1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
|
/* $OpenBSD: rf_dagdegrd.c,v 1.3 2000/01/07 14:50:20 peter Exp $ */
/* $NetBSD: rf_dagdegrd.c,v 1.4 1999/08/13 03:41:53 oster Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* rf_dagdegrd.c
*
* code for creating degraded read DAGs
*/
#include "rf_types.h"
#include "rf_raid.h"
#include "rf_dag.h"
#include "rf_dagutils.h"
#include "rf_dagfuncs.h"
#include "rf_threadid.h"
#include "rf_debugMem.h"
#include "rf_memchunk.h"
#include "rf_general.h"
#include "rf_dagdegrd.h"
/******************************************************************************
*
* General comments on DAG creation:
*
* All DAGs in this file use roll-away error recovery. Each DAG has a single
* commit node, usually called "Cmt." If an error occurs before the Cmt node
* is reached, the execution engine will halt forward execution and work
* backward through the graph, executing the undo functions. Assuming that
* each node in the graph prior to the Cmt node are undoable and atomic - or -
* does not make changes to permanent state, the graph will fail atomically.
* If an error occurs after the Cmt node executes, the engine will roll-forward
* through the graph, blindly executing nodes until it reaches the end.
* If a graph reaches the end, it is assumed to have completed successfully.
*
* A graph has only 1 Cmt node.
*
*/
/******************************************************************************
*
* The following wrappers map the standard DAG creation interface to the
* DAG creation routines. Additionally, these wrappers enable experimentation
* with new DAG structures by providing an extra level of indirection, allowing
* the DAG creation routines to be replaced at this single point.
*/
void
rf_CreateRaidFiveDegradedReadDAG(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList)
{
rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
&rf_xorRecoveryFuncs);
}
/******************************************************************************
*
* DAG creation code begins here
*/
/******************************************************************************
* Create a degraded read DAG for RAID level 1
*
* Hdr -> Nil -> R(p/s)d -> Commit -> Trm
*
* The "Rd" node reads data from the surviving disk in the mirror pair
* Rpd - read of primary copy
* Rsd - read of secondary copy
*
* Parameters: raidPtr - description of the physical array
* asmap - logical & physical addresses for this access
* bp - buffer ptr (for holding write data)
* flags - general flags (e.g. disk locking)
* allocList - list of memory allocated in DAG creation
*****************************************************************************/
void
rf_CreateRaidOneDegradedReadDAG(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList)
{
RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
RF_StripeNum_t parityStripeID;
RF_ReconUnitNum_t which_ru;
RF_PhysDiskAddr_t *pda;
int useMirror, i;
useMirror = 0;
parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
asmap->raidAddress, &which_ru);
if (rf_dagDebug) {
printf("[Creating RAID level 1 degraded read DAG]\n");
}
dag_h->creator = "RaidOneDegradedReadDAG";
/* alloc the Wnd nodes and the Wmir node */
if (asmap->numDataFailed == 0)
useMirror = RF_FALSE;
else
useMirror = RF_TRUE;
/* total number of nodes = 1 + (block + commit + terminator) */
RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
i = 0;
rdNode = &nodes[i];
i++;
blockNode = &nodes[i];
i++;
commitNode = &nodes[i];
i++;
termNode = &nodes[i];
i++;
/* this dag can not commit until the commit node is reached. errors
* prior to the commit point imply the dag has failed and must be
* retried */
dag_h->numCommitNodes = 1;
dag_h->numCommits = 0;
dag_h->numSuccedents = 1;
/* initialize the block, commit, and terminator nodes */
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
pda = asmap->physInfo;
RF_ASSERT(pda != NULL);
/* parityInfo must describe entire parity unit */
RF_ASSERT(asmap->parityInfo->next == NULL);
