summaryrefslogtreecommitdiff
path: root/sys/dev/raidframe/rf_dagdegwr.c
blob: 7e84a1512c2f3581bada38f8ab9dddd0790c8f2f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
/*	$OpenBSD: rf_dagdegwr.c,v 1.3 2000/01/07 14:50:20 peter Exp $	*/
/*	$NetBSD: rf_dagdegwr.c,v 1.4 1999/08/13 03:41:53 oster Exp $	*/
/*
 * Copyright (c) 1995 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

/*
 * rf_dagdegwr.c
 *
 * code for creating degraded write DAGs
 *
 */

#include "rf_types.h"
#include "rf_raid.h"
#include "rf_dag.h"
#include "rf_dagutils.h"
#include "rf_dagfuncs.h"
#include "rf_threadid.h"
#include "rf_debugMem.h"
#include "rf_memchunk.h"
#include "rf_general.h"
#include "rf_dagdegwr.h"


/******************************************************************************
 *
 * General comments on DAG creation:
 *
 * All DAGs in this file use roll-away error recovery.  Each DAG has a single
 * commit node, usually called "Cmt."  If an error occurs before the Cmt node
 * is reached, the execution engine will halt forward execution and work
 * backward through the graph, executing the undo functions.  Assuming that
 * each node in the graph prior to the Cmt node are undoable and atomic - or -
 * does not make changes to permanent state, the graph will fail atomically.
 * If an error occurs after the Cmt node executes, the engine will roll-forward
 * through the graph, blindly executing nodes until it reaches the end.
 * If a graph reaches the end, it is assumed to have completed successfully.
 *
 * A graph has only 1 Cmt node.
 *
 */


/******************************************************************************
 *
 * The following wrappers map the standard DAG creation interface to the
 * DAG creation routines.  Additionally, these wrappers enable experimentation
 * with new DAG structures by providing an extra level of indirection, allowing
 * the DAG creation routines to be replaced at this single point.
 */

static 
RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
{
	rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
	    flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
}

void 
rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList)
	RF_Raid_t *raidPtr;
	RF_AccessStripeMap_t *asmap;
	RF_DagHeader_t *dag_h;
	void   *bp;
	RF_RaidAccessFlags_t flags;
	RF_AllocListElem_t *allocList;
{
	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
	RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];

	RF_ASSERT(asmap->numDataFailed == 1);
	dag_h->creator = "DegradedWriteDAG";

	/* if the access writes only a portion of the failed unit, and also
	 * writes some portion of at least one surviving unit, we create two
	 * DAGs, one for the failed component and one for the non-failed
	 * component, and do them sequentially.  Note that the fact that we're
	 * accessing only a portion of the failed unit indicates that the
	 * access either starts or ends in the failed unit, and hence we need
	 * create only two dags.  This is inefficient in that the same data or
	 * parity can get read and written twice using this structure.  I need
	 * to fix this to do the access all at once. */
	RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit));
	rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList);
}



/******************************************************************************
 *
 * DAG creation code begins here
 */



/******************************************************************************
 *
 * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
 * write, which is as follows
 *
 *                                        / {Wnq} --\
 * hdr -> blockNode ->  Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
 *                  \  {Rod} /            \  Wnd ---/
 *                                        \ {Wnd} -/
 *
 * commit nodes: Xor, Wnd
 *
 * IMPORTANT:
 * This DAG generator does not work for double-degraded archs since it does not
 * generate Q
 *
 * This dag is essentially identical to the large-write dag, except that the
 * write to the failed data unit is suppressed.
 *
 * IMPORTANT:  this dag does not work in the case where the access writes only
 * a portion of the failed unit, and also writes some portion of at least one
 * surviving SU.  this case is handled in CreateDegradedWriteDAG above.
 *
 * The block & unblock nodes are leftovers from a previous version.  They
 * do nothing, but I haven't deleted them because it would be a tremendous
 * effort to put them back in.
 *
 * This dag is used whenever a one of the data units in a write has failed.
 * If it is the parity unit that failed, the nonredundant write dag (below)
 * is used.
 *****************************************************************************/

void 
rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
    allocList, nfaults, redFunc, allowBufferRecycle)
	RF_Raid_t *raidPtr;
	RF_AccessStripeMap_t *asmap;
	RF_DagHeader_t *dag_h;
	void   *bp;
	RF_RaidAccessFlags_t flags;
	RF_AllocListElem_t *allocList;
	int     nfaults;
	int     (*redFunc) (RF_DagNode_t *);
	int     allowBufferRecycle;
{
	int     nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
	        rdnodesFaked;
	RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
	RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode;
	RF_SectorCount_t sectorsPerSU;
	RF_ReconUnitNum_t which_ru;
	char   *xorTargetBuf = NULL;	/* the target buffer for the XOR
					 * operation */
	char   *overlappingPDAs;/* a temporary array of flags */
	RF_AccessStripeMapHeader_t *new_asm_h[2];
	RF_PhysDiskAddr_t *pda, *parityPDA;
	RF_StripeNum_t parityStripeID;
	RF_PhysDiskAddr_t *failedPDA;
	RF_RaidLayout_t *layoutPtr;

	layoutPtr = &(raidPtr->Layout);
	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
	    &which_ru);
	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
	/* failedPDA points to the pda within the asm that targets the failed
	 * disk */
	failedPDA = asmap->failedPDAs[0];

	if (rf_dagDebug)
		printf("[Creating degraded-write DAG]\n");

