summaryrefslogtreecommitdiff
path: root/sys/dev/pci/if_sf.c
blob: d8edf50025300afd15f47eebc218ea8c054837d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
/*	$OpenBSD: if_sf.c,v 1.14 2001/08/25 10:13:29 art Exp $ */
/*
 * Copyright (c) 1997, 1998, 1999
 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by Bill Paul.
 * 4. Neither the name of the author nor the names of any co-contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 *
 * $FreeBSD: src/sys/pci/if_sf.c,v 1.23 2000/07/14 19:11:02 wpaul Exp $
 */

/*
 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
 * Programming manual is available from:
 * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
 *
 * Written by Bill Paul <wpaul@ctr.columbia.edu>
 * Department of Electical Engineering
 * Columbia University, New York City
 */

/*
 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
 * controller designed with flexibility and reducing CPU load in mind.
 * The Starfire offers high and low priority buffer queues, a
 * producer/consumer index mechanism and several different buffer
 * queue and completion queue descriptor types. Any one of a number
 * of different driver designs can be used, depending on system and
 * OS requirements. This driver makes use of type0 transmit frame
 * descriptors (since BSD fragments packets across an mbuf chain)
 * and two RX buffer queues prioritized on size (one queue for small
 * frames that will fit into a single mbuf, another with full size
 * mbuf clusters for everything else). The producer/consumer indexes
 * and completion queues are also used.
 *
 * One downside to the Starfire has to do with alignment: buffer
 * queues must be aligned on 256-byte boundaries, and receive buffers
 * must be aligned on longword boundaries. The receive buffer alignment
 * causes problems on the Alpha platform, where the packet payload
 * should be longword aligned. There is no simple way around this.
 *
 * For receive filtering, the Starfire offers 16 perfect filter slots
 * and a 512-bit hash table.
 *
 * The Starfire has no internal transceiver, relying instead on an
 * external MII-based transceiver. Accessing registers on external
 * PHYs is done through a special register map rather than with the
 * usual bitbang MDIO method.
 *
 * Acesssing the registers on the Starfire is a little tricky. The
 * Starfire has a 512K internal register space. When programmed for
 * PCI memory mapped mode, the entire register space can be accessed
 * directly. However in I/O space mode, only 256 bytes are directly
 * mapped into PCI I/O space. The other registers can be accessed
 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
 * registers inside the 256-byte I/O window.
 */

#include "bpfilter.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/timeout.h>

#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>

#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>

#include <net/if_media.h>

#if NBPFILTER > 0
#include <net/bpf.h>
#endif

#include <vm/vm.h>              /* for vtophys */

#include <sys/device.h>

#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>

#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>

#define SF_USEIOSPACE

#include <dev/pci/if_sfreg.h>

int sf_probe		__P((struct device *, void *, void *));
void sf_attach		__P((struct device *, struct device *, void *));
int sf_intr		__P((void *));
void sf_shutdown	__P((void *));
void sf_stats_update	__P((void *));
void sf_rxeof		__P((struct sf_softc *));
void sf_txeof		__P((struct sf_softc *));
int sf_encap		__P((struct sf_softc *, struct sf_tx_bufdesc_type0 *,
				struct mbuf *));
void sf_start		__P((struct ifnet *));
int sf_ioctl		__P((struct ifnet *, u_long, caddr_t));
void sf_init		__P((void *));
void sf_stop		__P((struct sf_softc *));
void sf_watchdog	__P((struct ifnet *));
int sf_ifmedia_upd	__P((struct ifnet *));
void sf_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
void sf_reset		__P((struct sf_softc *));
int sf_init_rx_ring	__P((struct sf_softc *));
void sf_init_tx_ring	__P((struct sf_softc *));
int sf_newbuf		__P((struct sf_softc *, struct sf_rx_bufdesc_type0 *,
				struct mbuf *));
void sf_setmulti	__P((struct sf_softc *));
int sf_setperf		__P((struct sf_softc *, int, caddr_t));
int sf_sethash		__P((struct sf_softc *, caddr_t, int));
#ifdef notdef
int sf_setvlan		__P((struct sf_softc *, int, u_int32_t));
#endif

u_int8_t sf_read_eeprom	__P((struct sf_softc *, int));
u_int32_t sf_calchash	__P((caddr_t));

int sf_miibus_readreg	__P((struct device *, int, int));
void sf_miibus_writereg	__P((struct device *, int, int, int));
void sf_miibus_statchg	__P((struct device *));

u_int32_t csr_read_4	__P((struct sf_softc *, int));
void csr_write_4	__P((struct sf_softc *, int, u_int32_t));