/* initialize the data node */
if (!useMirror) {
/* read primary copy of data */
rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
rdNode->params[0].p = pda;
rdNode->params[1].p = pda->bufPtr;
rdNode->params[2].v = parityStripeID;
rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
} else {
/* read secondary copy of data */
rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
rdNode->params[0].p = asmap->parityInfo;
rdNode->params[1].p = pda->bufPtr;
rdNode->params[2].v = parityStripeID;
rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
}
/* connect header to block node */
RF_ASSERT(dag_h->numSuccedents == 1);
RF_ASSERT(blockNode->numAntecedents == 0);
dag_h->succedents[0] = blockNode;
/* connect block node to rdnode */
RF_ASSERT(blockNode->numSuccedents == 1);
RF_ASSERT(rdNode->numAntecedents == 1);
blockNode->succedents[0] = rdNode;
rdNode->antecedents[0] = blockNode;
rdNode->antType[0] = rf_control;
/* connect rdnode to commit node */
RF_ASSERT(rdNode->numSuccedents == 1);
RF_ASSERT(commitNode->numAntecedents == 1);
rdNode->succedents[0] = commitNode;
commitNode->antecedents[0] = rdNode;
commitNode->antType[0] = rf_control;
/* connect commit node to terminator */
RF_ASSERT(commitNode->numSuccedents == 1);
RF_ASSERT(termNode->numAntecedents == 1);
RF_ASSERT(termNode->numSuccedents == 0);
commitNode->succedents[0] = termNode;
termNode->antecedents[0] = commitNode;
termNode->antType[0] = rf_control;
}
/******************************************************************************
*
* creates a DAG to perform a degraded-mode read of data within one stripe.
* This DAG is as follows:
*
* Hdr -> Block -> Rud -> Xor -> Cmt -> T
* -> Rrd ->
* -> Rp -->
*
* Each R node is a successor of the L node
* One successor arc from each R node goes to C, and the other to X
* There is one Rud for each chunk of surviving user data requested by the
* user, and one Rrd for each chunk of surviving user data _not_ being read by
* the user
* R = read, ud = user data, rd = recovery (surviving) data, p = parity
* X = XOR, C = Commit, T = terminate
*
* The block node guarantees a single source node.
*
* Note: The target buffer for the XOR node is set to the actual user buffer
* where the failed data is supposed to end up. This buffer is zero'd by the
* code here. Thus, if you create a degraded read dag, use it, and then
* re-use, you have to be sure to zero the target buffer prior to the re-use.
*
* The recfunc argument at the end specifies the name and function used for
* the redundancy
* recovery function.
*
*****************************************************************************/
void
rf_CreateDegradedReadDAG(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList,
RF_RedFuncs_t * recFunc)
{
RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *xorNode, *blockNode;
RF_DagNode_t *commitNode, *rpNode, *termNode;
int nNodes, nRrdNodes, nRudNodes, nXorBufs, i;
int j, paramNum;
RF_SectorCount_t sectorsPerSU;
RF_ReconUnitNum_t which_ru;
char *overlappingPDAs;/* a temporary array of flags */
RF_AccessStripeMapHeader_t *new_asm_h[2];
RF_PhysDiskAddr_t *pda, *parityPDA;
RF_StripeNum_t parityStripeID;
RF_PhysDiskAddr_t *failedPDA;
RF_RaidLayout_t *layoutPtr;
char *rpBuf;
layoutPtr = &(raidPtr->Layout);
/* failedPDA points to the pda within the asm that targets the failed
* disk */
failedPDA = asmap->failedPDAs[0];
parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
asmap->raidAddress, &which_ru);
sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
if (rf_dagDebug) {
printf("[Creating degraded read DAG]\n");
}
RF_ASSERT(asmap->numDataFailed == 1);
dag_h->creator = "DegradedReadDAG";
/*
* generate two ASMs identifying the surviving data we need
* in order to recover the lost data
*/
/* overlappingPDAs array must be zero'd */
RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs,
&rpBuf, overlappingPDAs, allocList);
/*
* create all the nodes at once
*
* -1 because no access is generated for the failed pda
*/
