mask of *enabled* gates.
*/
int
rtsx_bus_power_off(struct rtsx_softc *sc)
{
int error;
u_int8_t disable3;
error = rtsx_stop_sd_clock(sc);
if (error)
return error;
/* Disable SD output. */
RTSX_CLR(sc, RTSX_CARD_OE, RTSX_CARD_OUTPUT_EN);
/* Turn off power. */
disable3 = RTSX_PULL_CTL_DISABLE3;
if (sc->flags & RTSX_F_5209)
RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_OFF);
else {
RTSX_CLR(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_VCC1 |
RTSX_LDO3318_VCC2);
if (sc->flags & RTSX_F_5229_TYPE_C)
disable3 = RTSX_PULL_CTL_DISABLE3_TYPE_C;
}
RTSX_SET(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_OFF);
RTSX_CLR(sc, RTSX_CARD_PWR_CTL, RTSX_PMOS_STRG_800mA);
/* Disable pull control. */
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, RTSX_PULL_CTL_DISABLE12);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, RTSX_PULL_CTL_DISABLE12);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, disable3);
return 0;
}
int
rtsx_bus_power_on(struct rtsx_softc *sc)
{
u_int8_t enable3;
/* Select SD card. */
RTSX_WRITE(sc, RTSX_CARD_SELECT, RTSX_SD_MOD_SEL);
RTSX_WRITE(sc, RTSX_CARD_SHARE_MODE, RTSX_CARD_SHARE_48_SD);
RTSX_SET(sc, RTSX_CARD_CLK_EN, RTSX_SD_CLK_EN);
/* Enable pull control. */
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, RTSX_PULL_CTL_ENABLE12);
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, RTSX_PULL_CTL_ENABLE12);
if (sc->flags & RTSX_F_5229_TYPE_C)
enable3 = RTSX_PULL_CTL_ENABLE3_TYPE_C;
else
enable3 = RTSX_PULL_CTL_ENABLE3;
RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, enable3);
/*
* To avoid a current peak, enable card power in two phases with a
* delay in between.
*/
/* Partial power. */
RTSX_SET(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PARTIAL_PWR_ON);
if (sc->flags & RTSX_F_5209)
RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_SUSPEND);
else
RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_VCC1);
delay(200);
/* Full power. */
RTSX_CLR(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_OFF);
if (sc->flags & RTSX_F_5209)
RTSX_CLR(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_OFF);
else
RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_VCC2);
/* Enable SD card output. */
RTSX_WRITE(sc, RTSX_CARD_OE, RTSX_SD_OUTPUT_EN);
return 0;
}
int
rtsx_set_bus_width(struct rtsx_softc *sc, int w)
{
u_int32_t bus_width;
switch (w) {
case 8:
bus_width = RTSX_BUS_WIDTH_8;
break;
case 4:
bus_width = RTSX_BUS_WIDTH_4;
break;
case 1:
default:
bus_width = RTSX_BUS_WIDTH_1;
break;
}
if (bus_width == RTSX_BUS_WIDTH_1)
RTSX_CLR(sc, RTSX_SD_CFG1, RTSX_BUS_WIDTH_MASK);
else
RTSX_SET(sc, RTSX_SD_CFG1, bus_width);
return 0;
}
int
rtsx_stop_sd_clock(struct rtsx_softc *sc)
{
RTSX_CLR(sc, RTSX_CARD_CLK_EN, RTSX_CARD_CLK_EN_ALL);
RTSX_SET(sc, RTSX_SD_BUS_STAT, RTSX_SD_CLK_FORCE_STOP);
return 0;
}
int
rtsx_switch_sd_clock(struct rtsx_softc *sc, u_int8_t n, int div, int mcu)
{
/* Enable SD 2.0 mode. */
RTSX_CLR(sc, RTSX_SD_CFG1, RTSX_SD_MODE_MASK);
RTSX_SET(sc, RTSX_CLK_CTL, RTSX_CLK_LOW_FREQ);
RTSX_WRITE(sc, RTSX_CARD_CLK_SOURCE,
RTSX_CRC_FIX_CLK | RTSX_SD30_VAR_CLK0 | RTSX_SAMPLE_VAR_CLK1);
RTSX_CLR(sc, RTSX_SD_SAMPLE_POINT_CTL, RTSX_SD20_RX_SEL_MASK);
RTSX_WRITE(sc, RTSX_SD_PUSH_POINT_CTL, RTSX_SD20_TX_NEG_EDGE);
RTSX_WRITE(sc, RTSX_CLK_DIV, (div << 4) | mcu);
RTSX_CLR(sc, RTSX_SSC_CTL1, RTSX_RSTB);
RTSX_CLR(sc, RTSX_SSC_CTL2, RTSX_SSC_DEPTH_MASK);
RTSX_WRITE(sc, RTSX_SSC_DIV_N_0, n);
RTSX_SET(sc, RTSX_SSC_CTL1, RTSX_RSTB);
delay(100);
RTSX_CLR(sc, RTSX_CLK_CTL, RTSX_CLK_LOW_FREQ);
return 0;
}
/*
* Set or change SD bus voltage and enable or disable SD bus power.
