1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
|
/* $OpenBSD: kcov.c,v 1.49 2023/07/29 06:52:50 anton Exp $ */
/*
* Copyright (c) 2018 Anton Lindqvist <anton@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/kcov.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/pool.h>
#include <sys/stdint.h>
#include <sys/queue.h>
/* kcov_vnode() */
#include <sys/conf.h>
#include <sys/vnode.h>
#include <sys/specdev.h>
#include <uvm/uvm_extern.h>
#define KCOV_BUF_MEMB_SIZE sizeof(uintptr_t)
#define KCOV_BUF_MAX_NMEMB (256 << 10)
#define KCOV_CMP_CONST 0x1
#define KCOV_CMP_SIZE(x) ((x) << 1)
#define KCOV_STATE_NONE 0
#define KCOV_STATE_READY 1
#define KCOV_STATE_TRACE 2
#define KCOV_STATE_DYING 3
#define KCOV_STRIDE_TRACE_PC 1
#define KCOV_STRIDE_TRACE_CMP 4
/*
* Coverage structure.
*
* Locking:
* I immutable after creation
* M kcov_mtx
* a atomic operations
*/
struct kcov_dev {
int kd_state; /* [M] */
int kd_mode; /* [M] */
int kd_unit; /* [I] D_CLONE unique device minor */
int kd_intr; /* [M] currently used in interrupt */
uintptr_t *kd_buf; /* [a] traced coverage */
size_t kd_nmemb; /* [I] */
size_t kd_size; /* [I] */
struct kcov_remote *kd_kr; /* [M] */
TAILQ_ENTRY(kcov_dev) kd_entry; /* [M] */
};
/*
* Remote coverage structure.
*
* Locking:
* I immutable after creation
* M kcov_mtx
*/
struct kcov_remote {
struct kcov_dev *kr_kd; /* [M] */
void *kr_id; /* [I] */
int kr_subsystem; /* [I] */
int kr_nsections; /* [M] # threads in remote section */
int kr_state; /* [M] */
TAILQ_ENTRY(kcov_remote) kr_entry; /* [M] */
};
/*
* Per CPU coverage structure used to track coverage when executing in a remote
* interrupt context.
*
* Locking:
* I immutable after creation
* M kcov_mtx
*/
struct kcov_cpu {
struct kcov_dev kc_kd;
struct kcov_dev *kc_kd_save; /* [M] previous kcov_dev */
int kc_cpuid; /* [I] cpu number */
TAILQ_ENTRY(kcov_cpu) kc_entry; /* [I] */
};
void kcovattach(int);
int kd_init(struct kcov_dev *, unsigned long);
void kd_free(struct kcov_dev *);
struct kcov_dev *kd_lookup(int);
void kd_copy(struct kcov_dev *, struct kcov_dev *);
struct kcov_remote *kcov_remote_register_locked(int, void *);
int kcov_remote_attach(struct kcov_dev *, struct kio_remote_attach *);
void kcov_remote_detach(struct kcov_dev *, struct kcov_remote *);
void kr_free(struct kcov_remote *);
void kr_barrier(struct kcov_remote *);
struct kcov_remote *kr_lookup(int, void *);
static struct kcov_dev *kd_curproc(int);
static struct kcov_cpu *kd_curcpu(void);
static uint64_t kd_claim(struct kcov_dev *, int, int);
TAILQ_HEAD(, kcov_dev) kd_list = TAILQ_HEAD_INITIALIZER(kd_list);
TAILQ_HEAD(, kcov_remote) kr_list = TAILQ_HEAD_INITIALIZER(kr_list);
TAILQ_HEAD(, kcov_cpu) kc_list = TAILQ_HEAD_INITIALIZER(kc_list);
int kcov_cold = 1;
int kr_cold = 1;
struct mutex kcov_mtx = MUTEX_INITIALIZER(IPL_MPFLOOR);
struct pool kr_pool;
static inline int
inintr(struct cpu_info *ci)
{
#if defined(__amd64__) || defined(__arm__) || defined(__arm64__) || \
defined(__i386__)
return (ci->ci_idepth > 0);
#else
return (0);
#endif
}
/*
* Compiling the kernel with the `-fsanitize-coverage=trace-pc' option will
* cause the following function to be called upon function entry and before
* each block of instructions that maps to a single line in the original source
* code.