nRudNodes = asmap->numStripeUnitsAccessed - 1;
nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
nNodes = 5 + nRudNodes + nRrdNodes; /* lock, unlock, xor, Rp, Rud,
* Rrd */
RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *),
allocList);
i = 0;
blockNode = &nodes[i];
i++;
commitNode = &nodes[i];
i++;
xorNode = &nodes[i];
i++;
rpNode = &nodes[i];
i++;
termNode = &nodes[i];
i++;
rudNodes = &nodes[i];
i += nRudNodes;
rrdNodes = &nodes[i];
i += nRrdNodes;
RF_ASSERT(i == nNodes);
/* initialize nodes */
dag_h->numCommitNodes = 1;
dag_h->numCommits = 0;
/* this dag can not commit until the commit node is reached errors
* prior to the commit point imply the dag has failed */
dag_h->numSuccedents = 1;
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc,
NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h,
recFunc->SimpleName, allocList);
/* fill in the Rud nodes */
for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) {
if (pda == failedPDA) {
i--;
continue;
}
rf_InitNode(&rudNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
"Rud", allocList);
RF_ASSERT(pda);
rudNodes[i].params[0].p = pda;
rudNodes[i].params[1].p = pda->bufPtr;
rudNodes[i].params[2].v = parityStripeID;
rudNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
}
/* fill in the Rrd nodes */
i = 0;
if (new_asm_h[0]) {
for (pda = new_asm_h[0]->stripeMap->physInfo;
i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
i++, pda = pda->next) {
rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
dag_h, "Rrd", allocList);
RF_ASSERT(pda);
rrdNodes[i].params[0].p = pda;
rrdNodes[i].params[1].p = pda->bufPtr;
rrdNodes[i].params[2].v = parityStripeID;
rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
}
}
if (new_asm_h[1]) {
for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
j++, pda = pda->next) {
rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc,
rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
dag_h, "Rrd", allocList);
RF_ASSERT(pda);
rrdNodes[i + j].params[0].p = pda;
rrdNodes[i + j].params[1].p = pda->bufPtr;
rrdNodes[i + j].params[2].v = parityStripeID;
rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
}
}
/* make a PDA for the parity unit */
RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
parityPDA->row = asmap->parityInfo->row;
parityPDA->col = asmap->parityInfo->col;
parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
* sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
parityPDA->numSector = failedPDA->numSector;
/* initialize the Rp node */
rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList);
rpNode->params[0].p = parityPDA;
rpNode->params[1].p = rpBuf;
rpNode->params[2].v = parityStripeID;
rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
/*
* the last and nastiest step is to assign all
* the parameters of the Xor node
*/
paramNum = 0;
for (i = 0; i < nRrdNodes; i++) {
/* all the Rrd nodes need to be xored together */
xorNode->params[paramNum++] = rrdNodes[i].params[0];
xorNode->params[paramNum++] = rrdNodes[i].params[1];
}
for (i = 0; i < nRudNodes; i++) {
/* any Rud nodes that overlap the failed access need to be
* xored in */
if (overlappingPDAs[i]) {
RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
bcopy((char *) rudNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t));
rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
xorNode->params[paramNum++].p = pda;
xorNode->params[paramNum++].p = pda->bufPtr;
}
}
RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
/* install parity pda as last set of params to be xor'd */
xorNode->params[paramNum++].p = parityPDA;
xorNode->params[paramNum++].p = rpBuf;
/*
* the last 2 params to the recovery xor node are
* the failed PDA and the raidPtr
*/
xorNode->params[paramNum++].p = failedPDA;
xorNode->params[paramNum++].p = raidPtr;
RF_ASSERT(paramNum == 2 * nXorBufs + 2);
/*
* The xor node uses results[0] as the target buffer.
* Set pointer and zero the buffer. In the kernel, this
* may be a user buffer in which case we have to remap it.