* Return zero on success.
*/
int
rtsx_bus_power(sdmmc_chipset_handle_t sch, u_int32_t ocr)
{
struct rtsx_softc *sc = sch;
int s, error = 0;
DPRINTF(1,("%s: voltage change ocr=0x%x\n", DEVNAME(sc), ocr));
s = splsdmmc();
/*
* Disable bus power before voltage change.
*/
error = rtsx_bus_power_off(sc);
if (error)
goto ret;
delay(200);
/* If power is disabled, reset the host and return now. */
if (ocr == 0) {
splx(s);
(void)rtsx_host_reset(sc);
return 0;
}
if (!ISSET(ocr, RTSX_SUPPORT_VOLTAGE)) {
/* Unsupported voltage level requested. */
DPRINTF(1,("%s: unsupported voltage ocr=0x%x\n",
DEVNAME(sc), ocr));
error = EINVAL;
goto ret;
}
error = rtsx_set_bus_width(sc, 1);
if (error)
goto ret;
error = rtsx_bus_power_on(sc);
ret:
splx(s);
return error;
}
/*
* Set or change SDCLK frequency or disable the SD clock.
* Return zero on success.
*/
int
rtsx_bus_clock(sdmmc_chipset_handle_t sch, int freq, int timing)
{
struct rtsx_softc *sc = sch;
int s;
u_int8_t n;
int div;
int mcu;
int error = 0;
s = splsdmmc();
if (freq == SDMMC_SDCLK_OFF) {
error = rtsx_stop_sd_clock(sc);
goto ret;
}
/*
* Configure the clock frequency.
*/
switch (freq) {
case SDMMC_SDCLK_400KHZ:
n = 80; /* minimum */
div = RTSX_CLK_DIV_8;
mcu = 7;
RTSX_SET(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_128);
break;
case SDMMC_SDCLK_25MHZ:
n = 100;
div = RTSX_CLK_DIV_4;
mcu = 7;
RTSX_CLR(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_MASK);
break;
default:
error = EINVAL;
goto ret;
}
/*
* Enable SD clock.
