summaryrefslogtreecommitdiff
path: root/sys/dev/pci/drm/drm_linux.c
blob: e478bbdeff6e8fd38d8bb4d7d92dfadb762c0a2c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
/*	$OpenBSD: drm_linux.c,v 1.79 2021/04/11 15:30:51 kettenis Exp $	*/
/*
 * Copyright (c) 2013 Jonathan Gray <jsg@openbsd.org>
 * Copyright (c) 2015, 2016 Mark Kettenis <kettenis@openbsd.org>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <sys/types.h>
#include <sys/systm.h>
#include <sys/param.h>
#include <sys/event.h>
#include <sys/filedesc.h>
#include <sys/kthread.h>
#include <sys/stat.h>
#include <sys/unistd.h>
#include <sys/proc.h>
#include <sys/pool.h>
#include <sys/fcntl.h>

#include <dev/pci/ppbreg.h>

#include <linux/dma-buf.h>
#include <linux/mod_devicetable.h>
#include <linux/acpi.h>
#include <linux/pagevec.h>
#include <linux/dma-fence-array.h>
#include <linux/interrupt.h>
#include <linux/err.h>
#include <linux/idr.h>
#include <linux/scatterlist.h>
#include <linux/i2c.h>
#include <linux/pci.h>
#include <linux/notifier.h>
#include <linux/backlight.h>
#include <linux/shrinker.h>
#include <linux/fb.h>
#include <linux/xarray.h>
#include <linux/interval_tree.h>

#include <drm/drm_device.h>
#include <drm/drm_print.h>

#if defined(__amd64__) || defined(__i386__)
#include "bios.h"
#endif

void
tasklet_run(void *arg)
{
	struct tasklet_struct *ts = arg;

	clear_bit(TASKLET_STATE_SCHED, &ts->state);
	if (tasklet_trylock(ts)) {
		if (!atomic_read(&ts->count))
			ts->func(ts->data);
		tasklet_unlock(ts);
	}
}

/* 32 bit powerpc lacks 64 bit atomics */
#if defined(__powerpc__) && !defined(__powerpc64__)
struct mutex atomic64_mtx = MUTEX_INITIALIZER(IPL_HIGH);
#endif

struct mutex sch_mtx = MUTEX_INITIALIZER(IPL_SCHED);
volatile struct proc *sch_proc;
volatile void *sch_ident;
int sch_priority;

void
set_current_state(int state)
{
	if (sch_ident != curproc)
		mtx_enter(&sch_mtx);
	MUTEX_ASSERT_LOCKED(&sch_mtx);
	sch_ident = sch_proc = curproc;
	sch_priority = state;
}

void
__set_current_state(int state)
{
	KASSERT(state == TASK_RUNNING);
	if (sch_ident == curproc) {
		MUTEX_ASSERT_LOCKED(&sch_mtx);
		sch_ident = NULL;
		mtx_leave(&sch_mtx);
	}
}

void
schedule(void)
{
	schedule_timeout(MAX_SCHEDULE_TIMEOUT);
}

long
schedule_timeout(long timeout)
{
	struct sleep_state sls;
	unsigned long deadline;
	int wait, spl, timo = 0;

	MUTEX_ASSERT_LOCKED(&sch_mtx);
	KASSERT(!cold);

	if (timeout != MAX_SCHEDULE_TIMEOUT)
		timo = timeout;
	sleep_setup(&sls, sch_ident, sch_priority, "schto", timo);

	wait = (sch_proc == curproc && timeout > 0);

	spl = MUTEX_OLDIPL(&sch_mtx);
	MUTEX_OLDIPL(&sch_mtx) = splsched();
	mtx_leave(&sch_mtx);

	if (timeout != MAX_SCHEDULE_TIMEOUT)
		deadline = jiffies + timeout;
	sleep_finish(&sls, wait);
	if (timeout != MAX_SCHEDULE_TIMEOUT)
		timeout = deadline - jiffies;

	mtx_enter(&sch_mtx);
	MUTEX_OLDIPL(&sch_mtx) = spl;
	sch_ident = curproc;

	return timeout > 0 ? timeout : 0;
}

long
schedule_timeout_uninterruptible(long timeout)
{
	tsleep(curproc, PWAIT, "schtou", timeout);
	return 0;
}

int
wake_up_process(struct proc *p)
{
	atomic_cas_ptr(&sch_proc, p, NULL);
	return wakeup_proc(p, NULL);
}

void
flush_workqueue(struct workqueue_struct *wq)
{
	if (cold)
		return;

	if (wq)
		taskq_barrier((struct taskq *)wq);
}

bool
flush_work(struct work_struct *work)
{
	if (cold)
		return false;

	if (work->tq)
		taskq_barrier(work->tq);
	return false;
}

bool
flush_delayed_work(struct delayed_work *dwork)
{
	bool ret = false;

	if (cold)
		return false;

	while (timeout_pending(&dwork->to)) {
		tsleep(dwork, PWAIT, "fldwto", 1);
		ret = true;
	}

	if (dwork->tq)
		taskq_barrier(dwork->tq);
	return ret;
}

struct kthread {
	int (*func)(void *);
	void *data;
	struct proc *proc;
	volatile u_int flags;
#define KTHREAD_SHOULDSTOP	0x0000001
#define KTHREAD_STOPPED		0x0000002
#define KTHREAD_SHOULDPARK	0x0000004
#define KTHREAD_PARKED		0x0000008
	LIST_ENTRY(kthread) next;
};

LIST_HEAD(, kthread) kthread_list = LIST_HEAD_INITIALIZER(kthread_list);

void
kthread_func(void *arg)
{
	struct kthread *thread = arg;
	int ret;

	ret = thread->func(thread->data);
	thread->flags |= KTHREAD_STOPPED;
	wakeup(thread);
	kthread_exit(ret);
}

struct proc *
kthread_run(int (*func)(void *), void *data, const char *name)
{
	struct kthread *thread;

	thread = malloc(sizeof(*thread), M_DRM, M_WAITOK);
	thread->func = func;
	thread->data = data;
	thread->flags = 0;
	
	if (kthread_create(kthread_func, thread, &thread->proc, name)) {
		free(thread, M_DRM, sizeof(*thread));
		return ERR_PTR(-ENOMEM);
	}

	LIST_INSERT_HEAD(&kthread_list, thread, next);
	return thread->proc;
}

struct kthread *
kthread_lookup(struct proc *p)
{
	struct kthread *thread;