*/
xorNode->results[0] = failedPDA->bufPtr;
RF_BZERO(bp, failedPDA->bufPtr, rf_RaidAddressToByte(raidPtr,
failedPDA->numSector));
/* connect nodes to form graph */
/* connect the header to the block node */
RF_ASSERT(dag_h->numSuccedents == 1);
RF_ASSERT(blockNode->numAntecedents == 0);
dag_h->succedents[0] = blockNode;
/* connect the block node to the read nodes */
RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes));
RF_ASSERT(rpNode->numAntecedents == 1);
blockNode->succedents[0] = rpNode;
rpNode->antecedents[0] = blockNode;
rpNode->antType[0] = rf_control;
for (i = 0; i < nRrdNodes; i++) {
RF_ASSERT(rrdNodes[i].numSuccedents == 1);
blockNode->succedents[1 + i] = &rrdNodes[i];
rrdNodes[i].antecedents[0] = blockNode;
rrdNodes[i].antType[0] = rf_control;
}
for (i = 0; i < nRudNodes; i++) {
RF_ASSERT(rudNodes[i].numSuccedents == 1);
blockNode->succedents[1 + nRrdNodes + i] = &rudNodes[i];
rudNodes[i].antecedents[0] = blockNode;
rudNodes[i].antType[0] = rf_control;
}
/* connect the read nodes to the xor node */
RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes));
RF_ASSERT(rpNode->numSuccedents == 1);
rpNode->succedents[0] = xorNode;
xorNode->antecedents[0] = rpNode;
xorNode->antType[0] = rf_trueData;
for (i = 0; i < nRrdNodes; i++) {
RF_ASSERT(rrdNodes[i].numSuccedents == 1);
rrdNodes[i].succedents[0] = xorNode;
xorNode->antecedents[1 + i] = &rrdNodes[i];
xorNode->antType[1 + i] = rf_trueData;
}
for (i = 0; i < nRudNodes; i++) {
RF_ASSERT(rudNodes[i].numSuccedents == 1);
rudNodes[i].succedents[0] = xorNode;
xorNode->antecedents[1 + nRrdNodes + i] = &rudNodes[i];
xorNode->antType[1 + nRrdNodes + i] = rf_trueData;
}
/* connect the xor node to the commit node */
RF_ASSERT(xorNode->numSuccedents == 1);
RF_ASSERT(commitNode->numAntecedents == 1);
xorNode->succedents[0] = commitNode;
commitNode->antecedents[0] = xorNode;
commitNode->antType[0] = rf_control;
/* connect the termNode to the commit node */
RF_ASSERT(commitNode->numSuccedents == 1);
RF_ASSERT(termNode->numAntecedents == 1);
RF_ASSERT(termNode->numSuccedents == 0);
commitNode->succedents[0] = termNode;
termNode->antType[0] = rf_control;
termNode->antecedents[0] = commitNode;
}
/******************************************************************************
* Create a degraded read DAG for Chained Declustering
*
* Hdr -> Nil -> R(p/s)d -> Cmt -> Trm
*
* The "Rd" node reads data from the surviving disk in the mirror pair
* Rpd - read of primary copy
* Rsd - read of secondary copy
*
* Parameters: raidPtr - description of the physical array
* asmap - logical & physical addresses for this access
* bp - buffer ptr (for holding write data)
* flags - general flags (e.g. disk locking)
* allocList - list of memory allocated in DAG creation
*****************************************************************************/
void
rf_CreateRaidCDegradedReadDAG(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList)
{
RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
RF_StripeNum_t parityStripeID;
int useMirror, i, shiftable;
RF_ReconUnitNum_t which_ru;
RF_PhysDiskAddr_t *pda;
if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
shiftable = RF_TRUE;
} else {
shiftable = RF_FALSE;
}
useMirror = 0;
parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
asmap->raidAddress, &which_ru);
if (rf_dagDebug) {
printf("[Creating RAID C degraded read DAG]\n");
}
dag_h->creator = "RaidCDegradedReadDAG";
/* alloc the Wnd nodes and the Wmir node */
if (asmap->numDataFailed == 0)
useMirror = RF_FALSE;
else
useMirror = RF_TRUE;
/* total number of nodes = 1 + (block + commit + terminator) */
RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
i = 0;
rdNode = &nodes[i];
i++;
blockNode = &nodes[i];
i++;
commitNode = &nodes[i];
i++;
termNode = &nodes[i];
i++;
/*
* This dag can not commit until the commit node is reached.