*/
error = rtsx_switch_sd_clock(sc, n, div, mcu);
ret:
splx(s);
return error;
}
int
rtsx_read(struct rtsx_softc *sc, u_int16_t addr, u_int8_t *val)
{
int tries = 1024;
u_int32_t reg;
WRITE4(sc, RTSX_HAIMR, RTSX_HAIMR_BUSY |
(u_int32_t)((addr & 0x3FFF) << 16));
while (tries--) {
reg = READ4(sc, RTSX_HAIMR);
if (!(reg & RTSX_HAIMR_BUSY))
break;
}
*val = (reg & 0xff);
return (tries == 0) ? ETIMEDOUT : 0;
}
int
rtsx_write(struct rtsx_softc *sc, u_int16_t addr, u_int8_t mask, u_int8_t val)
{
int tries = 1024;
u_int32_t reg;
WRITE4(sc, RTSX_HAIMR,
RTSX_HAIMR_BUSY | RTSX_HAIMR_WRITE |
(u_int32_t)(((addr & 0x3FFF) << 16) |
(mask << 8) | val));
while (tries--) {
reg = READ4(sc, RTSX_HAIMR);
if (!(reg & RTSX_HAIMR_BUSY)) {
if (val != (reg & 0xff))
return EIO;
return 0;
}
}
return ETIMEDOUT;
}
#ifdef notyet
int
rtsx_read_phy(struct rtsx_softc *sc, u_int8_t addr, u_int16_t *val)
{
int timeout = 100000;
u_int8_t data0;
u_int8_t data1;
u_int8_t rwctl;
RTSX_WRITE(sc, RTSX_PHY_ADDR, addr);
RTSX_WRITE(sc, RTSX_PHY_RWCTL, RTSX_PHY_BUSY|RTSX_PHY_READ);
while (timeout--) {
RTSX_READ(sc, RTSX_PHY_RWCTL, &rwctl);
if (!(rwctl & RTSX_PHY_BUSY))
break;
}
if (timeout == 0)
return ETIMEDOUT;
RTSX_READ(sc, RTSX_PHY_DATA0, &data0);
RTSX_READ(sc, RTSX_PHY_DATA1, &data1);
*val = data0 | (data1 << 8);
return 0;
}
#endif
int
rtsx_write_phy(struct rtsx_softc *sc, u_int8_t addr, u_int16_t val)
{
int timeout = 100000;
u_int8_t rwctl;
RTSX_WRITE(sc, RTSX_PHY_DATA0, val);
RTSX_WRITE(sc, RTSX_PHY_DATA1, val >> 8);
RTSX_WRITE(sc, RTSX_PHY_ADDR, addr);
RTSX_WRITE(sc, RTSX_PHY_RWCTL, RTSX_PHY_BUSY|RTSX_PHY_WRITE);
while (timeout--) {
RTSX_READ(sc, RTSX_PHY_RWCTL, &rwctl);
if (!(rwctl & RTSX_PHY_BUSY))
break;
}
if (timeout == 0)
return ETIMEDOUT;
return 0;
}
int
rtsx_read_cfg(struct rtsx_softc *sc, u_int8_t func, u_int16_t addr,
u_int32_t *val)
{
int tries = 1024;
u_int8_t data0, data1, data2, data3, rwctl;
RTSX_WRITE(sc, RTSX_CFGADDR0, addr);
RTSX_WRITE(sc, RTSX_CFGADDR1, addr >> 8);
RTSX_WRITE(sc, RTSX_CFGRWCTL, RTSX_CFG_BUSY | (func & 0x03 << 4));
while (tries--) {
RTSX_READ(sc, RTSX_CFGRWCTL, &rwctl);
if (!(rwctl & RTSX_CFG_BUSY))
break;
}
if (tries == 0)
return EIO;
RTSX_READ(sc, RTSX_CFGDATA0, &data0);
RTSX_READ(sc, RTSX_CFGDATA1, &data1);
RTSX_READ(sc, RTSX_CFGDATA2, &data2);
RTSX_READ(sc, RTSX_CFGDATA3, &data3);
*val = (data3 << 24) | (data2 << 16) | (data1 << 8) | data0;
return 0;
}
#ifdef notyet
int
rtsx_write_cfg(struct rtsx_softc *sc, u_int8_t func, u_int16_t addr,
u_int32_t mask, u_int32_t val)
{
int i, writemask = 0, tries = 1024;
u_int8_t rwctl;
for (i = 0; i < 4; i++) {
if (mask & 0xff) {
RTSX_WRITE(sc, RTSX_CFGDATA0 + i, val & mask & 0xff);
writemask |= (1 << i);
}
mask >>= 8;
val >>= 8;
}
if (writemask) {
RTSX_WRITE(sc, RTSX_CFGADDR0, addr);
RTSX_WRITE(sc, RTSX_CFGADDR1, addr >> 8);
RTSX_WRITE(sc, RTSX_CFGRWCTL,