#define SF_SETBIT(sc, reg, x)	\
	csr_write_4(sc, reg, csr_read_4(sc, reg) | x)

#define SF_CLRBIT(sc, reg, x)				\
	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)

u_int32_t csr_read_4(sc, reg)
	struct sf_softc		*sc;
	int			reg;
{
	u_int32_t		val;

#ifdef SF_USEIOSPACE
	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
#else
	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
#endif

	return(val);
}

u_int8_t sf_read_eeprom(sc, reg)
	struct sf_softc		*sc;
	int			reg;
{
	u_int8_t		val;

	val = (csr_read_4(sc, SF_EEADDR_BASE +
	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;

	return(val);
}

void csr_write_4(sc, reg, val)
	struct sf_softc		*sc;
	int			reg;
	u_int32_t		val;
{
#ifdef SF_USEIOSPACE
	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
#else
	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
#endif
	return;
}

u_int32_t sf_calchash(addr)
	caddr_t			addr;
{
	u_int32_t		crc, carry;
	int			i, j;
	u_int8_t		c;

	/* Compute CRC for the address value. */
	crc = 0xFFFFFFFF; /* initial value */

	for (i = 0; i < 6; i++) {
		c = *(addr + i);
		for (j = 0; j < 8; j++) {
			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
			crc <<= 1;
			c >>= 1;
			if (carry)
				crc = (crc ^ 0x04c11db6) | carry;
		}
	}

	/* return the filter bit position */
	return(crc >> 23 & 0x1FF);
}

/*
 * Copy the address 'mac' into the perfect RX filter entry at
 * offset 'idx.' The perfect filter only has 16 entries so do
 * some sanity tests.
 */
int sf_setperf(sc, idx, mac)
	struct sf_softc		*sc;
	int			idx;
	caddr_t			mac;
{
	u_int16_t		*p;

	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
		return(EINVAL);

	if (mac == NULL)
		return(EINVAL);

	p = (u_int16_t *)mac;

	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));

	return(0);
}

/*
 * Set the bit in the 512-bit hash table that corresponds to the
 * specified mac address 'mac.' If 'prio' is nonzero, update the
 * priority hash table instead of the filter hash table.
 */
int sf_sethash(sc, mac, prio)
	struct sf_softc		*sc;
	caddr_t			mac;
	int			prio;
{
	u_int32_t		h = 0;

	if (mac == NULL)
		return(EINVAL);

	h = sf_calchash(mac);

	if (prio) {
		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
	} else {
		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
	}

	return(0);
}

#ifdef notdef
/*
 * Set a VLAN tag in the receive filter.
 */
int sf_setvlan(sc, idx, vlan)
	struct sf_softc		*sc;
	int			idx;
	u_int32_t		vlan;
{
	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
		return(EINVAL);

	csr_write_4(sc, SF_RXFILT_HASH_BASE +
	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);

	return(0);
}
#endif

int sf_miibus_readreg(self, phy, reg)
	struct device		*self;
	int			phy, reg;
{
	struct sf_softc		*sc = (struct sf_softc *)self;
	int			i;
	u_int32_t		val = 0;

	for (i = 0; i < SF_TIMEOUT; i++) {
		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
		if (val & SF_MII_DATAVALID)
			break;
	}

	if (i == SF_TIMEOUT)
		return(0);

	if ((val & 0x0000FFFF) == 0xFFFF)
		return(0);

	return(val & 0x0000FFFF);
}

void sf_miibus_writereg(self, phy, reg, val)
	struct device		*self;
	int phy, reg, val;
{
	struct sf_softc		*sc = (struct sf_softc *)self;
	int			i;
	int			busy;

	csr_write_4(sc, SF_PHY_REG(phy, reg), val);

	for (i = 0; i < SF_TIMEOUT; i++) {
		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
		if (!(busy & SF_MII_BUSY))
			break;
	}

	return;
}

void sf_miibus_statchg(self)
	struct device		*self;
{
	struct sf_softc		*sc = (struct sf_softc *)self;
	struct mii_data		*mii;

	mii = &sc->sc_mii;

	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
	} else {
		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
	}

	return;
}

void sf_setmulti(sc)
	struct sf_softc		*sc;
{
	struct ifnet		*ifp;
	int			i;
	struct arpcom		*ac = &sc->arpcom;
	struct ether_multi	*enm;
	struct ether_multistep	step;
	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };

	ifp = &sc->arpcom.ac_if;