	LIST_FOREACH(thread, &kthread_list, next) {
		if (thread->proc == p)
			break;
	}
	KASSERT(thread);

	return thread;
}

int
kthread_should_park(void)
{
	struct kthread *thread = kthread_lookup(curproc);
	return (thread->flags & KTHREAD_SHOULDPARK);
}

void
kthread_parkme(void)
{
	struct kthread *thread = kthread_lookup(curproc);

	while (thread->flags & KTHREAD_SHOULDPARK) {
		thread->flags |= KTHREAD_PARKED;
		wakeup(thread);
		tsleep_nsec(thread, PPAUSE, "parkme", INFSLP);
		thread->flags &= ~KTHREAD_PARKED;
	}
}

void
kthread_park(struct proc *p)
{
	struct kthread *thread = kthread_lookup(p);

	while ((thread->flags & KTHREAD_PARKED) == 0) {
		thread->flags |= KTHREAD_SHOULDPARK;
		wake_up_process(thread->proc);
		tsleep_nsec(thread, PPAUSE, "park", INFSLP);
	}
}

void
kthread_unpark(struct proc *p)
{
	struct kthread *thread = kthread_lookup(p);

	thread->flags &= ~KTHREAD_SHOULDPARK;
	wakeup(thread);
}

int
kthread_should_stop(void)
{
	struct kthread *thread = kthread_lookup(curproc);
	return (thread->flags & KTHREAD_SHOULDSTOP);
}

void
kthread_stop(struct proc *p)
{
	struct kthread *thread = kthread_lookup(p);

	while ((thread->flags & KTHREAD_STOPPED) == 0) {
		thread->flags |= KTHREAD_SHOULDSTOP;
		kthread_unpark(p);
		wake_up_process(thread->proc);
		tsleep_nsec(thread, PPAUSE, "stop", INFSLP);
	}
	LIST_REMOVE(thread, next);
	free(thread, M_DRM, sizeof(*thread));
}

#if NBIOS > 0
extern char smbios_board_vendor[];
extern char smbios_board_prod[];
extern char smbios_board_serial[];
#endif

bool
dmi_match(int slot, const char *str)
{
	switch (slot) {
	case DMI_SYS_VENDOR:
		if (hw_vendor != NULL &&
		    !strcmp(hw_vendor, str))
			return true;
		break;
	case DMI_PRODUCT_NAME:
		if (hw_prod != NULL &&
		    !strcmp(hw_prod, str))
			return true;
		break;
	case DMI_PRODUCT_VERSION:
		if (hw_ver != NULL &&
		    !strcmp(hw_ver, str))
			return true;
		break;
#if NBIOS > 0
	case DMI_BOARD_VENDOR:
		if (strcmp(smbios_board_vendor, str) == 0)
			return true;
		break;
	case DMI_BOARD_NAME:
		if (strcmp(smbios_board_prod, str) == 0)
			return true;
		break;
	case DMI_BOARD_SERIAL:
		if (strcmp(smbios_board_serial, str) == 0)
			return true;
		break;
#else
	case DMI_BOARD_VENDOR:
		if (hw_vendor != NULL &&
		    !strcmp(hw_vendor, str))
			return true;
		break;
	case DMI_BOARD_NAME:
		if (hw_prod != NULL &&
		    !strcmp(hw_prod, str))
			return true;
		break;
#endif
	case DMI_NONE:
	default:
		return false;
	}

	return false;
}

static bool
dmi_found(const struct dmi_system_id *dsi)
{
	int i, slot;

	for (i = 0; i < nitems(dsi->matches); i++) {
		slot = dsi->matches[i].slot;
		if (slot == DMI_NONE)
			break;
		if (!dmi_match(slot, dsi->matches[i].substr))
			return false;
	}

	return true;
}

const struct dmi_system_id *
dmi_first_match(const struct dmi_system_id *sysid)
{
	const struct dmi_system_id *dsi;

	for (dsi = sysid; dsi->matches[0].slot != 0 ; dsi++) {
		if (dmi_found(dsi))
			return dsi;
	}

	return NULL;
}

#if NBIOS > 0
extern char smbios_bios_date[];
#endif

const char *
dmi_get_system_info(int slot)
{
	WARN_ON(slot != DMI_BIOS_DATE);
#if NBIOS > 0
	if (slot == DMI_BIOS_DATE)
		return smbios_bios_date;
#endif
	return NULL;
}

int
dmi_check_system(const struct dmi_system_id *sysid)
{
	const struct dmi_system_id *dsi;
	int num = 0;

	for (dsi = sysid; dsi->matches[0].slot != 0 ; dsi++) {
		if (dmi_found(dsi)) {
			num++;
			if (dsi->callback && dsi->callback(dsi))
				break;
		}
	}
	return (num);
}

struct vm_page *
alloc_pages(unsigned int gfp_mask, unsigned int order)
{
	int flags = (gfp_mask & M_NOWAIT) ? UVM_PLA_NOWAIT : UVM_PLA_WAITOK;
	struct uvm_constraint_range *constraint = &no_constraint;
	struct pglist mlist;

	if (gfp_mask & M_CANFAIL)
		flags |= UVM_PLA_FAILOK;
	if (gfp_mask & M_ZERO)
		flags |= UVM_PLA_ZERO;
	if (gfp_mask & __GFP_DMA32)
		constraint = &dma_constraint;

	TAILQ_INIT(&mlist);
	if (uvm_pglistalloc(PAGE_SIZE << order, constraint->ucr_low,
	    constraint->ucr_high, PAGE_SIZE, 0, &mlist, 1, flags))
		return NULL;
	return TAILQ_FIRST(&mlist);
}

void
__free_pages(struct vm_page *page, unsigned int order)
{
	struct pglist mlist;
	int i;
	
	TAILQ_INIT(&mlist);
	for (i = 0; i < (1 << order); i++)
		TAILQ_INSERT_TAIL(&mlist, &page[i], pageq);
	uvm_pglistfree(&mlist);
}

void
__pagevec_release(struct pagevec *pvec)
{
	struct pglist mlist;
	int i;

	TAILQ_INIT(&mlist);
	for (i = 0; i < pvec->nr; i++)
		TAILQ_INSERT_TAIL(&mlist, pvec->pages[i], pageq);
	uvm_pglistfree(&mlist);
	pagevec_reinit(pvec);
}

void *
kmap(struct vm_page *pg)
{
	vaddr_t va;

#if defined (__HAVE_PMAP_DIRECT)
	va = pmap_map_direct(pg);
#else
	va = uvm_km_valloc_wait(phys_map, PAGE_SIZE);
	pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), PROT_READ | PROT_WRITE);
	pmap_update(pmap_kernel());
#endif
	return (void *)va;
}

void
kunmap_va(void *addr)
{
	vaddr_t va = (vaddr_t)addr;

#if defined (__HAVE_PMAP_DIRECT)
	pmap_unmap_direct(va);
#else
	pmap_kremove(va, PAGE_SIZE);
	pmap_update(pmap_kernel());
	uvm_km_free_wakeup(phys_map, va, PAGE_SIZE);
#endif
}

void *
vmap(struct vm_page **pages, unsigned int npages, unsigned long flags,
     pgprot_t prot)
{
	vaddr_t va;
	paddr_t pa;
	int i;

	va = uvm_km_valloc(kernel_map, PAGE_SIZE * npages);
	if (va == 0)
		return NULL;
	for (i = 0; i < npages; i++) {
		pa = VM_PAGE_TO_PHYS(pages[i]) | prot;
		pmap_enter(pmap_kernel(), va + (i * PAGE_SIZE), pa,
		    PROT_READ | PROT_WRITE,
		    PROT_READ | PROT_WRITE | PMAP_WIRED);
		pmap_update(pmap_kernel());
	}

	return (void *)va;
}

void
vunmap(void *addr, size_t size)
{
	vaddr_t va = (vaddr_t)addr;

	pmap_remove(pmap_kernel(), va, va + size);
	pmap_update(pmap_kernel());
	uvm_km_free(kernel_map, va, size);
}

void
print_hex_dump(const char *level, const char *prefix_str, int prefix_type,
    int rowsize, int groupsize, const void *buf, size_t len, bool ascii)
{
	const uint8_t *cbuf = buf;
	int i;

	for (i = 0; i < len; i++) {
		if ((i % rowsize) == 0)
			printf("%s", prefix_str);
		printf("%02x", cbuf[i]);
		if ((i % rowsize) == (rowsize - 1))
			printf("\n");
		else
			printf(" ");
	}
}

void *
memchr_inv(const void *s, int c, size_t n)
{
	if (n != 0) {
		const unsigned char *p = s;

		do {
			if (*p++ != (unsigned char)c)
				return ((void *)(p - 1));
		} while (--n != 0);
	}
	return (NULL);
}

int
panic_cmp(struct rb_node *a, struct rb_node *b)
{
	panic(__func__);
}

#undef RB_ROOT
#define RB_ROOT(head)	(head)->rbh_root

RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);