*
* If kcov is enabled for the current thread, the kernel program counter will
* be stored in its corresponding coverage buffer.
*/
void
__sanitizer_cov_trace_pc(void)
{
struct kcov_dev *kd;
uint64_t idx;
kd = kd_curproc(KCOV_MODE_TRACE_PC);
if (kd == NULL)
return;
if ((idx = kd_claim(kd, KCOV_STRIDE_TRACE_PC, 1)))
kd->kd_buf[idx] = (uintptr_t)__builtin_return_address(0);
}
/*
* Compiling the kernel with the `-fsanitize-coverage=trace-cmp' option will
* cause the following function to be called upon integer comparisons and switch
* statements.
*
* If kcov is enabled for the current thread, the comparison will be stored in
* its corresponding coverage buffer.
*/
void
trace_cmp(struct kcov_dev *kd, uint64_t type, uint64_t arg1, uint64_t arg2,
uintptr_t pc)
{
uint64_t idx;
if ((idx = kd_claim(kd, KCOV_STRIDE_TRACE_CMP, 1))) {
kd->kd_buf[idx] = type;
kd->kd_buf[idx + 1] = arg1;
kd->kd_buf[idx + 2] = arg2;
kd->kd_buf[idx + 3] = pc;
}
}
#define TRACE_CMP(type, arg1, arg2) do { \
struct kcov_dev *kd; \
if ((kd = kd_curproc(KCOV_MODE_TRACE_CMP)) == NULL) \
return; \
trace_cmp(kd, (type), (arg1), (arg2), \
(uintptr_t)__builtin_return_address(0)); \
} while (0)
void
__sanitizer_cov_trace_cmp1(uint8_t arg1, uint8_t arg2)
{
TRACE_CMP(KCOV_CMP_SIZE(0), arg1, arg2);
}
void
__sanitizer_cov_trace_cmp2(uint16_t arg1, uint16_t arg2)
{
TRACE_CMP(KCOV_CMP_SIZE(1), arg1, arg2);
}
void
__sanitizer_cov_trace_cmp4(uint32_t arg1, uint32_t arg2)
{
TRACE_CMP(KCOV_CMP_SIZE(2), arg1, arg2);
}
void
__sanitizer_cov_trace_cmp8(uint64_t arg1, uint64_t arg2)
{
TRACE_CMP(KCOV_CMP_SIZE(3), arg1, arg2);
}
void
__sanitizer_cov_trace_const_cmp1(uint8_t arg1, uint8_t arg2)
{
TRACE_CMP(KCOV_CMP_SIZE(0) | KCOV_CMP_CONST, arg1, arg2);
}
void
__sanitizer_cov_trace_const_cmp2(uint16_t arg1, uint16_t arg2)
{
TRACE_CMP(KCOV_CMP_SIZE(1) | KCOV_CMP_CONST, arg1, arg2);
}
void
__sanitizer_cov_trace_const_cmp4(uint32_t arg1, uint32_t arg2)
{
TRACE_CMP(KCOV_CMP_SIZE(2) | KCOV_CMP_CONST, arg1, arg2);
}
void
__sanitizer_cov_trace_const_cmp8(uint64_t arg1, uint64_t arg2)
{
TRACE_CMP(KCOV_CMP_SIZE(3) | KCOV_CMP_CONST, arg1, arg2);
}
void
__sanitizer_cov_trace_switch(uint64_t val, uint64_t *cases)
{
struct kcov_dev *kd;
uint64_t i, nbits, ncases, type;
uintptr_t pc;
kd = kd_curproc(KCOV_MODE_TRACE_CMP);
if (kd == NULL)
return;
pc = (uintptr_t)__builtin_return_address(0);
ncases = cases[0];
nbits = cases[1];
switch (nbits) {
case 8:
type = KCOV_CMP_SIZE(0);
break;
case 16:
type = KCOV_CMP_SIZE(1);
break;
case 32:
type = KCOV_CMP_SIZE(2);
break;
case 64:
type = KCOV_CMP_SIZE(3);
break;
default:
return;
}
type |= KCOV_CMP_CONST;
for (i = 0; i < ncases; i++)
trace_cmp(kd, type, cases[i + 2], val, pc);
}
void
kcovattach(int count)
{
struct kcov_cpu *kc;
int error, i;
pool_init(&kr_pool, sizeof(struct kcov_remote), 0, IPL_MPFLOOR, PR_WAITOK,
"kcovpl", NULL);
kc = mallocarray(ncpusfound, sizeof(*kc), M_DEVBUF, M_WAITOK | M_ZERO);
mtx_enter(&kcov_mtx);
for (i = 0; i < ncpusfound; i++) {
kc[i].kc_cpuid = i;
error = kd_init(&kc[i].kc_kd, KCOV_BUF_MAX_NMEMB);