	/* First zot all the existing filters. */
	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
		sf_setperf(sc, i, (char *)&dummy);
	for (i = SF_RXFILT_HASH_BASE;
	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
		csr_write_4(sc, i, 0);
	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);

	/* Now program new ones. */
	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
	} else {
		i = 1;
		/* First find the tail of the list. */
		ETHER_FIRST_MULTI(step, ac, enm);

		/* Now traverse the list backwards. */
		while (enm != NULL) {
			/* if (enm->enm_addrlo->sa_family != AF_LINK)
				continue; */
			/*
			 * Program the first 15 multicast groups
			 * into the perfect filter. For all others,
			 * use the hash table.
			 */
			if (i < SF_RXFILT_PERFECT_CNT) {
				sf_setperf(sc, i,
			LLADDR((struct sockaddr_dl *)enm->enm_addrlo));
				i++;
				continue;
			}

			sf_sethash(sc,
			    LLADDR((struct sockaddr_dl *)enm->enm_addrlo), 0);
			ETHER_NEXT_MULTI(step, enm);
		}
	}

	return;
}

/*
 * Set media options.
 */
int sf_ifmedia_upd(ifp)
	struct ifnet		*ifp;
{
	struct sf_softc		*sc;
	struct mii_data		*mii;

	sc = ifp->if_softc;
	mii = &sc->sc_mii;
	sc->sf_link = 0;
	if (mii->mii_instance) {
		struct mii_softc	*miisc;
		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
		    miisc = LIST_NEXT(miisc, mii_list))
			mii_phy_reset(miisc);
	}
	mii_mediachg(mii);

	return(0);
}

/*
 * Report current media status.
 */
void sf_ifmedia_sts(ifp, ifmr)
	struct ifnet		*ifp;
	struct ifmediareq	*ifmr;
{
	struct sf_softc		*sc;
	struct mii_data		*mii;

	sc = ifp->if_softc;
	mii = &sc->sc_mii;

	mii_pollstat(mii);
	ifmr->ifm_active = mii->mii_media_active;
	ifmr->ifm_status = mii->mii_media_status;

	return;
}

int sf_ioctl(ifp, command, data)
	struct ifnet		*ifp;
	u_long			command;
	caddr_t			data;
{
	struct sf_softc		*sc = ifp->if_softc;
	struct ifreq		*ifr = (struct ifreq *) data;
	struct ifaddr		*ifa = (struct ifaddr *)data;
	struct mii_data		*mii;
	int			s, error = 0;

	s = splimp();

	if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) {
		splx(s);
		return error;
	}

	switch(command) {
	case SIOCSIFADDR:
		ifp->if_flags |= IFF_UP;
		switch (ifa->ifa_addr->sa_family) {
		case AF_INET:
			sf_init(sc);
			arp_ifinit(&sc->arpcom, ifa);
			break;
		default:
			sf_init(sc);
			break;
		}
		break;
	case SIOCSIFFLAGS:
		if (ifp->if_flags & IFF_UP) {
			if (ifp->if_flags & IFF_RUNNING &&
			    ifp->if_flags & IFF_PROMISC &&
			    !(sc->sf_if_flags & IFF_PROMISC)) {
				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
			} else if (ifp->if_flags & IFF_RUNNING &&
			    !(ifp->if_flags & IFF_PROMISC) &&
			    sc->sf_if_flags & IFF_PROMISC) {
				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
			} else if (!(ifp->if_flags & IFF_RUNNING))
				sf_init(sc);
		} else {
			if (ifp->if_flags & IFF_RUNNING)
				sf_stop(sc);
		}
		sc->sf_if_flags = ifp->if_flags;
		error = 0;
		break;
	case SIOCADDMULTI:
	case SIOCDELMULTI:
		error = (command == SIOCADDMULTI) ?
		    ether_addmulti(ifr, &sc->arpcom) :
		    ether_delmulti(ifr, &sc->arpcom);

		if (error == ENETRESET) {
			/*
			 * Multicast list has changed; set the hardware
			 * filter accordingly.
			 */
			sf_setmulti(sc);
			error = 0;
		}
		break;
	case SIOCGIFMEDIA:
	case SIOCSIFMEDIA:
		mii = &sc->sc_mii;
		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
		break;
	default:
		error = EINVAL;
		break;
	}