/*
 * This is a fairly minimal implementation of the Linux "idr" API.  It
 * probably isn't very efficient, and defenitely isn't RCU safe.  The
 * pre-load buffer is global instead of per-cpu; we rely on the kernel
 * lock to make this work.  We do randomize our IDs in order to make
 * them harder to guess.
 */

int idr_cmp(struct idr_entry *, struct idr_entry *);
SPLAY_PROTOTYPE(idr_tree, idr_entry, entry, idr_cmp);

struct pool idr_pool;
struct idr_entry *idr_entry_cache;

void
idr_init(struct idr *idr)
{
	SPLAY_INIT(&idr->tree);
}

void
idr_destroy(struct idr *idr)
{
	struct idr_entry *id;

	while ((id = SPLAY_MIN(idr_tree, &idr->tree))) {
		SPLAY_REMOVE(idr_tree, &idr->tree, id);
		pool_put(&idr_pool, id);
	}
}

void
idr_preload(unsigned int gfp_mask)
{
	int flags = (gfp_mask & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK;

	KERNEL_ASSERT_LOCKED();

	if (idr_entry_cache == NULL)
		idr_entry_cache = pool_get(&idr_pool, flags);
}

int
idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
{
	int flags = (gfp_mask & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK;
	struct idr_entry *id;
	int begin;

	KERNEL_ASSERT_LOCKED();

	if (idr_entry_cache) {
		id = idr_entry_cache;
		idr_entry_cache = NULL;
	} else {
		id = pool_get(&idr_pool, flags);
		if (id == NULL)
			return -ENOMEM;
	}

	if (end <= 0)
		end = INT_MAX;

#ifdef notyet
	id->id = begin = start + arc4random_uniform(end - start);
#else
	id->id = begin = start;
#endif
	while (SPLAY_INSERT(idr_tree, &idr->tree, id)) {
		if (id->id == end)
			id->id = start;
		else
			id->id++;
		if (id->id == begin) {
			pool_put(&idr_pool, id);
			return -ENOSPC;
		}
	}
	id->ptr = ptr;
	return id->id;
}

void *
idr_replace(struct idr *idr, void *ptr, unsigned long id)
{
	struct idr_entry find, *res;
	void *old;

	find.id = id;
	res = SPLAY_FIND(idr_tree, &idr->tree, &find);
	if (res == NULL)
		return ERR_PTR(-ENOENT);
	old = res->ptr;
	res->ptr = ptr;
	return old;
}

void *
idr_remove(struct idr *idr, unsigned long id)
{
	struct idr_entry find, *res;
	void *ptr = NULL;

	find.id = id;
	res = SPLAY_FIND(idr_tree, &idr->tree, &find);
	if (res) {
		SPLAY_REMOVE(idr_tree, &idr->tree, res);
		ptr = res->ptr;
		pool_put(&idr_pool, res);
	}
	return ptr;
}

void *
idr_find(struct idr *idr, unsigned long id)
{
	struct idr_entry find, *res;

	find.id = id;
	res = SPLAY_FIND(idr_tree, &idr->tree, &find);
	if (res == NULL)
		return NULL;
	return res->ptr;
}

void *
idr_get_next(struct idr *idr, int *id)
{
	struct idr_entry *res;

	SPLAY_FOREACH(res, idr_tree, &idr->tree) {
		if (res->id >= *id) {
			*id = res->id;
			return res->ptr;
		}
	}

	return NULL;
}

int
idr_for_each(struct idr *idr, int (*func)(int, void *, void *), void *data)
{
	struct idr_entry *id;
	int ret;

	SPLAY_FOREACH(id, idr_tree, &idr->tree) {
		ret = func(id->id, id->ptr, data);
		if (ret)
			return ret;
	}

	return 0;
}

int
idr_cmp(struct idr_entry *a, struct idr_entry *b)
{
	return (a->id < b->id ? -1 : a->id > b->id);
}

SPLAY_GENERATE(idr_tree, idr_entry, entry, idr_cmp);

void
ida_init(struct ida *ida)
{
	idr_init(&ida->idr);
}

void
ida_destroy(struct ida *ida)
{
	idr_destroy(&ida->idr);
}

int
ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
    gfp_t gfp_mask)
{
	return idr_alloc(&ida->idr, NULL, start, end, gfp_mask);
}

void
ida_simple_remove(struct ida *ida, unsigned int id)
{
	idr_remove(&ida->idr, id);
}

int
xarray_cmp(struct xarray_entry *a, struct xarray_entry *b)
{
	return (a->id < b->id ? -1 : a->id > b->id);
}

SPLAY_PROTOTYPE(xarray_tree, xarray_entry, entry, xarray_cmp);
struct pool xa_pool;
SPLAY_GENERATE(xarray_tree, xarray_entry, entry, xarray_cmp);

void
xa_init_flags(struct xarray *xa, gfp_t flags)
{
	static int initialized;

	if (!initialized) {
		pool_init(&xa_pool, sizeof(struct xarray_entry), 0, IPL_TTY, 0,
		    "xapl", NULL);
		initialized = 1;
	}
	SPLAY_INIT(&xa->xa_tree);
}

void
xa_destroy(struct xarray *xa)
{
	struct xarray_entry *id;

	while ((id = SPLAY_MIN(xarray_tree, &xa->xa_tree))) {
		SPLAY_REMOVE(xarray_tree, &xa->xa_tree, id);
		pool_put(&xa_pool, id);
	}
}

int
xa_alloc(struct xarray *xa, u32 *id, void *entry, int limit, gfp_t gfp)
{
	struct xarray_entry *xid;
	int flags = (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK;
	int start = (xa->xa_flags & XA_FLAGS_ALLOC1) ? 1 : 0;
	int begin;

	xid = pool_get(&xa_pool, flags);
	if (xid == NULL)
		return -ENOMEM;

	if (limit <= 0)
		limit = INT_MAX;

	xid->id = begin = start;

	while (SPLAY_INSERT(xarray_tree, &xa->xa_tree, xid)) {
		if (xid->id == limit)
			xid->id = start;
		else
			xid->id++;
		if (xid->id == begin) {
			pool_put(&xa_pool, xid);
			return -EBUSY;
		}
	}
	xid->ptr = entry;
	*id = xid->id;
	return 0;
}

void *
xa_erase(struct xarray *xa, unsigned long index)
{
	struct xarray_entry find, *res;
	void *ptr = NULL;

	find.id = index;
	res = SPLAY_FIND(xarray_tree, &xa->xa_tree, &find);
	if (res) {
		SPLAY_REMOVE(xarray_tree, &xa->xa_tree, res);
		ptr = res->ptr;
		pool_put(&xa_pool, res);
	}
	return ptr;
}

void *
xa_load(struct xarray *xa, unsigned long index)
{
	struct xarray_entry find, *res;

	find.id = index;
	res = SPLAY_FIND(xarray_tree, &xa->xa_tree, &find);
	if (res == NULL)
		return NULL;
	return res->ptr;
}

void *
xa_get_next(struct xarray *xa, unsigned long *index)
{
	struct xarray_entry *res;