KASSERT(error == 0);
TAILQ_INSERT_TAIL(&kc_list, &kc[i], kc_entry);
}
mtx_leave(&kcov_mtx);
kr_cold = 0;
}
int
kcovopen(dev_t dev, int flag, int mode, struct proc *p)
{
struct kcov_dev *kd;
kd = malloc(sizeof(*kd), M_SUBPROC, M_WAITOK | M_ZERO);
kd->kd_unit = minor(dev);
mtx_enter(&kcov_mtx);
KASSERT(kd_lookup(kd->kd_unit) == NULL);
TAILQ_INSERT_TAIL(&kd_list, kd, kd_entry);
if (kcov_cold)
kcov_cold = 0;
mtx_leave(&kcov_mtx);
return (0);
}
int
kcovclose(dev_t dev, int flag, int mode, struct proc *p)
{
struct kcov_dev *kd;
mtx_enter(&kcov_mtx);
kd = kd_lookup(minor(dev));
if (kd == NULL) {
mtx_leave(&kcov_mtx);
return (ENXIO);
}
TAILQ_REMOVE(&kd_list, kd, kd_entry);
if (kd->kd_state == KCOV_STATE_TRACE && kd->kd_kr == NULL) {
/*
* Another thread is currently using the kcov descriptor,
* postpone freeing to kcov_exit().
*/
kd->kd_state = KCOV_STATE_DYING;
kd->kd_mode = KCOV_MODE_NONE;
} else {
kd_free(kd);
}
mtx_leave(&kcov_mtx);
return (0);
}
int
kcovioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
{
struct kcov_dev *kd;
int mode;
int error = 0;
mtx_enter(&kcov_mtx);
kd = kd_lookup(minor(dev));
if (kd == NULL) {
mtx_leave(&kcov_mtx);
return (ENXIO);
}
switch (cmd) {
case KIOSETBUFSIZE:
error = kd_init(kd, *((unsigned long *)data));
break;
case KIOENABLE:
/* Only one kcov descriptor can be enabled per thread. */
if (p->p_kd != NULL) {
error = EBUSY;
break;
}
if (kd->kd_state != KCOV_STATE_READY) {
error = ENXIO;
break;
}
mode = *((int *)data);
if (mode != KCOV_MODE_TRACE_PC && mode != KCOV_MODE_TRACE_CMP) {
error = EINVAL;
break;
}
kd->kd_state = KCOV_STATE_TRACE;
kd->kd_mode = mode;
/* Remote coverage is mutually exclusive. */
if (kd->kd_kr == NULL)
p->p_kd = kd;
break;
case KIODISABLE:
/* Only the enabled thread may disable itself. */
if ((p->p_kd != kd && kd->kd_kr == NULL)) {
error = EPERM;
break;
}
if (kd->kd_state != KCOV_STATE_TRACE) {
error = ENXIO;
break;
}
kd->kd_state = KCOV_STATE_READY;
kd->kd_mode = KCOV_MODE_NONE;
if (kd->kd_kr != NULL)
kr_barrier(kd->kd_kr);
p->p_kd = NULL;
break;
case KIOREMOTEATTACH:
error = kcov_remote_attach(kd,
(struct kio_remote_attach *)data);
break;
default:
error = ENOTTY;
}
mtx_leave(&kcov_mtx);
return (error);
}
paddr_t
kcovmmap(dev_t dev, off_t offset, int prot)
{
struct kcov_dev *kd;
paddr_t pa = -1;
vaddr_t va;
mtx_enter(&kcov_mtx);
kd = kd_lookup(minor(dev));
if (kd == NULL)
goto out;
if (offset < 0 || offset >= kd->kd_nmemb * KCOV_BUF_MEMB_SIZE)
goto out;
va = (vaddr_t)kd->kd_buf + offset;
if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
pa = -1;
out:
mtx_leave(&kcov_mtx);
return (pa);
}
void
kcov_exit(struct proc *p)
{
struct kcov_dev *kd;
mtx_enter(&kcov_mtx);
kd = p->p_kd;
if (kd == NULL) {
mtx_leave(&kcov_mtx);
return;
}
if (kd->kd_state == KCOV_STATE_DYING) {
p->p_kd = NULL;
kd_free(kd);
} else {
kd->kd_state = KCOV_STATE_READY;
kd->kd_mode = KCOV_MODE_NONE;
if (kd->kd_kr != NULL)
kr_barrier(kd->kd_kr);
p->p_kd = NULL;
}
mtx_leave(&kcov_mtx);
}
/*
* Returns non-zero if the given vnode refers to a kcov device.