RTSX_CFG_BUSY | writemask | (func & 0x03 << 4));
}
while (tries--) {
RTSX_READ(sc, RTSX_CFGRWCTL, &rwctl);
if (!(rwctl & RTSX_CFG_BUSY))
break;
}
if (tries == 0)
return EIO;
return 0;
}
#endif
/* Append a properly encoded host command to the host command buffer. */
void
rtsx_hostcmd(u_int32_t *cmdbuf, int *n, u_int8_t cmd, u_int16_t reg,
u_int8_t mask, u_int8_t data)
{
KASSERT(*n < RTSX_HOSTCMD_MAX);
cmdbuf[(*n)++] = htole32((u_int32_t)(cmd & 0x3) << 30) |
((u_int32_t)(reg & 0x3fff) << 16) |
((u_int32_t)(mask) << 8) |
((u_int32_t)data);
}
void
rtsx_save_regs(struct rtsx_softc *sc)
{
int s, i;
u_int16_t reg;
s = splsdmmc();
i = 0;
for (reg = 0xFDA0; reg < 0xFDAE; reg++)
(void)rtsx_read(sc, reg, &sc->regs[i++]);
for (reg = 0xFD52; reg < 0xFD69; reg++)
(void)rtsx_read(sc, reg, &sc->regs[i++]);
for (reg = 0xFE20; reg < 0xFE34; reg++)
(void)rtsx_read(sc, reg, &sc->regs[i++]);
sc->regs4[0] = READ4(sc, RTSX_HCBAR);
sc->regs4[1] = READ4(sc, RTSX_HCBCTLR);
sc->regs4[2] = READ4(sc, RTSX_HDBAR);
sc->regs4[3] = READ4(sc, RTSX_HDBCTLR);
sc->regs4[4] = READ4(sc, RTSX_HAIMR);
sc->regs4[5] = READ4(sc, RTSX_BIER);
/* Not saving RTSX_BIPR. */
splx(s);
}
void
rtsx_restore_regs(struct rtsx_softc *sc)
{
int s, i;
u_int16_t reg;
s = splsdmmc();
WRITE4(sc, RTSX_HCBAR, sc->regs4[0]);
WRITE4(sc, RTSX_HCBCTLR, sc->regs4[1]);
WRITE4(sc, RTSX_HDBAR, sc->regs4[2]);
WRITE4(sc, RTSX_HDBCTLR, sc->regs4[3]);
WRITE4(sc, RTSX_HAIMR, sc->regs4[4]);
WRITE4(sc, RTSX_BIER, sc->regs4[5]);
/* Not writing RTSX_BIPR since doing so would clear it. */
i = 0;
for (reg = 0xFDA0; reg < 0xFDAE; reg++)
(void)rtsx_write(sc, reg, 0xff, sc->regs[i++]);
for (reg = 0xFD52; reg < 0xFD69; reg++)
(void)rtsx_write(sc, reg, 0xff, sc->regs[i++]);
for (reg = 0xFE20; reg < 0xFE34; reg++)
(void)rtsx_write(sc, reg, 0xff, sc->regs[i++]);
splx(s);
}
u_int8_t
rtsx_response_type(u_int16_t sdmmc_rsp)
{
int i;
struct rsp_type {
u_int16_t sdmmc_rsp;
u_int8_t rtsx_rsp;
} rsp_types[] = {
{ SCF_RSP_R0, RTSX_SD_RSP_TYPE_R0 },
{ SCF_RSP_R1, RTSX_SD_RSP_TYPE_R1 },
{ SCF_RSP_R1B, RTSX_SD_RSP_TYPE_R1B },
{ SCF_RSP_R2, RTSX_SD_RSP_TYPE_R2 },
{ SCF_RSP_R3, RTSX_SD_RSP_TYPE_R3 },
{ SCF_RSP_R4, RTSX_SD_RSP_TYPE_R4 },
{ SCF_RSP_R5, RTSX_SD_RSP_TYPE_R5 },
{ SCF_RSP_R6, RTSX_SD_RSP_TYPE_R6 },
{ SCF_RSP_R7, RTSX_SD_RSP_TYPE_R7 }
};
for (i = 0; i < nitems(rsp_types); i++) {
if (sdmmc_rsp == rsp_types[i].sdmmc_rsp)
return rsp_types[i].rtsx_rsp;
}
return 0;
}
int
rtsx_hostcmd_send(struct rtsx_softc *sc, int ncmd)
{
int s;
s = splsdmmc();
/* Tell the chip where the command buffer is and run the commands. */
WRITE4(sc, RTSX_HCBAR, sc->dmap_cmd->dm_segs[0].ds_addr);
WRITE4(sc, RTSX_HCBCTLR,
((ncmd * 4) & 0x00ffffff) | RTSX_START_CMD | RTSX_HW_AUTO_RSP);
splx(s);
return 0;
}
int
rtsx_xfer(struct rtsx_softc *sc, struct sdmmc_command *cmd, u_int32_t *cmdbuf)
{
caddr_t datakvap;
bus_dma_segment_t segs;