	SPLAY_FOREACH(res, xarray_tree, &xa->xa_tree) {
		if (res->id >= *index) {
			*index = res->id;
			return res->ptr;
		}
	}

	return NULL;
}

int
sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
{
	table->sgl = mallocarray(nents, sizeof(struct scatterlist),
	    M_DRM, gfp_mask);
	if (table->sgl == NULL)
		return -ENOMEM;
	table->nents = table->orig_nents = nents;
	return 0;
}

void
sg_free_table(struct sg_table *table)
{
	free(table->sgl, M_DRM,
	    table->orig_nents * sizeof(struct scatterlist));
	table->sgl = NULL;
}

size_t
sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
    const void *buf, size_t buflen)
{
	panic("%s", __func__);
}

int
i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
{
	void *cmd = NULL;
	int cmdlen = 0;
	int err, ret = 0;
	int op;

	iic_acquire_bus(&adap->ic, 0);

	while (num > 2) {
		op = (msgs->flags & I2C_M_RD) ? I2C_OP_READ : I2C_OP_WRITE;
		err = iic_exec(&adap->ic, op, msgs->addr, NULL, 0,
		    msgs->buf, msgs->len, 0);
		if (err) {
			ret = -err;
			goto fail;
		}
		msgs++;
		num--;
		ret++;
	}

	if (num > 1) {
		cmd = msgs->buf;
		cmdlen = msgs->len;
		msgs++;
		num--;
		ret++;
	}

	op = (msgs->flags & I2C_M_RD) ?
	    I2C_OP_READ_WITH_STOP : I2C_OP_WRITE_WITH_STOP;
	err = iic_exec(&adap->ic, op, msgs->addr, cmd, cmdlen,
	    msgs->buf, msgs->len, 0);
	if (err) {
		ret = -err;
		goto fail;
	}
	msgs++;
	ret++;

fail:
	iic_release_bus(&adap->ic, 0);

	return ret;
}

int
i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
{
	int ret;

	if (adap->lock_ops)
		adap->lock_ops->lock_bus(adap, 0);

	if (adap->algo)
		ret = adap->algo->master_xfer(adap, msgs, num);
	else
		ret = i2c_master_xfer(adap, msgs, num);

	if (adap->lock_ops)
		adap->lock_ops->unlock_bus(adap, 0);

	return ret;
}

int
i2c_bb_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
{
	struct i2c_algo_bit_data *algo = adap->algo_data;
	struct i2c_adapter bb;

	memset(&bb, 0, sizeof(bb));
	bb.ic = algo->ic;
	bb.retries = adap->retries;
	return i2c_master_xfer(&bb, msgs, num);
}

uint32_t
i2c_bb_functionality(struct i2c_adapter *adap)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}

struct i2c_algorithm i2c_bit_algo = {
	.master_xfer = i2c_bb_master_xfer,
	.functionality = i2c_bb_functionality
};

int
i2c_bit_add_bus(struct i2c_adapter *adap)
{
	adap->algo = &i2c_bit_algo;
	adap->retries = 3;

	return 0;
}

#if defined(__amd64__) || defined(__i386__)

/*
 * This is a minimal implementation of the Linux vga_get/vga_put
 * interface.  In all likelyhood, it will only work for inteldrm(4) as
 * it assumes that if there is another active VGA device in the
 * system, it is sitting behind a PCI bridge.
 */

extern int pci_enumerate_bus(struct pci_softc *,
    int (*)(struct pci_attach_args *), struct pci_attach_args *);

pcitag_t vga_bridge_tag;
int vga_bridge_disabled;

int
vga_disable_bridge(struct pci_attach_args *pa)
{
	pcireg_t bhlc, bc;

	if (pa->pa_domain != 0)
		return 0;

	bhlc = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_BHLC_REG);
	if (PCI_HDRTYPE_TYPE(bhlc) != 1)
		return 0;

	bc = pci_conf_read(pa->pa_pc, pa->pa_tag, PPB_REG_BRIDGECONTROL);
	if ((bc & PPB_BC_VGA_ENABLE) == 0)
		return 0;
	bc &= ~PPB_BC_VGA_ENABLE;
	pci_conf_write(pa->pa_pc, pa->pa_tag, PPB_REG_BRIDGECONTROL, bc);

	vga_bridge_tag = pa->pa_tag;
	vga_bridge_disabled = 1;

	return 1;
}

void
vga_get_uninterruptible(struct pci_dev *pdev, int rsrc)
{
	KASSERT(pdev->pci->sc_bridgetag == NULL);
	pci_enumerate_bus(pdev->pci, vga_disable_bridge, NULL);
}

void
vga_put(struct pci_dev *pdev, int rsrc)
{
	pcireg_t bc;

	if (!vga_bridge_disabled)
		return;

	bc = pci_conf_read(pdev->pc, vga_bridge_tag, PPB_REG_BRIDGECONTROL);
	bc |= PPB_BC_VGA_ENABLE;
	pci_conf_write(pdev->pc, vga_bridge_tag, PPB_REG_BRIDGECONTROL, bc);

	vga_bridge_disabled = 0;
}

#endif

/*
 * ACPI types and interfaces.
 */

#ifdef __HAVE_ACPI
#include "acpi.h"
#endif

#if NACPI > 0

#include <dev/acpi/acpireg.h>
#include <dev/acpi/acpivar.h>
#include <dev/acpi/amltypes.h>
#include <dev/acpi/dsdt.h>

acpi_status
acpi_get_table(const char *sig, int instance,
    struct acpi_table_header **hdr)
{
	struct acpi_softc *sc = acpi_softc;
	struct acpi_q *entry;

	KASSERT(instance == 1);

	if (sc == NULL)
		return AE_NOT_FOUND;

	SIMPLEQ_FOREACH(entry, &sc->sc_tables, q_next) {
		if (memcmp(entry->q_table, sig, strlen(sig)) == 0) {
			*hdr = entry->q_table;
			return 0;
		}
	}

	return AE_NOT_FOUND;
}

acpi_status
acpi_get_handle(acpi_handle node, const char *name, acpi_handle *rnode)
{
	node = aml_searchname(node, name);
	if (node == NULL)
		return AE_NOT_FOUND;