*/
int
kcov_vnode(struct vnode *vp)
{
return (vp->v_type == VCHR &&
cdevsw[major(vp->v_rdev)].d_open == kcovopen);
}
struct kcov_dev *
kd_lookup(int unit)
{
struct kcov_dev *kd;
MUTEX_ASSERT_LOCKED(&kcov_mtx);
TAILQ_FOREACH(kd, &kd_list, kd_entry) {
if (kd->kd_unit == unit)
return (kd);
}
return (NULL);
}
void
kd_copy(struct kcov_dev *dst, struct kcov_dev *src)
{
uint64_t idx, nmemb;
int stride;
MUTEX_ASSERT_LOCKED(&kcov_mtx);
KASSERT(dst->kd_mode == src->kd_mode);
nmemb = src->kd_buf[0];
if (nmemb == 0)
return;
stride = src->kd_mode == KCOV_MODE_TRACE_CMP ? KCOV_STRIDE_TRACE_CMP :
KCOV_STRIDE_TRACE_PC;
idx = kd_claim(dst, stride, nmemb);
if (idx == 0)
return;
memcpy(&dst->kd_buf[idx], &src->kd_buf[1],
stride * nmemb * KCOV_BUF_MEMB_SIZE);
}
int
kd_init(struct kcov_dev *kd, unsigned long nmemb)
{
void *buf;
size_t size;
int error;
KASSERT(kd->kd_buf == NULL);
if (kd->kd_state != KCOV_STATE_NONE)
return (EBUSY);
if (nmemb == 0 || nmemb > KCOV_BUF_MAX_NMEMB)
return (EINVAL);
size = roundup(nmemb * KCOV_BUF_MEMB_SIZE, PAGE_SIZE);
mtx_leave(&kcov_mtx);
buf = km_alloc(size, &kv_any, &kp_zero, &kd_waitok);
if (buf == NULL) {
error = ENOMEM;
goto err;
}
/* km_malloc() can sleep, ensure the race was won. */
if (kd->kd_state != KCOV_STATE_NONE) {
error = EBUSY;
goto err;
}
mtx_enter(&kcov_mtx);
kd->kd_buf = buf;
/* The first element is reserved to hold the number of used elements. */
kd->kd_nmemb = nmemb - 1;
kd->kd_size = size;
kd->kd_state = KCOV_STATE_READY;
return (0);
err:
if (buf != NULL)
km_free(buf, size, &kv_any, &kp_zero);
mtx_enter(&kcov_mtx);
return (error);
}
void
kd_free(struct kcov_dev *kd)
{
struct kcov_remote *kr;
MUTEX_ASSERT_LOCKED(&kcov_mtx);
kr = kd->kd_kr;
if (kr != NULL)
kcov_remote_detach(kd, kr);
if (kd->kd_buf != NULL) {
mtx_leave(&kcov_mtx);
km_free(kd->kd_buf, kd->kd_size, &kv_any, &kp_zero);
mtx_enter(&kcov_mtx);
}
free(kd, M_SUBPROC, sizeof(*kd));
}
static struct kcov_dev *
kd_curproc(int mode)
{
struct cpu_info *ci;
struct kcov_dev *kd;
/*
* Do not trace before kcovopen() has been called at least once.