int ncmd, s, dma_dir, error, rsegs, tmode;
int read = ISSET(cmd->c_flags, SCF_CMD_READ);
u_int8_t cfg2;
DPRINTF(3,("%s: %s xfer: %d bytes with block size %d\n", DEVNAME(sc),
read ? "read" : "write",
cmd->c_datalen, cmd->c_blklen));
if (cmd->c_datalen > RTSX_DMA_DATA_BUFSIZE) {
DPRINTF(3, ("%s: cmd->c_datalen too large: %d > %d\n",
DEVNAME(sc), cmd->c_datalen, RTSX_DMA_DATA_BUFSIZE));
return ENOMEM;
}
/* Configure DMA transfer mode parameters. */
cfg2 = RTSX_SD_NO_CHECK_WAIT_CRC_TO | RTSX_SD_CHECK_CRC16 |
RTSX_SD_NO_WAIT_BUSY_END | RTSX_SD_RSP_LEN_0;
if (read) {
dma_dir = RTSX_DMA_DIR_FROM_CARD;
/* Use transfer mode AUTO_READ3, which assumes we've already
* sent the read command and gotten the response, and will
* send CMD 12 manually after reading multiple blocks. */
tmode = RTSX_TM_AUTO_READ3;
cfg2 |= RTSX_SD_CALCULATE_CRC7 | RTSX_SD_CHECK_CRC7;
} else {
dma_dir = RTSX_DMA_DIR_TO_CARD;
/* Use transfer mode AUTO_WRITE3, which assumes we've already
* sent the write command and gotten the response, and will
* send CMD 12 manually after writing multiple blocks. */
tmode = RTSX_TM_AUTO_WRITE3;
cfg2 |= RTSX_SD_NO_CALCULATE_CRC7 | RTSX_SD_NO_CHECK_CRC7;
}
ncmd = 0;
rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CFG2,
0xff, cfg2);
/* Queue commands to configure data transfer size. */
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_BYTE_CNT_L, 0xff, 0);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_BYTE_CNT_H, 0xff, 0x02);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_BLOCK_CNT_L, 0xff,
((cmd->c_datalen / cmd->c_blklen) & 0xff));
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_BLOCK_CNT_H, 0xff,
((cmd->c_datalen / cmd->c_blklen) >> 8));
/* Use the DMA ring buffer for commands which transfer data. */
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_CARD_DATA_SOURCE, 0x01, RTSX_RING_BUFFER);
/* Configure DMA controller. */
rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_IRQSTAT0,
RTSX_DMA_DONE_INT, RTSX_DMA_DONE_INT);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_DMATC3, 0xff, cmd->c_datalen >> 24);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_DMATC2, 0xff, cmd->c_datalen >> 16);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_DMATC1, 0xff, cmd->c_datalen >> 8);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_DMATC0, 0xff, cmd->c_datalen);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_DMACTL,
0x03 | RTSX_DMA_PACK_SIZE_MASK,
dma_dir | RTSX_DMA_EN | RTSX_DMA_512);
/* Queue commands to perform SD transfer. */
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_TRANSFER,
0xff, tmode | RTSX_SD_TRANSFER_START);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_CHECK_REG_CMD, RTSX_SD_TRANSFER,
RTSX_SD_TRANSFER_END, RTSX_SD_TRANSFER_END);
error = rtsx_hostcmd_send(sc, ncmd);
if (error)
goto ret;
/* Allocate and map DMA memory for data transfer. */