	*rnode = node;
	return 0;
}

acpi_status
acpi_get_name(acpi_handle node, int type,  struct acpi_buffer *buffer)
{
	KASSERT(buffer->length != ACPI_ALLOCATE_BUFFER);
	KASSERT(type == ACPI_FULL_PATHNAME);
	strlcpy(buffer->pointer, aml_nodename(node), buffer->length);
	return 0;
}

acpi_status
acpi_evaluate_object(acpi_handle node, const char *name,
    struct acpi_object_list *params, struct acpi_buffer *result)
{
	struct aml_value args[4], res;
	union acpi_object *obj;
	uint8_t *data;
	int i;

	KASSERT(params->count <= nitems(args));

	for (i = 0; i < params->count; i++) {
		args[i].type = params->pointer[i].type;
		switch (args[i].type) {
		case AML_OBJTYPE_INTEGER:
			args[i].v_integer = params->pointer[i].integer.value;
			break;
		case AML_OBJTYPE_BUFFER:
			args[i].length = params->pointer[i].buffer.length;
			args[i].v_buffer = params->pointer[i].buffer.pointer;
			break;
		default:
			printf("%s: arg type 0x%02x", __func__, args[i].type);
			return AE_BAD_PARAMETER;
		}
	}

	if (name) {
		node = aml_searchname(node, name);
		if (node == NULL)
			return AE_NOT_FOUND;
	}
	if (aml_evalnode(acpi_softc, node, params->count, args, &res)) {
		aml_freevalue(&res);
		return AE_ERROR;
	}

	KASSERT(result->length == ACPI_ALLOCATE_BUFFER);

	result->length = sizeof(union acpi_object);
	switch (res.type) {
	case AML_OBJTYPE_BUFFER:
		result->length += res.length;
		result->pointer = malloc(result->length, M_DRM, M_WAITOK);
		obj = (union acpi_object *)result->pointer;
		data = (uint8_t *)(obj + 1);
		obj->type = res.type;
		obj->buffer.length = res.length;
		obj->buffer.pointer = data;
		memcpy(data, res.v_buffer, res.length);
		break;
	default:
		printf("%s: return type 0x%02x", __func__, res.type);
		aml_freevalue(&res);
		return AE_ERROR;
	}

	aml_freevalue(&res);
	return 0;
}

SLIST_HEAD(, notifier_block) drm_linux_acpi_notify_list =
	SLIST_HEAD_INITIALIZER(drm_linux_acpi_notify_list);

int
drm_linux_acpi_notify(struct aml_node *node, int notify, void *arg)
{
	struct acpi_bus_event event;
	struct notifier_block *nb;

	event.device_class = ACPI_VIDEO_CLASS;
	event.type = notify;

	SLIST_FOREACH(nb, &drm_linux_acpi_notify_list, link)
		nb->notifier_call(nb, 0, &event);
	return 0;
}

int
register_acpi_notifier(struct notifier_block *nb)
{
	SLIST_INSERT_HEAD(&drm_linux_acpi_notify_list, nb, link);
	return 0;
}

int
unregister_acpi_notifier(struct notifier_block *nb)
{
	struct notifier_block *tmp;

	SLIST_FOREACH(tmp, &drm_linux_acpi_notify_list, link) {
		if (tmp == nb) {
			SLIST_REMOVE(&drm_linux_acpi_notify_list, nb,
			    notifier_block, link);
			return 0;
		}
	}

	return -ENOENT;
}

const char *
acpi_format_exception(acpi_status status)
{
	switch (status) {
	case AE_NOT_FOUND:
		return "not found";
	case AE_BAD_PARAMETER:
		return "bad parameter";
	default:
		return "unknown";
	}
}

#endif

void
backlight_do_update_status(void *arg)
{
	backlight_update_status(arg);
}

struct backlight_device *
backlight_device_register(const char *name, void *kdev, void *data,
    const struct backlight_ops *ops, struct backlight_properties *props)
{
	struct backlight_device *bd;

	bd = malloc(sizeof(*bd), M_DRM, M_WAITOK);
	bd->ops = ops;
	bd->props = *props;
	bd->data = data;

	task_set(&bd->task, backlight_do_update_status, bd);
	
	return bd;
}

void
backlight_device_unregister(struct backlight_device *bd)
{
	free(bd, M_DRM, sizeof(*bd));
}

void
backlight_schedule_update_status(struct backlight_device *bd)
{
	task_add(systq, &bd->task);
}

inline int
backlight_enable(struct backlight_device *bd)
{
	if (bd == NULL)
		return 0;

	bd->props.power = FB_BLANK_UNBLANK;

	return bd->ops->update_status(bd);
}

inline int
backlight_disable(struct backlight_device *bd)
{
	if (bd == NULL)
		return 0;

	bd->props.power = FB_BLANK_POWERDOWN;

	return bd->ops->update_status(bd);
}

void
drm_sysfs_hotplug_event(struct drm_device *dev)
{
	KNOTE(&dev->note, NOTE_CHANGE);
}

static atomic64_t drm_fence_context_count = ATOMIC64_INIT(1);

uint64_t
dma_fence_context_alloc(unsigned int num)
{
  return atomic64_add_return(num, &drm_fence_context_count) - num;
}

struct default_wait_cb {
	struct dma_fence_cb base;
	struct proc *proc;
};

static void
dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct default_wait_cb *wait =
	    container_of(cb, struct default_wait_cb, base);
	wake_up_process(wait->proc);
}

long
dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
{
	long ret = timeout ? timeout : 1;
	unsigned long end;
	int err;
	struct default_wait_cb cb;
	bool was_set;

	KASSERT(timeout <= INT_MAX);

	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return ret;

	mtx_enter(fence->lock);

	was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
	    &fence->flags);

	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		goto out;

	if (!was_set && fence->ops->enable_signaling) {
		if (!fence->ops->enable_signaling(fence)) {
			dma_fence_signal_locked(fence);
			goto out;
		}
	}

	if (timeout == 0) {
		ret = 0;
		goto out;
	}

	cb.base.func = dma_fence_default_wait_cb;
	cb.proc = curproc;
	list_add(&cb.base.node, &fence->cb_list);

	end = jiffies + timeout;
	for (ret = timeout; ret > 0; ret = MAX(0, end - jiffies)) {
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
			break;
		err = msleep(curproc, fence->lock, intr ? PCATCH : 0,
		    "dmafence", ret);
		if (err == EINTR || err == ERESTART) {
			ret = -ERESTARTSYS;
			break;
		}
	}

	if (!list_empty(&cb.base.node))
		list_del(&cb.base.node);
out:
	mtx_leave(fence->lock);
	
	return ret;
}

static bool
dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
    uint32_t *idx)
{
	int i;

	for (i = 0; i < count; ++i) {
		struct dma_fence *fence = fences[i];
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			if (idx)
				*idx = i;
			return true;
		}
	}
	return false;
}

long
dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
    bool intr, long timeout, uint32_t *idx)
{
	struct default_wait_cb *cb;
	long ret = timeout;
	unsigned long end;
	int i, err;