* At this point, all secondary CPUs have booted and accessing curcpu()
* is safe.
*/
if (__predict_false(kcov_cold))
return (NULL);
ci = curcpu();
kd = ci->ci_curproc->p_kd;
if (__predict_true(kd == NULL) || kd->kd_mode != mode)
return (NULL);
/*
* Do not trace if the kernel has panicked. This could happen if curproc
* had kcov enabled while panicking.
*/
if (__predict_false(panicstr || db_active))
return (NULL);
/* Do not trace in interrupt context unless this is a remote section. */
if (inintr(ci) && kd->kd_intr == 0)
return (NULL);
return (kd);
}
static struct kcov_cpu *
kd_curcpu(void)
{
struct kcov_cpu *kc;
unsigned int cpuid = cpu_number();
TAILQ_FOREACH(kc, &kc_list, kc_entry) {
if (kc->kc_cpuid == cpuid)
return (kc);
}
return (NULL);
}
/*
* Claim stride times nmemb number of elements in the coverage buffer. Returns
* the index of the first claimed element. If the claim cannot be fulfilled,
* zero is returned.
*/
static uint64_t
kd_claim(struct kcov_dev *kd, int stride, int nmemb)
{
uint64_t idx, was;
idx = kd->kd_buf[0];
for (;;) {
if (stride * (idx + nmemb) > kd->kd_nmemb)
return (0);
was = atomic_cas_ulong(&kd->kd_buf[0], idx, idx + nmemb);
if (was == idx)
return (idx * stride + 1);
idx = was;
}
}
void
kcov_remote_enter(int subsystem, void *id)
{
struct cpu_info *ci;
struct kcov_cpu *kc;
struct kcov_dev *kd;
struct kcov_remote *kr;
struct proc *p;
mtx_enter(&kcov_mtx);
kr = kr_lookup(subsystem, id);
if (kr == NULL || kr->kr_state != KCOV_STATE_READY)
goto out;
kd = kr->kr_kd;
if (kd == NULL || kd->kd_state != KCOV_STATE_TRACE)
goto out;
ci = curcpu();
p = ci->ci_curproc;
if (inintr(ci)) {
/*
* XXX we only expect to be called from softclock interrupts at
* this point.
*/
kc = kd_curcpu();
if (kc == NULL || kc->kc_kd.kd_intr == 1)
goto out;
kc->kc_kd.kd_state = KCOV_STATE_TRACE;
kc->kc_kd.kd_mode = kd->kd_mode;
kc->kc_kd.kd_intr = 1;
kc->kc_kd_save = p->p_kd;
kd = &kc->kc_kd;
/* Reset coverage buffer. */
kd->kd_buf[0] = 0;
} else {
KASSERT(p->p_kd == NULL);
}
kr->kr_nsections++;
p->p_kd = kd;
out:
mtx_leave(&kcov_mtx);
}
void
kcov_remote_leave(int subsystem, void *id)
{
struct cpu_info *ci;
struct kcov_cpu *kc;
struct kcov_remote *kr;
struct proc *p;
mtx_enter(&kcov_mtx);
ci = curcpu();
p = ci->ci_curproc;
if (p->p_kd == NULL)
goto out;
kr = kr_lookup(subsystem, id);
if (kr == NULL)
goto out;
if (inintr(ci)) {
kc = kd_curcpu();
if (kc == NULL || kc->kc_kd.kd_intr == 0)
goto out;
/*
* Stop writing to the coverage buffer associated with this CPU
* before copying its contents.