error = bus_dmamem_alloc(sc->dmat, cmd->c_datalen, 0, 0, &segs, 1,
&rsegs, BUS_DMA_WAITOK|BUS_DMA_ZERO);
if (error) {
DPRINTF(3, ("%s: could not allocate %d bytes\n",
DEVNAME(sc), cmd->c_datalen));
goto ret;
}
error = bus_dmamem_map(sc->dmat, &segs, rsegs, cmd->c_datalen,
&datakvap, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
if (error) {
DPRINTF(3, ("%s: could not map data buffer\n", DEVNAME(sc)));
goto free_databuf;
}
/* If this is a write, copy data from sdmmc-provided buffer. */
if (!read)
memcpy(datakvap, cmd->c_data, cmd->c_datalen);
/* Load the data buffer and sync it. */
error = bus_dmamap_load(sc->dmat, sc->dmap_data, datakvap,
cmd->c_datalen, NULL, BUS_DMA_WAITOK);
if (error) {
DPRINTF(3, ("%s: could not load DMA map\n", DEVNAME(sc)));
goto unmap_databuf;
}
bus_dmamap_sync(sc->dmat, sc->dmap_data, 0, cmd->c_datalen,
BUS_DMASYNC_PREREAD);
bus_dmamap_sync(sc->dmat, sc->dmap_data, 0, cmd->c_datalen,
BUS_DMASYNC_PREWRITE);
s = splsdmmc();
/* Tell the chip where the data buffer is and run the transfer. */
WRITE4(sc, RTSX_HDBAR, sc->dmap_data->dm_segs[0].ds_addr);
WRITE4(sc, RTSX_HDBCTLR, RTSX_TRIG_DMA | (read ? RTSX_DMA_READ : 0) |
(sc->dmap_data->dm_segs[0].ds_len & 0x00ffffff));
splx(s);
/* Wait for completion. */
error = rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, 10*hz);
if (error)
goto unload_databuf;
/* Sync and unload data DMA buffer. */
bus_dmamap_sync(sc->dmat, sc->dmap_data, 0, cmd->c_datalen,
BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->dmat, sc->dmap_data, 0, cmd->c_datalen,
BUS_DMASYNC_POSTWRITE);
unload_databuf:
bus_dmamap_unload(sc->dmat, sc->dmap_data);
/* If this is a read, copy data into sdmmc-provided buffer. */
if (error == 0 && read)
memcpy(cmd->c_data, datakvap, cmd->c_datalen);
/* Free DMA data buffer. */
unmap_databuf:
bus_dmamem_unmap(sc->dmat, datakvap, cmd->c_datalen);
free_databuf:
bus_dmamem_free(sc->dmat, &segs, rsegs);
ret:
DPRINTF(3,("%s: xfer done, error=%d\n", DEVNAME(sc), error));
return error;
}
void
rtsx_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
{
struct rtsx_softc *sc = sch;
bus_dma_segment_t segs;
int rsegs;
caddr_t cmdkvap;
u_int32_t *cmdbuf;
u_int8_t rsp_type;
u_int16_t r;
int ncmd;
int error = 0;
DPRINTF(3,("%s: executing cmd %hu\n", DEVNAME(sc), cmd->c_opcode));
/* Refuse SDIO probe if the chip doesn't support SDIO. */
if (cmd->c_opcode == SD_IO_SEND_OP_COND &&
!ISSET(sc->flags, RTSX_F_SDIO_SUPPORT)) {
error = ENOTSUP;
goto ret;
}
rsp_type = rtsx_response_type(cmd->c_flags & 0xff00);
if (rsp_type == 0) {
printf("%s: unknown response type 0x%x\n", DEVNAME(sc),
(cmd->c_flags & 0xff00));
error = EINVAL;
goto ret;
}
/* Allocate and map the host command buffer. */
error = bus_dmamem_alloc(sc->dmat, RTSX_HOSTCMD_BUFSIZE, 0, 0, &segs, 1,
&rsegs, BUS_DMA_WAITOK|BUS_DMA_ZERO);
if (error)
goto ret;