	(void)splx(s);

	return(error);
}

void sf_reset(sc)
	struct sf_softc		*sc;
{
	register int		i;

	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
	DELAY(1000);
	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);

	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);

	for (i = 0; i < SF_TIMEOUT; i++) {
		DELAY(10);
		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
			break;
	}

	if (i == SF_TIMEOUT)
		printf("sf%d: reset never completed!\n", sc->sf_unit);

	/* Wait a little while for the chip to get its brains in order. */
	DELAY(1000);
	return;
}

/*
 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
 * IDs against our list and return a device name if we find a match.
 * We also check the subsystem ID so that we can identify exactly which
 * NIC has been found, if possible.
 */
int sf_probe(parent, match, aux)
	struct device		*parent;
	void			*match;
	void			*aux;
{
	struct pci_attach_args	*pa = (struct pci_attach_args *)aux;

	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_ADP)
		return(0);

	switch (PCI_PRODUCT(pa->pa_id)) {
	case PCI_PRODUCT_ADP_AIC6915:
		return(1);
	}

	return(0);
}

/*
 * Attach the interface. Allocate softc structures, do ifmedia
 * setup and ethernet/BPF attach.
 */
void sf_attach(parent, self, aux)
	struct device		*parent, *self;
	void			*aux;
{
	int			s, i;
	const char		*intrstr = NULL;
	u_int32_t		command;
	struct sf_softc		*sc = (struct sf_softc *)self;
	struct pci_attach_args	*pa = aux;
	pci_chipset_tag_t	pc = pa->pa_pc;
	pci_intr_handle_t	ih;
	struct ifnet		*ifp;
	bus_addr_t		iobase;
	bus_size_t		iosize;

	s = splimp();
	sc->sf_unit = sc->sc_dev.dv_unit;

	/*
	 * Handle power management nonsense.
	 */
	command = pci_conf_read(pc, pa->pa_tag, SF_PCI_CAPID) & 0x000000FF;
	if (command == 0x01) {

		command = pci_conf_read(pc, pa->pa_tag, SF_PCI_PWRMGMTCTRL);
		if (command & SF_PSTATE_MASK) {
			u_int32_t		iobase, membase, irq;

			/* Save important PCI config data. */
			iobase = pci_conf_read(pc, pa->pa_tag, SF_PCI_LOIO);
			membase = pci_conf_read(pc, pa->pa_tag, SF_PCI_LOMEM);
			irq = pci_conf_read(pc, pa->pa_tag, SF_PCI_INTLINE);

			/* Reset the power state. */
			printf("sf%d: chip is in D%d power mode "
			"-- setting to D0\n", sc->sf_unit, command & SF_PSTATE_MASK);
			command &= 0xFFFFFFFC;
			pci_conf_write(pc, pa->pa_tag, SF_PCI_PWRMGMTCTRL, command);

			/* Restore PCI config data. */
			pci_conf_write(pc, pa->pa_tag, SF_PCI_LOIO, iobase);
			pci_conf_write(pc, pa->pa_tag, SF_PCI_LOMEM, membase);
			pci_conf_write(pc, pa->pa_tag, SF_PCI_INTLINE, irq);
		}
	}

	/*
	 * Map control/status registers.
	 */
	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
	command |= PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE |
	    PCI_COMMAND_MASTER_ENABLE;
	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);

#ifdef SF_USEIOSPACE
	if (!(command & PCI_COMMAND_IO_ENABLE)) {
		printf(": failed to enable I/O ports\n");
		goto fail;
	}
	if (pci_io_find(pc, pa->pa_tag, SF_PCI_LOIO, &iobase, &iosize)) {
		printf(": can't find I/O space\n");
		goto fail;
	}
	if (bus_space_map(pa->pa_iot, iobase, iosize, 0, &sc->sf_bhandle)) {
		printf(": can't map I/O space\n");
		goto fail;
	}
	sc->sf_btag = pa->pa_iot;
#else
	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
		printf(": failed to enable memory mapping\n");
		goto fail;
	}
	if (pci_mem_find(pc, pa->pa_tag, SF_PCI_LOMEM, &iobase, &iosize, NULL)){
		printf(": can't find mem space\n");
		goto fail;
	}
	if (bus_space_map(pa->pa_memt, iobase, iosize, 0, &sc->sf_bhandle)) {
		printf(": can't map mem space\n");
		goto fail;
	}
	sc->sf_btag = pa->pa_memt;
#endif