	KASSERT(timeout <= INT_MAX);

	if (timeout == 0) {
		for (i = 0; i < count; i++) {
			if (dma_fence_is_signaled(fences[i])) {
				if (idx)
					*idx = i;
				return 1;
			}
		}
		return 0;
	}

	cb = mallocarray(count, sizeof(*cb), M_DRM, M_WAITOK|M_CANFAIL|M_ZERO);
	if (cb == NULL)
		return -ENOMEM;
	
	for (i = 0; i < count; i++) {
		struct dma_fence *fence = fences[i];
		cb[i].proc = curproc;
		if (dma_fence_add_callback(fence, &cb[i].base,
		    dma_fence_default_wait_cb)) {
			if (idx)
				*idx = i;
			goto cb_cleanup;
		}
	}

	end = jiffies + timeout;
	for (ret = timeout; ret > 0; ret = MAX(0, end - jiffies)) {
		if (dma_fence_test_signaled_any(fences, count, idx))
			break;
		err = tsleep(curproc, intr ? PCATCH : 0, "dfwat", ret);
		if (err == EINTR || err == ERESTART) {
			ret = -ERESTARTSYS;
			break;
		}
	}

cb_cleanup:
	while (i-- > 0)
		dma_fence_remove_callback(fences[i], &cb[i].base);
	free(cb, M_DRM, count * sizeof(*cb));
	return ret;
}

static struct dma_fence dma_fence_stub;
static struct mutex dma_fence_stub_mtx = MUTEX_INITIALIZER(IPL_TTY);

static const char *
dma_fence_stub_get_name(struct dma_fence *fence)
{
	return "stub";
}

static const struct dma_fence_ops dma_fence_stub_ops = {
	.get_driver_name = dma_fence_stub_get_name,
	.get_timeline_name = dma_fence_stub_get_name,
};

struct dma_fence *
dma_fence_get_stub(void)
{
	mtx_enter(&dma_fence_stub_mtx);
	if (dma_fence_stub.ops == NULL) {
		dma_fence_init(&dma_fence_stub, &dma_fence_stub_ops,
		    &dma_fence_stub_mtx, 0, 0);
		dma_fence_signal_locked(&dma_fence_stub);
	}
	mtx_leave(&dma_fence_stub_mtx);

	return dma_fence_get(&dma_fence_stub);
}

static const char *
dma_fence_array_get_driver_name(struct dma_fence *fence)
{
	return "dma_fence_array";
}

static const char *
dma_fence_array_get_timeline_name(struct dma_fence *fence)
{
	return "unbound";
}

static void
irq_dma_fence_array_work(struct irq_work *wrk)
{
	struct dma_fence_array *dfa = container_of(wrk, typeof(*dfa), work);

	dma_fence_signal(&dfa->base);
	dma_fence_put(&dfa->base);
}

static void
dma_fence_array_cb_func(struct dma_fence *f, struct dma_fence_cb *cb)
{
	struct dma_fence_array_cb *array_cb =
	    container_of(cb, struct dma_fence_array_cb, cb);
	struct dma_fence_array *dfa = array_cb->array;
	
	if (atomic_dec_and_test(&dfa->num_pending))
		irq_work_queue(&dfa->work);
	else
		dma_fence_put(&dfa->base);
}

static bool
dma_fence_array_enable_signaling(struct dma_fence *fence)
{
	struct dma_fence_array *dfa = to_dma_fence_array(fence);
	struct dma_fence_array_cb *cb = (void *)(&dfa[1]);
	int i;

	for (i = 0; i < dfa->num_fences; ++i) {
		cb[i].array = dfa;
		dma_fence_get(&dfa->base);
		if (dma_fence_add_callback(dfa->fences[i], &cb[i].cb,
		    dma_fence_array_cb_func)) {
			dma_fence_put(&dfa->base);
			if (atomic_dec_and_test(&dfa->num_pending))
				return false;
		}
	}
	
	return true;
}

static bool dma_fence_array_signaled(struct dma_fence *fence)
{
	struct dma_fence_array *dfa = to_dma_fence_array(fence);

	return atomic_read(&dfa->num_pending) <= 0;
}

static void dma_fence_array_release(struct dma_fence *fence)
{
	struct dma_fence_array *dfa = to_dma_fence_array(fence);
	int i;

	for (i = 0; i < dfa->num_fences; ++i)
		dma_fence_put(dfa->fences[i]);

	free(dfa->fences, M_DRM, 0);
	dma_fence_free(fence);
}

struct dma_fence_array *
dma_fence_array_create(int num_fences, struct dma_fence **fences, u64 context,
    unsigned seqno, bool signal_on_any)
{
	struct dma_fence_array *dfa = malloc(sizeof(*dfa) +
	    (num_fences * sizeof(struct dma_fence_array_cb)),
	    M_DRM, M_WAITOK|M_CANFAIL|M_ZERO);
	if (dfa == NULL)
		return NULL;

	mtx_init(&dfa->lock, IPL_TTY);
	dma_fence_init(&dfa->base, &dma_fence_array_ops, &dfa->lock,
	    context, seqno);
	init_irq_work(&dfa->work, irq_dma_fence_array_work);

	dfa->num_fences = num_fences;
	atomic_set(&dfa->num_pending, signal_on_any ? 1 : num_fences);
	dfa->fences = fences;

	return dfa;
}

const struct dma_fence_ops dma_fence_array_ops = {
	.get_driver_name = dma_fence_array_get_driver_name,
	.get_timeline_name = dma_fence_array_get_timeline_name,
	.enable_signaling = dma_fence_array_enable_signaling,
	.signaled = dma_fence_array_signaled,
	.release = dma_fence_array_release,
};

int
dmabuf_read(struct file *fp, struct uio *uio, int fflags)
{
	return (ENXIO);
}

int
dmabuf_write(struct file *fp, struct uio *uio, int fflags)
{
	return (ENXIO);
}

int
dmabuf_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
{
	return (ENOTTY);
}

int
dmabuf_poll(struct file *fp, int events, struct proc *p)
{
	return (0);
}

int
dmabuf_kqfilter(struct file *fp, struct knote *kn)
{
	return (EINVAL);
}

int
dmabuf_stat(struct file *fp, struct stat *st, struct proc *p)
{
	struct dma_buf *dmabuf = fp->f_data;

	memset(st, 0, sizeof(*st));
	st->st_size = dmabuf->size;
	st->st_mode = S_IFIFO;	/* XXX */
	return (0);
}

int
dmabuf_close(struct file *fp, struct proc *p)
{
	struct dma_buf *dmabuf = fp->f_data;

	fp->f_data = NULL;
	KERNEL_LOCK();
	dmabuf->ops->release(dmabuf);
	KERNEL_UNLOCK();
	free(dmabuf, M_DRM, sizeof(struct dma_buf));
	return (0);
}

int
dmabuf_seek(struct file *fp, off_t *offset, int whence, struct proc *p)
{
	struct dma_buf *dmabuf = fp->f_data;
	off_t newoff;

	if (*offset != 0)
		return (EINVAL);

	switch (whence) {
	case SEEK_SET:
		newoff = 0;
		break;
	case SEEK_END:
		newoff = dmabuf->size;
		break;
	default:
		return (EINVAL);
	}
	mtx_enter(&fp->f_mtx);
	fp->f_offset = newoff;
	mtx_leave(&fp->f_mtx);
	*offset = newoff;
	return (0);
}