error = bus_dmamem_map(sc->dmat, &segs, rsegs, RTSX_HOSTCMD_BUFSIZE,
&cmdkvap, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
if (error)
goto free_cmdbuf;
/* The command buffer queues commands the host controller will
* run asynchronously. */
cmdbuf = (u_int32_t *)cmdkvap;
ncmd = 0;
/* Queue commands to set SD command index and argument. */
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_CMD0, 0xff, 0x40 | cmd->c_opcode);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_CMD1, 0xff, cmd->c_arg >> 24);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_CMD2, 0xff, cmd->c_arg >> 16);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_CMD3, 0xff, cmd->c_arg >> 8);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_CMD4, 0xff, cmd->c_arg);
/* Queue command to set response type. */
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_CFG2, 0xff, rsp_type);
/* Use the ping-pong buffer for commands which do not transfer data. */
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_CARD_DATA_SOURCE,
0x01, RTSX_PINGPONG_BUFFER);
/* Queue commands to perform SD transfer. */
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_WRITE_REG_CMD, RTSX_SD_TRANSFER,
0xff, RTSX_TM_CMD_RSP | RTSX_SD_TRANSFER_START);
rtsx_hostcmd(cmdbuf, &ncmd,
RTSX_CHECK_REG_CMD, RTSX_SD_TRANSFER,
RTSX_SD_TRANSFER_END|RTSX_SD_STAT_IDLE,
RTSX_SD_TRANSFER_END|RTSX_SD_STAT_IDLE);
/* Queue commands to read back card status response.*/
if (rsp_type == RTSX_SD_RSP_TYPE_R2) {
for (r = RTSX_PPBUF_BASE2 + 15; r > RTSX_PPBUF_BASE2; r--)
rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, r, 0, 0);
rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, RTSX_SD_CMD5,
0, 0);
} else if (rsp_type != RTSX_SD_RSP_TYPE_R0) {
for (r = RTSX_SD_CMD0; r <= RTSX_SD_CMD4; r++)
rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, r, 0, 0);
}
/* Load and sync command DMA buffer. */
error = bus_dmamap_load(sc->dmat, sc->dmap_cmd, cmdkvap,
RTSX_HOSTCMD_BUFSIZE, NULL, BUS_DMA_WAITOK);
if (error)
goto unmap_cmdbuf;
bus_dmamap_sync(sc->dmat, sc->dmap_cmd, 0, RTSX_HOSTCMD_BUFSIZE,
BUS_DMASYNC_PREREAD);
bus_dmamap_sync(sc->dmat, sc->dmap_cmd, 0, RTSX_HOSTCMD_BUFSIZE,
BUS_DMASYNC_PREWRITE);
/* Run the command queue and wait for completion. */
error = rtsx_hostcmd_send(sc, ncmd);
if (error == 0)
error = rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, hz);
if (error)
goto unload_cmdbuf;
bus_dmamap_sync(sc->dmat, sc->dmap_cmd, 0, RTSX_HOSTCMD_BUFSIZE,
BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->dmat, sc->dmap_cmd, 0, RTSX_HOSTCMD_BUFSIZE,
BUS_DMASYNC_POSTWRITE);
/* Copy card response into sdmmc response buffer. */
if (ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
/* Copy bytes like sdhc(4), which on little-endian uses
* different byte order for short and long responses... */
if (ISSET(cmd->c_flags, SCF_RSP_136)) {