	/* Allocate interrupt */
	if (pci_intr_map(pa, &ih)) {
		printf(": couldn't map interrupt\n");
		goto fail;
	}
	intrstr = pci_intr_string(pc, ih);
	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sf_intr, sc,
	    self->dv_xname);
	if (sc->sc_ih == NULL) {
		printf(": couldn't establish interrupt");
		if (intrstr != NULL)
			printf(" at %s", intrstr);
		printf("\n");
		goto fail;
	}
	printf(": %s", intrstr);

	/* Reset the adapter. */
	sf_reset(sc);

	/*
	 * Get station address from the EEPROM.
	 */
	for (i = 0; i < ETHER_ADDR_LEN; i++)
		sc->arpcom.ac_enaddr[i] =
		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);

	printf(" address %s\n", ether_sprintf(sc->arpcom.ac_enaddr));

	/* Allocate the descriptor queues. */
	sc->sf_ldata_ptr = malloc(sizeof(struct sf_list_data) + 8,
				M_DEVBUF, M_NOWAIT);
	if (sc->sf_ldata_ptr == NULL) {
		printf("%s: no memory for list buffers!\n", sc->sf_unit);
		goto fail;
	}

	sc->sf_ldata = (struct sf_list_data *)sc->sf_ldata_ptr;
	bzero(sc->sf_ldata, sizeof(struct sf_list_data));

	ifp = &sc->arpcom.ac_if;
	ifp->if_softc = sc;
	ifp->if_mtu = ETHERMTU;
	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
	ifp->if_ioctl = sf_ioctl;
	ifp->if_output = ether_output;
	ifp->if_start = sf_start;
	ifp->if_watchdog = sf_watchdog;
	ifp->if_baudrate = 10000000;
	IFQ_SET_MAXLEN(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
	IFQ_SET_READY(&ifp->if_snd);
	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);

	/*
	 * Initialize our media structures and probe the MII.
	 */
	sc->sc_mii.mii_ifp = ifp;
	sc->sc_mii.mii_readreg = sf_miibus_readreg;
	sc->sc_mii.mii_writereg = sf_miibus_writereg;
	sc->sc_mii.mii_statchg = sf_miibus_statchg;
	ifmedia_init(&sc->sc_mii.mii_media, 0, sf_ifmedia_upd, sf_ifmedia_sts);
	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY,
	    0);
	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
	} else
		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);

	/*
	 * Call MI attach routines.
	 */
	if_attach(ifp);
	ether_ifattach(ifp);

	shutdownhook_establish(sf_shutdown, sc);

fail:
	splx(s);
	return;
}

int sf_init_rx_ring(sc)
	struct sf_softc		*sc;
{
	struct sf_list_data	*ld;
	int			i;

	ld = sc->sf_ldata;

	bzero((char *)ld->sf_rx_dlist_big,
	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
	bzero((char *)ld->sf_rx_clist,
	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);

	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
			return(ENOBUFS);
	}

	return(0);
}

void sf_init_tx_ring(sc)
	struct sf_softc		*sc;
{
	struct sf_list_data	*ld;
	int			i;

	ld = sc->sf_ldata;

	bzero((char *)ld->sf_tx_dlist,
	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
	bzero((char *)ld->sf_tx_clist,
	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);

	for (i = 0; i < SF_TX_DLIST_CNT; i++)
		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
	for (i = 0; i < SF_TX_CLIST_CNT; i++)
		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;

	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
	sc->sf_tx_cnt = 0;

	return;
}

int sf_newbuf(sc, c, m)
	struct sf_softc		*sc;
	struct sf_rx_bufdesc_type0	*c;
	struct mbuf		*m;
{
	struct mbuf		*m_new = NULL;

	if (m == NULL) {
		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
		if (m_new == NULL) {
			printf("sf%d: no memory for rx list -- "
			    "packet dropped!\n", sc->sf_unit);
			return(ENOBUFS);
		}