* Errors prior to the commit point imply the dag has failed
* and must be retried.
*/
dag_h->numCommitNodes = 1;
dag_h->numCommits = 0;
dag_h->numSuccedents = 1;
/* initialize the block, commit, and terminator nodes */
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
pda = asmap->physInfo;
RF_ASSERT(pda != NULL);
/* parityInfo must describe entire parity unit */
RF_ASSERT(asmap->parityInfo->next == NULL);
/* initialize the data node */
if (!useMirror) {
rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
if (shiftable && rf_compute_workload_shift(raidPtr, pda)) {
/* shift this read to the next disk in line */
rdNode->params[0].p = asmap->parityInfo;
rdNode->params[1].p = pda->bufPtr;
rdNode->params[2].v = parityStripeID;
rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
} else {
/* read primary copy */
rdNode->params[0].p = pda;
rdNode->params[1].p = pda->bufPtr;
rdNode->params[2].v = parityStripeID;
rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
}
} else {
/* read secondary copy of data */
rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
rdNode->params[0].p = asmap->parityInfo;
rdNode->params[1].p = pda->bufPtr;
rdNode->params[2].v = parityStripeID;
rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
}
/* connect header to block node */
RF_ASSERT(dag_h->numSuccedents == 1);
RF_ASSERT(blockNode->numAntecedents == 0);
dag_h->succedents[0] = blockNode;
/* connect block node to rdnode */
RF_ASSERT(blockNode->numSuccedents == 1);
RF_ASSERT(rdNode->numAntecedents == 1);
blockNode->succedents[0] = rdNode;
rdNode->antecedents[0] = blockNode;
rdNode->antType[0] = rf_control;
/* connect rdnode to commit node */
RF_ASSERT(rdNode->numSuccedents == 1);
RF_ASSERT(commitNode->numAntecedents == 1);
rdNode->succedents[0] = commitNode;
commitNode->antecedents[0] = rdNode;
commitNode->antType[0] = rf_control;
/* connect commit node to terminator */
RF_ASSERT(commitNode->numSuccedents == 1);
RF_ASSERT(termNode->numAntecedents == 1);
RF_ASSERT(termNode->numSuccedents == 0);
commitNode->succedents[0] = termNode;
termNode->antecedents[0] = commitNode;
termNode->antType[0] = rf_control;
}
/*
* XXX move this elsewhere?
*/
void
rf_DD_GenerateFailedAccessASMs(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_PhysDiskAddr_t ** pdap,
int *nNodep,
RF_PhysDiskAddr_t ** pqpdap,
int *nPQNodep,
RF_AllocListElem_t * allocList)
{
RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
int PDAPerDisk, i;
RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
int numDataCol = layoutPtr->numDataCol;
int state;
RF_SectorNum_t suoff, suend;
unsigned firstDataCol, napdas, count;
RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0;
RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
RF_PhysDiskAddr_t *pda_p;
RF_PhysDiskAddr_t *phys_p;
RF_RaidAddr_t sosAddr;
/* determine how many pda's we will have to generate per unaccess
* stripe. If there is only one failed data unit, it is one; if two,
* possibly two, depending wether they overlap. */
fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
fone_end = fone_start + fone->numSector;
#define CONS_PDA(if,start,num) \
pda_p->row = asmap->if->row; pda_p->col = asmap->if->col; \
pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
pda_p->numSector = num; \
pda_p->next = NULL; \
RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
if (asmap->numDataFailed == 1) {
PDAPerDisk = 1;
state = 1;
RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
pda_p = *pqpdap;
/* build p */
CONS_PDA(parityInfo, fone_start, fone->numSector);
pda_p->type = RF_PDA_TYPE_PARITY;
pda_p++;
/* build q */
CONS_PDA(qInfo, fone_start, fone->numSector);
pda_p->type = RF_PDA_TYPE_Q;
} else {
ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