const struct fileops dmabufops = {
	.fo_read	= dmabuf_read,
	.fo_write	= dmabuf_write,
	.fo_ioctl	= dmabuf_ioctl,
	.fo_poll	= dmabuf_poll,
	.fo_kqfilter	= dmabuf_kqfilter,
	.fo_stat	= dmabuf_stat,
	.fo_close	= dmabuf_close,
	.fo_seek	= dmabuf_seek,
};

struct dma_buf *
dma_buf_export(const struct dma_buf_export_info *info)
{
	struct proc *p = curproc;
	struct dma_buf *dmabuf;
	struct file *fp;

	fp = fnew(p);
	if (fp == NULL)
		return ERR_PTR(-ENFILE);
	fp->f_type = DTYPE_DMABUF;
	fp->f_ops = &dmabufops;
	dmabuf = malloc(sizeof(struct dma_buf), M_DRM, M_WAITOK | M_ZERO);
	dmabuf->priv = info->priv;
	dmabuf->ops = info->ops;
	dmabuf->size = info->size;
	dmabuf->file = fp;
	fp->f_data = dmabuf;
	INIT_LIST_HEAD(&dmabuf->attachments);
	return dmabuf;
}

struct dma_buf *
dma_buf_get(int fd)
{
	struct proc *p = curproc;
	struct filedesc *fdp = p->p_fd;
	struct file *fp;

	if ((fp = fd_getfile(fdp, fd)) == NULL)
		return ERR_PTR(-EBADF);

	if (fp->f_type != DTYPE_DMABUF) {
		FRELE(fp, p);
		return ERR_PTR(-EINVAL);
	}

	return fp->f_data;
}

void
dma_buf_put(struct dma_buf *dmabuf)
{
	KASSERT(dmabuf);
	KASSERT(dmabuf->file);

	FRELE(dmabuf->file, curproc);
}

int
dma_buf_fd(struct dma_buf *dmabuf, int flags)
{
	struct proc *p = curproc;
	struct filedesc *fdp = p->p_fd;
	struct file *fp = dmabuf->file;
	int fd, cloexec, error;

	cloexec = (flags & O_CLOEXEC) ? UF_EXCLOSE : 0;

	fdplock(fdp);
restart:
	if ((error = fdalloc(p, 0, &fd)) != 0) {
		if (error == ENOSPC) {
			fdexpand(p);
			goto restart;
		}
		fdpunlock(fdp);
		return -error;
	}

	fdinsert(fdp, fd, cloexec, fp);
	fdpunlock(fdp);

	return fd;
}

void
get_dma_buf(struct dma_buf *dmabuf)
{
	FREF(dmabuf->file);
}

enum pci_bus_speed
pcie_get_speed_cap(struct pci_dev *pdev)
{
	pci_chipset_tag_t	pc;
	pcitag_t		tag;
	int			pos ;
	pcireg_t		xcap, lnkcap = 0, lnkcap2 = 0;
	pcireg_t		id;
	enum pci_bus_speed	cap = PCI_SPEED_UNKNOWN;
	int			bus, device, function;

	if (pdev == NULL)
		return PCI_SPEED_UNKNOWN;

	pc = pdev->pc;
	tag = pdev->tag;

	if (!pci_get_capability(pc, tag, PCI_CAP_PCIEXPRESS,
	    &pos, NULL)) 
		return PCI_SPEED_UNKNOWN;

	id = pci_conf_read(pc, tag, PCI_ID_REG);
	pci_decompose_tag(pc, tag, &bus, &device, &function);

	/* we've been informed via and serverworks don't make the cut */
	if (PCI_VENDOR(id) == PCI_VENDOR_VIATECH ||
	    PCI_VENDOR(id) == PCI_VENDOR_RCC)
		return PCI_SPEED_UNKNOWN;

	lnkcap = pci_conf_read(pc, tag, pos + PCI_PCIE_LCAP);
	xcap = pci_conf_read(pc, tag, pos + PCI_PCIE_XCAP);
	if (PCI_PCIE_XCAP_VER(xcap) >= 2)
		lnkcap2 = pci_conf_read(pc, tag, pos + PCI_PCIE_LCAP2);

	lnkcap &= 0x0f;
	lnkcap2 &= 0xfe;

	if (lnkcap2) { /* PCIE GEN 3.0 */
		if (lnkcap2 & 0x02)
			cap = PCIE_SPEED_2_5GT;
		if (lnkcap2 & 0x04)
			cap = PCIE_SPEED_5_0GT;
		if (lnkcap2 & 0x08)
			cap = PCIE_SPEED_8_0GT;
		if (lnkcap2 & 0x10)
			cap = PCIE_SPEED_16_0GT;
	} else {
		if (lnkcap & 0x01)
			cap = PCIE_SPEED_2_5GT;
		if (lnkcap & 0x02)
			cap = PCIE_SPEED_5_0GT;
	}

	DRM_INFO("probing pcie caps for device %d:%d:%d 0x%04x:0x%04x = %x/%x\n",
	    bus, device, function, PCI_VENDOR(id), PCI_PRODUCT(id), lnkcap,
	    lnkcap2);
	return cap;
}

enum pcie_link_width
pcie_get_width_cap(struct pci_dev *pdev)
{
	pci_chipset_tag_t	pc = pdev->pc;
	pcitag_t		tag = pdev->tag;
	int			pos ;
	pcireg_t		lnkcap = 0;
	pcireg_t		id;
	int			bus, device, function;

	if (!pci_get_capability(pc, tag, PCI_CAP_PCIEXPRESS,
	    &pos, NULL)) 
		return PCIE_LNK_WIDTH_UNKNOWN;

	id = pci_conf_read(pc, tag, PCI_ID_REG);
	pci_decompose_tag(pc, tag, &bus, &device, &function);

	lnkcap = pci_conf_read(pc, tag, pos + PCI_PCIE_LCAP);

	DRM_INFO("probing pcie width for device %d:%d:%d 0x%04x:0x%04x = %x\n",
	    bus, device, function, PCI_VENDOR(id), PCI_PRODUCT(id), lnkcap);

	if (lnkcap)
		return (lnkcap & 0x3f0) >> 4;
	return PCIE_LNK_WIDTH_UNKNOWN;
}

int
autoremove_wake_function(struct wait_queue_entry *wqe, unsigned int mode,
    int sync, void *key)
{
	wakeup(wqe);
	if (wqe->proc)
		wake_up_process(wqe->proc);
	list_del_init(&wqe->entry);
	return 0;
}

static wait_queue_head_t bit_waitq;
wait_queue_head_t var_waitq;
struct mutex wait_bit_mtx = MUTEX_INITIALIZER(IPL_TTY);

int
wait_on_bit(unsigned long *word, int bit, unsigned mode)
{
	int err;

	if (!test_bit(bit, word))
		return 0;

	mtx_enter(&wait_bit_mtx);
	while (test_bit(bit, word)) {
		err = msleep_nsec(word, &wait_bit_mtx, PWAIT | mode, "wtb",
		    INFSLP);
		if (err) {
			mtx_leave(&wait_bit_mtx);
			return 1;
		}
	}
	mtx_leave(&wait_bit_mtx);
	return 0;
}

int
wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode, int timo)
{
	int err;