		MCLGET(m_new, M_DONTWAIT);
		if (!(m_new->m_flags & M_EXT)) {
			printf("sf%d: no memory for rx list -- "
			    "packet dropped!\n", sc->sf_unit);
			m_freem(m_new);
			return(ENOBUFS);
		}
		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
	} else {
		m_new = m;
		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
		m_new->m_data = m_new->m_ext.ext_buf;
	}

	m_adj(m_new, sizeof(u_int64_t));

	c->sf_mbuf = m_new;
	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
	c->sf_valid = 1;

	return(0);
}

/*
 * The starfire is programmed to use 'normal' mode for packet reception,
 * which means we use the consumer/producer model for both the buffer
 * descriptor queue and the completion descriptor queue. The only problem
 * with this is that it involves a lot of register accesses: we have to
 * read the RX completion consumer and producer indexes and the RX buffer
 * producer index, plus the RX completion consumer and RX buffer producer
 * indexes have to be updated. It would have been easier if Adaptec had
 * put each index in a separate register, especially given that the damn
 * NIC has a 512K register space.
 *
 * In spite of all the lovely features that Adaptec crammed into the 6915,
 * it is marred by one truly stupid design flaw, which is that receive
 * buffer addresses must be aligned on a longword boundary. This forces
 * the packet payload to be unaligned, which is suboptimal on the x86 and
 * completely unuseable on the Alpha. Our only recourse is to copy received
 * packets into properly aligned buffers before handing them off.
 */

void sf_rxeof(sc)
	struct sf_softc		*sc;
{
	struct mbuf		*m;
	struct ifnet		*ifp;
	struct sf_rx_bufdesc_type0	*desc;
	struct sf_rx_cmpdesc_type3	*cur_rx;
	u_int32_t		rxcons, rxprod;
	int			cmpprodidx, cmpconsidx, bufprodidx;

	ifp = &sc->arpcom.ac_if;

	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
	cmpconsidx = SF_IDX_LO(rxcons);
	bufprodidx = SF_IDX_LO(rxprod);

	while (cmpconsidx != cmpprodidx) {
		struct mbuf		*m0;

		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
		m = desc->sf_mbuf;
		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
		SF_INC(bufprodidx, SF_RX_DLIST_CNT);

		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
			ifp->if_ierrors++;
			sf_newbuf(sc, desc, m);
			continue;
		}

		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
		    cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
		sf_newbuf(sc, desc, m);
		if (m0 == NULL) {
			ifp->if_ierrors++;
			continue;
		}
		m_adj(m0, ETHER_ALIGN);
		m = m0;

		ifp->if_ipackets++;

#if NBPFILTER > 0
		if (ifp->if_bpf)
			bpf_mtap(ifp->if_bpf, m);
#endif

		/* pass it on. */
		ether_input_mbuf(ifp, m);
	}

	csr_write_4(sc, SF_CQ_CONSIDX,
	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
	csr_write_4(sc, SF_RXDQ_PTR_Q1,
	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);

	return;
}

/*
 * Read the transmit status from the completion queue and release
 * mbufs. Note that the buffer descriptor index in the completion
 * descriptor is an offset from the start of the transmit buffer
 * descriptor list in bytes. This is important because the manual
 * gives the impression that it should match the producer/consumer
 * index, which is the offset in 8 byte blocks.
 */
void sf_txeof(sc)
	struct sf_softc		*sc;
{
	int			txcons, cmpprodidx, cmpconsidx;
	struct sf_tx_cmpdesc_type1 *cur_cmp;
	struct sf_tx_bufdesc_type0 *cur_tx;
	struct ifnet		*ifp;

	ifp = &sc->arpcom.ac_if;

	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
	cmpconsidx = SF_IDX_HI(txcons);

	while (cmpconsidx != cmpprodidx) {
		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);

		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
			ifp->if_opackets++;
		else
			ifp->if_oerrors++;

		sc->sf_tx_cnt--;
		if (cur_tx->sf_mbuf != NULL) {
			m_freem(cur_tx->sf_mbuf);
			cur_tx->sf_mbuf = NULL;
		}
	}

	ifp->if_timer = 0;
	ifp->if_flags &= ~IFF_OACTIVE;

	csr_write_4(sc, SF_CQ_CONSIDX,
	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
	    ((cmpconsidx << 16) & 0xFFFF0000));

	return;
}

int sf_intr(arg)
	void			*arg;
{
	struct sf_softc		*sc;
	struct ifnet		*ifp;
	u_int32_t		status;
	int			claimed = 0;

	sc = arg;
	ifp = &sc->arpcom.ac_if;

	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED))
		return claimed;