ftwo_end = ftwo_start + ftwo->numSector;
if (fone->numSector + ftwo->numSector > secPerSU) {
PDAPerDisk = 1;
state = 2;
RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
pda_p = *pqpdap;
CONS_PDA(parityInfo, 0, secPerSU);
pda_p->type = RF_PDA_TYPE_PARITY;
pda_p++;
CONS_PDA(qInfo, 0, secPerSU);
pda_p->type = RF_PDA_TYPE_Q;
} else {
PDAPerDisk = 2;
state = 3;
/* four of them, fone, then ftwo */
RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
pda_p = *pqpdap;
CONS_PDA(parityInfo, fone_start, fone->numSector);
pda_p->type = RF_PDA_TYPE_PARITY;
pda_p++;
CONS_PDA(qInfo, fone_start, fone->numSector);
pda_p->type = RF_PDA_TYPE_Q;
pda_p++;
CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
pda_p->type = RF_PDA_TYPE_PARITY;
pda_p++;
CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
pda_p->type = RF_PDA_TYPE_Q;
}
}
/* figure out number of nonaccessed pda */
napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0));
*nPQNodep = PDAPerDisk;
/* sweep over the over accessed pda's, figuring out the number of
* additional pda's to generate. Of course, skip the failed ones */
count = 0;
for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) {
if ((pda_p == fone) || (pda_p == ftwo))
continue;
suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector);
suend = suoff + pda_p->numSector;
switch (state) {
case 1: /* one failed PDA to overlap */
/* if a PDA doesn't contain the failed unit, it can
* only miss the start or end, not both */
if ((suoff > fone_start) || (suend < fone_end))
count++;
break;
case 2: /* whole stripe */
if (suoff) /* leak at begining */
count++;
if (suend < numDataCol) /* leak at end */
count++;
break;
case 3: /* two disjoint units */
if ((suoff > fone_start) || (suend < fone_end))
count++;
if ((suoff > ftwo_start) || (suend < ftwo_end))
count++;
break;
default:
RF_PANIC();
}
}
napdas += count;
*nNodep = napdas;
if (napdas == 0)
return; /* short circuit */
/* allocate up our list of pda's */
RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
*pdap = pda_p;
/* linkem together */
for (i = 0; i < (napdas - 1); i++)
pda_p[i].next = pda_p + (i + 1);
/* march through the one's up to the first accessed disk */
firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol;
sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
for (i = 0; i < firstDataCol; i++) {
if ((pda_p - (*pdap)) == napdas)
continue;
pda_p->type = RF_PDA_TYPE_DATA;
pda_p->raidAddress = sosAddr + (i * secPerSU);
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
/* skip over dead disks */
if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
continue;
switch (state) {
case 1: /* fone */
pda_p->numSector = fone->numSector;
pda_p->raidAddress += fone_start;
pda_p->startSector += fone_start;
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
break;
case 2: /* full stripe */
pda_p->numSector = secPerSU;
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
break;
case 3: /* two slabs */
pda_p->numSector = fone->numSector;
pda_p->raidAddress += fone_start;
pda_p->startSector += fone_start;
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
pda_p++;
pda_p->type = RF_PDA_TYPE_DATA;
pda_p->raidAddress = sosAddr + (i * secPerSU);
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
pda_p->numSector = ftwo->numSector;
pda_p->raidAddress += ftwo_start;
pda_p->startSector += ftwo_start;
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
break;
default:
RF_PANIC();
}
pda_p++;
}
/* march through the touched stripe units */
for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) {
if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1]))
continue;
suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector);
suend = suoff + phys_p->numSector;
switch (state) {
case 1: /* single buffer */
if (suoff > fone_start) {