memcpy(cmd->c_resp, cmdkvap + 1, sizeof(cmd->c_resp));
} else {
/* First byte is CHECK_REG_CMD return value, second
* one is the command op code -- we skip those. */
cmd->c_resp[0] =
((betoh32(cmdbuf[0]) & 0x0000ffff) << 16) |
((betoh32(cmdbuf[1]) & 0xffff0000) >> 16);
}
}
if (cmd->c_data) {
error = rtsx_xfer(sc, cmd, cmdbuf);
if (error) {
u_int8_t stat1;
if (rtsx_read(sc, RTSX_SD_STAT1, &stat1) == 0 &&
(stat1 & RTSX_SD_CRC_ERR))
printf("%s: CRC error\n", DEVNAME(sc));
}
}
unload_cmdbuf:
bus_dmamap_unload(sc->dmat, sc->dmap_cmd);
unmap_cmdbuf:
bus_dmamem_unmap(sc->dmat, cmdkvap, RTSX_HOSTCMD_BUFSIZE);
free_cmdbuf:
bus_dmamem_free(sc->dmat, &segs, rsegs);
ret:
SET(cmd->c_flags, SCF_ITSDONE);
cmd->c_error = error;
}
/* Prepare for another command. */
void
rtsx_soft_reset(struct rtsx_softc *sc)
{
DPRINTF(1,("%s: soft reset\n", DEVNAME(sc)));
/* Stop command transfer. */
WRITE4(sc, RTSX_HCBCTLR, RTSX_STOP_CMD);
(void)rtsx_write(sc, RTSX_CARD_STOP, RTSX_SD_STOP|RTSX_SD_CLR_ERR,
RTSX_SD_STOP|RTSX_SD_CLR_ERR);
/* Stop DMA transfer. */
WRITE4(sc, RTSX_HDBCTLR, RTSX_STOP_DMA);
(void)rtsx_write(sc, RTSX_DMACTL, RTSX_DMA_RST, RTSX_DMA_RST);
(void)rtsx_write(sc, RTSX_RBCTL, RTSX_RB_FLUSH, RTSX_RB_FLUSH);
}
int
rtsx_wait_intr(struct rtsx_softc *sc, int mask, int timo)
{
int status;
int error = 0;
int s;
mask |= RTSX_TRANS_FAIL_INT;
s = splsdmmc();
status = sc->intr_status & mask;
while (status == 0) {
if (tsleep(&sc->intr_status, PRIBIO, "rtsxintr", timo)
== EWOULDBLOCK) {
rtsx_soft_reset(sc);
error = ETIMEDOUT;
break;
}
status = sc->intr_status & mask;
}
sc->intr_status &= ~status;
/* Has the card disappeared? */
if (!ISSET(sc->flags, RTSX_F_CARD_PRESENT))
error = ENODEV;
splx(s);
if (error == 0 && (status & RTSX_TRANS_FAIL_INT))
error = EIO;
return error;
}
void
rtsx_card_insert(struct rtsx_softc *sc)
{
DPRINTF(1, ("%s: card inserted\n", DEVNAME(sc)));
sc->flags |= RTSX_F_CARD_PRESENT;
(void)rtsx_led_enable(sc);
/* Schedule card discovery task. */
sdmmc_needs_discover(sc->sdmmc);
}
void
rtsx_card_eject(struct rtsx_softc *sc)
{
DPRINTF(1, ("%s: card ejected\n", DEVNAME(sc)));
sc->flags &= ~RTSX_F_CARD_PRESENT;
(void)rtsx_led_disable(sc);
/* Schedule card discovery task. */
sdmmc_needs_discover(sc->sdmmc);
}
/*
* Established by attachment driver at interrupt priority IPL_SDMMC.
*/
int
rtsx_intr(void *arg)
{
struct rtsx_softc *sc = arg;
u_int32_t enabled, status;
enabled = READ4(sc, RTSX_BIER);
status = READ4(sc, RTSX_BIPR);
/* Ack interrupts. */
WRITE4(sc, RTSX_BIPR, status);
if (((enabled & status) == 0) || status == 0xffffffff)
return 0;
if (status & RTSX_SD_INT) {
if (status & RTSX_SD_EXIST) {
if (!ISSET(sc->flags, RTSX_F_CARD_PRESENT))
rtsx_card_insert(sc);
} else {
rtsx_card_eject(sc);
}
}
if (status & (RTSX_TRANS_OK_INT | RTSX_TRANS_FAIL_INT)) {
sc->intr_status |= status;
wakeup(&sc->intr_status);
}
return 1;
}
|