	/* Disable interrupts. */
	csr_write_4(sc, SF_IMR, 0x00000000);

	for (;;) {
		status = csr_read_4(sc, SF_ISR);
		if (status)
			csr_write_4(sc, SF_ISR, status);

		if (!(status & SF_INTRS))
			break;

		claimed = 1;

		if (status & SF_ISR_RXDQ1_DMADONE)
			sf_rxeof(sc);

		if (status & SF_ISR_TX_TXDONE)
			sf_txeof(sc);

		if (status & SF_ISR_ABNORMALINTR) {
			if (status & SF_ISR_STATSOFLOW) {
				timeout_del(&sc->sc_stats_tmo);
				sf_stats_update(sc);
			} else
				sf_init(sc);
		}
	}

	/* Re-enable interrupts. */
	csr_write_4(sc, SF_IMR, SF_INTRS);

	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
		sf_start(ifp);

	return claimed;
}

void sf_init(xsc)
	void			*xsc;
{
	struct sf_softc		*sc = xsc;
	struct ifnet		*ifp = &sc->arpcom.ac_if;
	struct mii_data		*mii;
	int			i, s;

	s = splimp();

	mii = &sc->sc_mii;

	sf_stop(sc);
	sf_reset(sc);

	/* Init all the receive filter registers */
	for (i = SF_RXFILT_PERFECT_BASE;
	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
		csr_write_4(sc, i, 0);

	/* Empty stats counter registers. */
	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
		csr_write_4(sc, SF_STATS_BASE +
		    (i + sizeof(u_int32_t)), 0);

	/* Init our MAC address */
	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);

	if (sf_init_rx_ring(sc) == ENOBUFS) {
		printf("sf%d: initialization failed: no "
		    "memory for rx buffers\n", sc->sf_unit);
		(void)splx(s);
		return;
	}

	sf_init_tx_ring(sc);

	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);

	/* If we want promiscuous mode, set the allframes bit. */
	if (ifp->if_flags & IFF_PROMISC) {
		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
	} else {
		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
	}

	if (ifp->if_flags & IFF_BROADCAST) {
		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
	} else {
		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
	}

	/*
	 * Load the multicast filter.
	 */
	sf_setmulti(sc);

	/* Init the completion queue indexes */
	csr_write_4(sc, SF_CQ_CONSIDX, 0);
	csr_write_4(sc, SF_CQ_PRODIDX, 0);

	/* Init the RX completion queue */
	csr_write_4(sc, SF_RXCQ_CTL_1,
	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);

	/* Init RX DMA control. */
	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);

	/* Init the RX buffer descriptor queue. */
	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);

	/* Init the TX completion queue */
	csr_write_4(sc, SF_TXCQ_CTL,
	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);

	/* Init the TX buffer descriptor queue. */
	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
		vtophys(sc->sf_ldata->sf_tx_dlist));
	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
	csr_write_4(sc, SF_TXDQ_CTL,
	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);

	/* Enable autopadding of short TX frames. */
	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);

	/* Enable interrupts. */
	csr_write_4(sc, SF_IMR, SF_INTRS);
	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);

	/* Enable the RX and TX engines. */
	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);

	sf_ifmedia_upd(ifp);

	ifp->if_flags |= IFF_RUNNING;
	ifp->if_flags &= ~IFF_OACTIVE;

	splx(s);

	timeout_set(&sc->sc_stats_tmo, sf_stats_update, sc);
	timeout_add(&sc->sc_stats_tmo, hz);

	return;
}

int sf_encap(sc, c, m_head)
	struct sf_softc		*sc;
	struct sf_tx_bufdesc_type0 *c;
	struct mbuf		*m_head;
{
	int			frag = 0;
	struct sf_frag		*f = NULL;
	struct mbuf		*m;

	m = m_head;

	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
		if (m->m_len != 0) {
			if (frag == SF_MAXFRAGS)
				break;
			f = &c->sf_frags[frag];
			if (frag == 0)
				f->sf_pktlen = m_head->m_pkthdr.len;
			f->sf_fraglen = m->m_len;
			f->sf_addr = vtophys(mtod(m, vm_offset_t));
			frag++;
		}
	}

	if (m != NULL) {
		struct mbuf		*m_new = NULL;