RF_ASSERT(suend >= fone_end);
/* The data read starts after the mapped
* access, snip off the begining */
pda_p->numSector = suoff - fone_start;
pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
pda_p++;
}
if (suend < fone_end) {
RF_ASSERT(suoff <= fone_start);
/* The data read stops before the end of the
* failed access, extend */
pda_p->numSector = fone_end - suend;
pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
pda_p++;
}
break;
case 2: /* whole stripe unit */
RF_ASSERT((suoff == 0) || (suend == secPerSU));
if (suend < secPerSU) { /* short read, snip from end
* on */
pda_p->numSector = secPerSU - suend;
pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
pda_p++;
} else
if (suoff > 0) { /* short at front */
pda_p->numSector = suoff;
pda_p->raidAddress = sosAddr + (i * secPerSU);
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
pda_p++;
}
break;
case 3: /* two nonoverlapping failures */
if ((suoff > fone_start) || (suend < fone_end)) {
if (suoff > fone_start) {
RF_ASSERT(suend >= fone_end);
/* The data read starts after the
* mapped access, snip off the
* begining */
pda_p->numSector = suoff - fone_start;
pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
pda_p++;
}
if (suend < fone_end) {
RF_ASSERT(suoff <= fone_start);
/* The data read stops before the end
* of the failed access, extend */
pda_p->numSector = fone_end - suend;
pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
pda_p++;
}
}
if ((suoff > ftwo_start) || (suend < ftwo_end)) {
if (suoff > ftwo_start) {
RF_ASSERT(suend >= ftwo_end);
/* The data read starts after the
* mapped access, snip off the
* begining */
pda_p->numSector = suoff - ftwo_start;
pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start;
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
pda_p++;
}
if (suend < ftwo_end) {
RF_ASSERT(suoff <= ftwo_start);
/* The data read stops before the end
* of the failed access, extend */
pda_p->numSector = ftwo_end - suend;
pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
pda_p++;
}
}
break;
default:
RF_PANIC();
}
}
/* after the last accessed disk */
for (; i < numDataCol; i++) {
if ((pda_p - (*pdap)) == napdas)
continue;
pda_p->type = RF_PDA_TYPE_DATA;
pda_p->raidAddress = sosAddr + (i * secPerSU);
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
/* skip over dead disks */
if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
continue;
switch (state) {
case 1: /* fone */
pda_p->numSector = fone->numSector;
pda_p->raidAddress += fone_start;
pda_p->startSector += fone_start;
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
break;
case 2: /* full stripe */
pda_p->numSector = secPerSU;
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
break;
case 3: /* two slabs */
pda_p->numSector = fone->numSector;
pda_p->raidAddress += fone_start;
pda_p->startSector += fone_start;
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
pda_p++;
pda_p->type = RF_PDA_TYPE_DATA;
pda_p->raidAddress = sosAddr + (i * secPerSU);
(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
pda_p->numSector = ftwo->numSector;
pda_p->raidAddress += ftwo_start;
pda_p->startSector += ftwo_start;
RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
break;
default:
RF_PANIC();
}
pda_p++;
}
RF_ASSERT(pda_p - *pdap == napdas);
return;
}
#define INIT_DISK_NODE(node,name) \
rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
(node)->succedents[0] = unblockNode; \
(node)->succedents[1] = recoveryNode; \
(node)->antecedents[0] = blockNode; \
(node)->antType[0] = rf_control
#define DISK_NODE_PARAMS(_node_,_p_) \
(_node_).params[0].p = _p_ ; \
(_node_).params[1].p = (_p_)->bufPtr; \
(_node_).params[2].v = parityStripeID; \
(_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
void