*/
p->p_kd = kc->kc_kd_save;
kc->kc_kd_save = NULL;
kd_copy(kr->kr_kd, &kc->kc_kd);
kc->kc_kd.kd_state = KCOV_STATE_READY;
kc->kc_kd.kd_mode = KCOV_MODE_NONE;
kc->kc_kd.kd_intr = 0;
} else {
KASSERT(p->p_kd == kr->kr_kd);
p->p_kd = NULL;
}
if (--kr->kr_nsections == 0)
wakeup(kr);
out:
mtx_leave(&kcov_mtx);
}
void
kcov_remote_register(int subsystem, void *id)
{
mtx_enter(&kcov_mtx);
kcov_remote_register_locked(subsystem, id);
mtx_leave(&kcov_mtx);
}
void
kcov_remote_unregister(int subsystem, void *id)
{
struct kcov_remote *kr;
mtx_enter(&kcov_mtx);
kr = kr_lookup(subsystem, id);
if (kr != NULL)
kr_free(kr);
mtx_leave(&kcov_mtx);
}
struct kcov_remote *
kcov_remote_register_locked(int subsystem, void *id)
{
struct kcov_remote *kr, *tmp;
/* Do not allow registrations before the pool is initialized. */
KASSERT(kr_cold == 0);
/*
* Temporarily release the mutex since the allocation could end up
* sleeping.
*/
mtx_leave(&kcov_mtx);
kr = pool_get(&kr_pool, PR_WAITOK | PR_ZERO);
kr->kr_subsystem = subsystem;
kr->kr_id = id;
kr->kr_state = KCOV_STATE_NONE;
mtx_enter(&kcov_mtx);
for (;;) {
tmp = kr_lookup(subsystem, id);
if (tmp == NULL)
break;
if (tmp->kr_state != KCOV_STATE_DYING) {
pool_put(&kr_pool, kr);
return (NULL);
}
/*
* The remote could already be deregistered while another
* thread is currently inside a kcov remote section.
*/
msleep_nsec(tmp, &kcov_mtx, PWAIT, "kcov", INFSLP);
}
TAILQ_INSERT_TAIL(&kr_list, kr, kr_entry);
return (kr);
}
int
kcov_remote_attach(struct kcov_dev *kd, struct kio_remote_attach *arg)
{
struct kcov_remote *kr = NULL;
MUTEX_ASSERT_LOCKED(&kcov_mtx);
if (kd->kd_state != KCOV_STATE_READY)
return (ENXIO);
if (arg->subsystem == KCOV_REMOTE_COMMON) {
kr = kcov_remote_register_locked(KCOV_REMOTE_COMMON,
curproc->p_p);
if (kr == NULL)
return (EBUSY);
} else {
return (EINVAL);
}
kr->kr_state = KCOV_STATE_READY;
kr->kr_kd = kd;
kd->kd_kr = kr;
return (0);
}
void
kcov_remote_detach(struct kcov_dev *kd, struct kcov_remote *kr)
{
MUTEX_ASSERT_LOCKED(&kcov_mtx);
KASSERT(kd == kr->kr_kd);
if (kr->kr_subsystem == KCOV_REMOTE_COMMON) {
kr_free(kr);
} else {
kr->kr_state = KCOV_STATE_NONE;
kr_barrier(kr);
kd->kd_kr = NULL;
kr->kr_kd = NULL;
}
}
void
kr_free(struct kcov_remote *kr)
{
MUTEX_ASSERT_LOCKED(&kcov_mtx);
kr->kr_state = KCOV_STATE_DYING;
kr_barrier(kr);
if (kr->kr_kd != NULL)
kr->kr_kd->kd_kr = NULL;
kr->kr_kd = NULL;
TAILQ_REMOVE(&kr_list, kr, kr_entry);
/* Notify thread(s) waiting in kcov_remote_register(). */
wakeup(kr);
pool_put(&kr_pool, kr);
}
void
kr_barrier(struct kcov_remote *kr)
{
MUTEX_ASSERT_LOCKED(&kcov_mtx);
while (kr->kr_nsections > 0)
msleep_nsec(kr, &kcov_mtx, PWAIT, "kcovbar", INFSLP);
}
struct kcov_remote *
kr_lookup(int subsystem, void *id)
{
struct kcov_remote *kr;
MUTEX_ASSERT_LOCKED(&kcov_mtx);
TAILQ_FOREACH(kr, &kr_list, kr_entry) {
if (kr->kr_subsystem == subsystem && kr->kr_id == id)
return (kr);
}
return (NULL);
}
|