		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
		if (m_new == NULL) {
			printf("sf%d: no memory for tx list", sc->sf_unit);
			return(1);
		}

		if (m_head->m_pkthdr.len > MHLEN) {
			MCLGET(m_new, M_DONTWAIT);
			if (!(m_new->m_flags & M_EXT)) {
				m_freem(m_new);
				printf("sf%d: no memory for tx list",
				    sc->sf_unit);
				return(1);
			}
		}
		m_copydata(m_head, 0, m_head->m_pkthdr.len,
		    mtod(m_new, caddr_t));
		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
		m_freem(m_head);
		m_head = m_new;
		f = &c->sf_frags[0];
		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
		f->sf_addr = vtophys(mtod(m_head, caddr_t));
		frag = 1;
	}

	c->sf_mbuf = m_head;
	c->sf_id = SF_TX_BUFDESC_ID;
	c->sf_fragcnt = frag;
	c->sf_intr = 1;
	c->sf_caltcp = 0;
	c->sf_crcen = 1;

	return(0);
}

void sf_start(ifp)
	struct ifnet		*ifp;
{
	struct sf_softc		*sc;
	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
	struct mbuf		*m_head = NULL;
	int			i, txprod;

	sc = ifp->if_softc;

	if (!sc->sf_link)
		return;

	if (ifp->if_flags & IFF_OACTIVE)
		return;

	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
	i = SF_IDX_HI(txprod) >> 4;

	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
		IFQ_DEQUEUE(&ifp->if_snd, m_head);
		if (m_head == NULL)
			break;

		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
		if (sf_encap(sc, cur_tx, m_head)) {
			m_freem(m_head);
			continue;
		}

#if NBPFILTER > 0
		/*
		 * If there's a BPF listener, bounce a copy of this frame
		 * to him.
		 */
		if (ifp->if_bpf)
			bpf_mtap(ifp->if_bpf, cur_tx->sf_mbuf);
#endif

		SF_INC(i, SF_TX_DLIST_CNT);
		sc->sf_tx_cnt++;
		if (sc->sf_tx_cnt == (SF_TX_DLIST_CNT - 2))
			break;
	}

	if (cur_tx == NULL)
		return;

	/* Transmit */
	csr_write_4(sc, SF_TXDQ_PRODIDX,
	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
	    ((i << 20) & 0xFFFF0000));

	ifp->if_timer = 5;

	return;
}

void sf_stop(sc)
	struct sf_softc		*sc;
{
	int			i;
	struct ifnet		*ifp;

	ifp = &sc->arpcom.ac_if;

	timeout_del(&sc->sc_stats_tmo);

	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
	csr_write_4(sc, SF_CQ_CONSIDX, 0);
	csr_write_4(sc, SF_CQ_PRODIDX, 0);
	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
	csr_write_4(sc, SF_TXCQ_CTL, 0);
	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
	csr_write_4(sc, SF_TXDQ_CTL, 0);
	sf_reset(sc);

	sc->sf_link = 0;

	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
		}
	}

	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
		}
	}

	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);

	return;
}

/*
 * Note: it is important that this function not be interrupted. We
 * use a two-stage register access scheme: if we are interrupted in
 * between setting the indirect address register and reading from the
 * indirect data register, the contents of the address register could
 * be changed out from under us.
 */     
void sf_stats_update(xsc)
	void			*xsc;
{
	struct sf_softc		*sc;
	struct ifnet		*ifp;
	struct mii_data		*mii;
	struct sf_stats		stats;
	u_int32_t		*ptr;
	int			i, s;

	s = splimp();

	sc = xsc;
	ifp = &sc->arpcom.ac_if;
	mii = &sc->sc_mii;

	ptr = (u_int32_t *)&stats;
	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
		    (i + sizeof(u_int32_t)));

	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
		csr_write_4(sc, SF_STATS_BASE +
		    (i + sizeof(u_int32_t)), 0);

	ifp->if_collisions += stats.sf_tx_single_colls +
	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;

	mii_tick(mii);
	if (!sc->sf_link) {
		mii_pollstat(mii);
		if (mii->mii_media_status & IFM_ACTIVE &&
		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
			sc->sf_link++;
		if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
			sf_start(ifp);
	}

	splx(s);

	timeout_add(&sc->sc_stats_tmo, hz);

	return;
}

void sf_watchdog(ifp)
	struct ifnet		*ifp;
{
	struct sf_softc		*sc;

	sc = ifp->if_softc;

	ifp->if_oerrors++;
	printf("sf%d: watchdog timeout\n", sc->sf_unit);

	sf_stop(sc);
	sf_reset(sc);
	sf_init(sc);

	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
		sf_start(ifp);

	return;
}

void sf_shutdown(v)
	void			*v;
{
	struct sf_softc		*sc = (struct sf_softc *)v;
	
	sf_stop(sc);
}

struct cfattach sf_ca = {
	sizeof(struct sf_softc), sf_probe, sf_attach
};

struct cfdriver sf_cd = {
	0, "sf", DV_IFNET
};