rf_DoubleDegRead(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList,
char *redundantReadNodeName,
char *recoveryNodeName,
int (*recovFunc) (RF_DagNode_t *))
{
RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode,
*unblockNode, *rpNodes, *rqNodes, *termNode;
RF_PhysDiskAddr_t *pda, *pqPDAs;
RF_PhysDiskAddr_t *npdas;
int nNodes, nRrdNodes, nRudNodes, i;
RF_ReconUnitNum_t which_ru;
int nReadNodes, nPQNodes;
RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1];
RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
if (rf_dagDebug)
printf("[Creating Double Degraded Read DAG]\n");
rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes;
nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes;
RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
i = 0;
blockNode = &nodes[i];
i += 1;
unblockNode = &nodes[i];
i += 1;
recoveryNode = &nodes[i];
i += 1;
termNode = &nodes[i];
i += 1;
rudNodes = &nodes[i];
i += nRudNodes;
rrdNodes = &nodes[i];
i += nRrdNodes;
rpNodes = &nodes[i];
i += nPQNodes;
rqNodes = &nodes[i];
i += nPQNodes;
RF_ASSERT(i == nNodes);
dag_h->numSuccedents = 1;
dag_h->succedents[0] = blockNode;
dag_h->creator = "DoubleDegRead";
dag_h->numCommits = 0;
dag_h->numCommitNodes = 1; /* unblock */
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList);
termNode->antecedents[0] = unblockNode;
termNode->antType[0] = rf_control;
termNode->antecedents[1] = recoveryNode;
termNode->antType[1] = rf_control;
/* init the block and unblock nodes */
/* The block node has all nodes except itself, unblock and recovery as
* successors. Similarly for predecessors of the unblock. */
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList);
for (i = 0; i < nReadNodes; i++) {
blockNode->succedents[i] = rudNodes + i;
unblockNode->antecedents[i] = rudNodes + i;
unblockNode->antType[i] = rf_control;
}
unblockNode->succedents[0] = termNode;
/* The recovery node has all the reads as predecessors, and the term
* node as successors. It gets a pda as a param from each of the read
* nodes plus the raidPtr. For each failed unit is has a result pda. */
rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
1, /* succesors */
nReadNodes, /* preds */
nReadNodes + 2, /* params */
asmap->numDataFailed, /* results */
dag_h, recoveryNodeName, allocList);
recoveryNode->succedents[0] = termNode;
for (i = 0; i < nReadNodes; i++) {
recoveryNode->antecedents[i] = rudNodes + i;
recoveryNode->antType[i] = rf_trueData;
}
/* build the read nodes, then come back and fill in recovery params
* and results */
pda = asmap->physInfo;
for (i = 0; i < nRudNodes; pda = pda->next) {
if ((pda == failedPDA) || (pda == failedPDAtwo))
continue;
INIT_DISK_NODE(rudNodes + i, "Rud");
RF_ASSERT(pda);
DISK_NODE_PARAMS(rudNodes[i], pda);
i++;
}
pda = npdas;
for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
INIT_DISK_NODE(rrdNodes + i, "Rrd");
RF_ASSERT(pda);
DISK_NODE_PARAMS(rrdNodes[i], pda);
}
/* redundancy pdas */
pda = pqPDAs;
INIT_DISK_NODE(rpNodes, "Rp");
RF_ASSERT(pda);
DISK_NODE_PARAMS(rpNodes[0], pda);
pda++;
INIT_DISK_NODE(rqNodes, redundantReadNodeName);
RF_ASSERT(pda);
DISK_NODE_PARAMS(rqNodes[0], pda);
if (nPQNodes == 2) {
pda++;
INIT_DISK_NODE(rpNodes + 1, "Rp");
RF_ASSERT(pda);
DISK_NODE_PARAMS(rpNodes[1], pda);
pda++;
INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName);
RF_ASSERT(pda);
DISK_NODE_PARAMS(rqNodes[1], pda);
}
/* fill in recovery node params */
for (i = 0; i < nReadNodes; i++)
recoveryNode->params[i] = rudNodes[i].params[0]; /* pda */
recoveryNode->params[i++].p = (void *) raidPtr;
recoveryNode->params[i++].p = (void *) asmap;
recoveryNode->results[0] = failedPDA;
if (asmap->numDataFailed == 2)
recoveryNode->results[1] = failedPDAtwo;
/* zero fill the target data buffers? */
}
|