	if (!test_bit(bit, word))
		return 0;

	mtx_enter(&wait_bit_mtx);
	while (test_bit(bit, word)) {
		err = msleep(word, &wait_bit_mtx, PWAIT | mode, "wtb", timo);
		if (err) {
			mtx_leave(&wait_bit_mtx);
			return 1;
		}
	}
	mtx_leave(&wait_bit_mtx);
	return 0;
}

void
wake_up_bit(void *word, int bit)
{
	mtx_enter(&wait_bit_mtx);
	wakeup(word);
	mtx_leave(&wait_bit_mtx);
}

void
clear_and_wake_up_bit(int bit, void *word)
{
	clear_bit(bit, word);
	wake_up_bit(word, bit);
}

wait_queue_head_t *
bit_waitqueue(void *word, int bit)
{
	/* XXX hash table of wait queues? */
	return &bit_waitq;
}

struct workqueue_struct *system_wq;
struct workqueue_struct *system_highpri_wq;
struct workqueue_struct *system_unbound_wq;
struct workqueue_struct *system_long_wq;
struct taskq *taskletq;

void
drm_linux_init(void)
{
	system_wq = (struct workqueue_struct *)
	    taskq_create("drmwq", 4, IPL_HIGH, 0);
	system_highpri_wq = (struct workqueue_struct *)
	    taskq_create("drmhpwq", 4, IPL_HIGH, 0);
	system_unbound_wq = (struct workqueue_struct *)
	    taskq_create("drmubwq", 4, IPL_HIGH, 0);
	system_long_wq = (struct workqueue_struct *)
	    taskq_create("drmlwq", 4, IPL_HIGH, 0);

	taskletq = taskq_create("drmtskl", 1, IPL_HIGH, 0);

	init_waitqueue_head(&bit_waitq);
	init_waitqueue_head(&var_waitq);

	pool_init(&idr_pool, sizeof(struct idr_entry), 0, IPL_TTY, 0,
	    "idrpl", NULL);
}

void
drm_linux_exit(void)
{
	pool_destroy(&idr_pool);

	taskq_destroy(taskletq);

	taskq_destroy((struct taskq *)system_long_wq);
	taskq_destroy((struct taskq *)system_unbound_wq);
	taskq_destroy((struct taskq *)system_highpri_wq);
	taskq_destroy((struct taskq *)system_wq);
}

#define PCIE_ECAP_RESIZE_BAR	0x15
#define RBCAP0			0x04
#define RBCTRL0			0x08
#define RBCTRL_BARINDEX_MASK	0x07
#define RBCTRL_BARSIZE_MASK	0x1f00
#define RBCTRL_BARSIZE_SHIFT	8

/* size in MB is 1 << nsize */
int
pci_resize_resource(struct pci_dev *pdev, int bar, int nsize)
{
	pcireg_t	reg;
	uint32_t	offset, capid;

	KASSERT(bar == 0);

	offset = PCI_PCIE_ECAP;

	/* search PCI Express Extended Capabilities */
	do {
		reg = pci_conf_read(pdev->pc, pdev->tag, offset);
		capid = PCI_PCIE_ECAP_ID(reg);
		if (capid == PCIE_ECAP_RESIZE_BAR)
			break;
		offset = PCI_PCIE_ECAP_NEXT(reg);
	} while (capid != 0);

	if (capid == 0) {
		printf("%s: could not find resize bar cap!\n", __func__);
		return -ENOTSUP;
	}

	reg = pci_conf_read(pdev->pc, pdev->tag, offset + RBCAP0);

	if ((reg & (1 << (nsize + 4))) == 0) {
		printf("%s size not supported\n", __func__);
		return -ENOTSUP;
	}

	reg = pci_conf_read(pdev->pc, pdev->tag, offset + RBCTRL0);
	if ((reg & RBCTRL_BARINDEX_MASK) != 0) {
		printf("%s BAR index not 0\n", __func__);
		return -EINVAL;
	}

	reg &= ~RBCTRL_BARSIZE_MASK;
	reg |= (nsize << RBCTRL_BARSIZE_SHIFT) & RBCTRL_BARSIZE_MASK;

	pci_conf_write(pdev->pc, pdev->tag, offset + RBCTRL0, reg);

	return 0;
}

TAILQ_HEAD(, shrinker) shrinkers = TAILQ_HEAD_INITIALIZER(shrinkers);

int
register_shrinker(struct shrinker *shrinker)
{
	TAILQ_INSERT_TAIL(&shrinkers, shrinker, next);
	return 0;
}

void
unregister_shrinker(struct shrinker *shrinker)
{
	TAILQ_REMOVE(&shrinkers, shrinker, next);
}

void
drmbackoff(long npages)
{
	struct shrink_control sc;
	struct shrinker *shrinker;
	u_long ret;

	shrinker = TAILQ_FIRST(&shrinkers);
	while (shrinker && npages > 0) {
		sc.nr_to_scan = npages;
		ret = shrinker->scan_objects(shrinker, &sc);
		npages -= ret;
		shrinker = TAILQ_NEXT(shrinker, next);
	}
}

void *
bitmap_zalloc(u_int n, gfp_t flags)
{
	return kcalloc(BITS_TO_LONGS(n), sizeof(long), flags);
}

void
bitmap_free(void *p)
{
	kfree(p);
}

int
atomic_dec_and_mutex_lock(volatile int *v, struct rwlock *lock)
{
	if (atomic_add_unless(v, -1, 1))
		return 0;

	rw_enter_write(lock);
	if (atomic_dec_return(v) == 0)
		return 1;
	rw_exit_write(lock);
	return 0;
}

int
printk(const char *fmt, ...)
{
	int ret, level;
	va_list ap;

	if (fmt != NULL && *fmt == '\001') {
		level = fmt[1];
#ifndef DRMDEBUG
		if (level >= KERN_INFO[1] && level <= '9')
			return 0;
#endif
		fmt += 2;
	}

	va_start(ap, fmt);
	ret = vprintf(fmt, ap);
	va_end(ap);

	return ret;
}

#define START(node) ((node)->start)
#define LAST(node) ((node)->last)

struct interval_tree_node *
interval_tree_iter_first(struct rb_root_cached *root, unsigned long start,
    unsigned long last)
{
	struct interval_tree_node *node;
	struct rb_node *rb;

	for (rb = rb_first_cached(root); rb; rb = rb_next(rb)) {
		node = rb_entry(rb, typeof(*node), rb);
		if (LAST(node) >= start && START(node) <= last)
			return node;
	}
	return NULL;
}

void
interval_tree_remove(struct interval_tree_node *node,
    struct rb_root_cached *root) 
{
	rb_erase_cached(&node->rb, root);
}

void
interval_tree_insert(struct interval_tree_node *node,
    struct rb_root_cached *root)
{
	struct rb_node **iter = &root->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct interval_tree_node *iter_node;

	while (*iter) {
		parent = *iter;
		iter_node = rb_entry(*iter, struct interval_tree_node, rb);

		if (node->start < iter_node->start)
			iter = &(*iter)->rb_left;
		else
			iter = &(*iter)->rb_right;
	}

	rb_link_node(&node->rb, parent, iter);
	rb_insert_color_cached(&node->rb, root, false);
}