	RF_ASSERT(asmap->numDataFailed == 1);
	dag_h->creator = "SimpleDegradedWriteDAG";

	/*
         * Generate two ASMs identifying the surviving data
         * we need in order to recover the lost data.
         */
	/* overlappingPDAs array must be zero'd */
	RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
	    &nXorBufs, NULL, overlappingPDAs, allocList);

	/* create all the nodes at once */
	nWndNodes = asmap->numStripeUnitsAccessed - 1;	/* no access is
							 * generated for the
							 * failed pda */

	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
	/*
         * XXX
         *
         * There's a bug with a complete stripe overwrite- that means 0 reads
         * of old data, and the rest of the DAG generation code doesn't like
         * that. A release is coming, and I don't wanna risk breaking a critical
         * DAG generator, so here's what I'm gonna do- if there's no read nodes,
         * I'm gonna fake there being a read node, and I'm gonna swap in a
         * no-op node in its place (to make all the link-up code happy).
         * This should be fixed at some point.  --jimz
         */
	if (nRrdNodes == 0) {
		nRrdNodes = 1;
		rdnodesFaked = 1;
	} else {
		rdnodesFaked = 0;
	}
	/* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
	nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
	RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t),
	    (RF_DagNode_t *), allocList);
	i = 0;
	blockNode = &nodes[i];
	i += 1;
	commitNode = &nodes[i];
	i += 1;
	unblockNode = &nodes[i];
	i += 1;
	termNode = &nodes[i];
	i += 1;
	xorNode = &nodes[i];
	i += 1;
	wnpNode = &nodes[i];
	i += 1;
	wndNodes = &nodes[i];
	i += nWndNodes;
	rrdNodes = &nodes[i];
	i += nRrdNodes;
	if (nfaults == 2) {
		wnqNode = &nodes[i];
		i += 1;
	} else {
		wnqNode = NULL;
	}
	RF_ASSERT(i == nNodes);

	/* this dag can not commit until all rrd and xor Nodes have completed */
	dag_h->numCommitNodes = 1;
	dag_h->numCommits = 0;
	dag_h->numSuccedents = 1;

	RF_ASSERT(nRrdNodes > 0);
	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
	    NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
	    NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
	    NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
	    nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);

	/*
         * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
         * the failed buffer, save a pointer to it so we can use it as the target
         * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
         * a buffer is the same size as the failed buffer, it must also be at the
         * same alignment within the SU.
         */
	i = 0;
	if (new_asm_h[0]) {
		for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
		    i++, pda = pda->next) {
			rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
			RF_ASSERT(pda);
			rrdNodes[i].params[0].p = pda;
			rrdNodes[i].params[1].p = pda->bufPtr;
			rrdNodes[i].params[2].v = parityStripeID;
			rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
		}
	}
	/* i now equals the number of stripe units accessed in new_asm_h[0] */
	if (new_asm_h[1]) {
		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
		    j++, pda = pda->next) {
			rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
			RF_ASSERT(pda);
			rrdNodes[i + j].params[0].p = pda;
			rrdNodes[i + j].params[1].p = pda->bufPtr;
			rrdNodes[i + j].params[2].v = parityStripeID;
			rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
			if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
				xorTargetBuf = pda->bufPtr;
		}
	}
	if (rdnodesFaked) {
		/*
	         * This is where we'll init that fake noop read node
	         * (XXX should the wakeup func be different?)
	         */
		rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
		    NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
	}
	/*
         * Make a PDA for the parity unit.  The parity PDA should start at
         * the same offset into the SU as the failed PDA.
         */
	/* Danner comment: I don't think this copy is really necessary. We are
	 * in one of two cases here. (1) The entire failed unit is written.
	 * Then asmap->parityInfo will describe the entire parity. (2) We are
	 * only writing a subset of the failed unit and nothing else. Then the
	 * asmap->parityInfo describes the failed unit and the copy can also
	 * be avoided. */

	RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
	parityPDA->row = asmap->parityInfo->row;
	parityPDA->col = asmap->parityInfo->col;
	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
	parityPDA->numSector = failedPDA->numSector;

	if (!xorTargetBuf) {
		RF_CallocAndAdd(xorTargetBuf, 1,
		    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
	}
	/* init the Wnp node */
	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
	wnpNode->params[0].p = parityPDA;
	wnpNode->params[1].p = xorTargetBuf;
	wnpNode->params[2].v = parityStripeID;
	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);

	/* fill in the Wnq Node */
	if (nfaults == 2) {
		{
			RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
			    (RF_PhysDiskAddr_t *), allocList);
			parityPDA->row = asmap->qInfo->row;
			parityPDA->col = asmap->qInfo->col;
			parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
			    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
			parityPDA->numSector = failedPDA->numSector;

			rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
			wnqNode->params[0].p = parityPDA;
			RF_CallocAndAdd(xorNode->results[1], 1,
			    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
			wnqNode->params[1].p = xorNode->results[1];
			wnqNode->params[2].v = parityStripeID;
			wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
		}
	}
	/* fill in the Wnd nodes */
	for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
		if (pda == failedPDA) {
			i--;
			continue;
		}
		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
		RF_ASSERT(pda);
		wndNodes[i].params[0].p = pda;
		wndNodes[i].params[1].p = pda->bufPtr;
		wndNodes[i].params[2].v = parityStripeID;
		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
	}

	/* fill in the results of the xor node */
	xorNode->results[0] = xorTargetBuf;

	/* fill in the params of the xor node */

	paramNum = 0;
	if (rdnodesFaked == 0) {
		for (i = 0; i < nRrdNodes; i++) {
			/* all the Rrd nodes need to be xored together */
			xorNode->params[paramNum++] = rrdNodes[i].params[0];
			xorNode->params[paramNum++] = rrdNodes[i].params[1];
		}
	}
	for (i = 0; i < nWndNodes; i++) {
		/* any Wnd nodes that overlap the failed access need to be
		 * xored in */
		if (overlappingPDAs[i]) {
			RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
			bcopy((char *) wndNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t));
			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
			xorNode->params[paramNum++].p = pda;
			xorNode->params[paramNum++].p = pda->bufPtr;
		}
	}
	RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));

	/*
         * Install the failed PDA into the xor param list so that the
         * new data gets xor'd in.
         */
	xorNode->params[paramNum++].p = failedPDA;
	xorNode->params[paramNum++].p = failedPDA->bufPtr;

	/*
         * The last 2 params to the recovery xor node are always the failed
         * PDA and the raidPtr. install the failedPDA even though we have just
         * done so above. This allows us to use the same XOR function for both
         * degraded reads and degraded writes.
         */
	xorNode->params[paramNum++].p = failedPDA;
	xorNode->params[paramNum++].p = raidPtr;
	RF_ASSERT(paramNum == 2 * nXorBufs + 2);

	/*
         * Code to link nodes begins here
         */

	/* link header to block node */
	RF_ASSERT(blockNode->numAntecedents == 0);
	dag_h->succedents[0] = blockNode;

	/* link block node to rd nodes */
	RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
	for (i = 0; i < nRrdNodes; i++) {
		RF_ASSERT(rrdNodes[i].numAntecedents == 1);
		blockNode->succedents[i] = &rrdNodes[i];
		rrdNodes[i].antecedents[0] = blockNode;
		rrdNodes[i].antType[0] = rf_control;
	}

	/* link read nodes to xor node */
	RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
	for (i = 0; i < nRrdNodes; i++) {
		RF_ASSERT(rrdNodes[i].numSuccedents == 1);
		rrdNodes[i].succedents[0] = xorNode;
		xorNode->antecedents[i] = &rrdNodes[i];
		xorNode->antType[i] = rf_trueData;
	}

	/* link xor node to commit node */
	RF_ASSERT(xorNode->numSuccedents == 1);
	RF_ASSERT(commitNode->numAntecedents == 1);
	xorNode->succedents[0] = commitNode;
	commitNode->antecedents[0] = xorNode;
	commitNode->antType[0] = rf_control;

	/* link commit node to wnd nodes */
	RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
	for (i = 0; i < nWndNodes; i++) {
		RF_ASSERT(wndNodes[i].numAntecedents == 1);
		commitNode->succedents[i] = &wndNodes[i];
		wndNodes[i].antecedents[0] = commitNode;
		wndNodes[i].antType[0] = rf_control;
	}

	/* link the commit node to wnp, wnq nodes */
	RF_ASSERT(wnpNode->numAntecedents == 1);
	commitNode->succedents[nWndNodes] = wnpNode;
	wnpNode->antecedents[0] = commitNode;
	wnpNode->antType[0] = rf_control;
	if (nfaults == 2) {
		RF_ASSERT(wnqNode->numAntecedents == 1);
		commitNode->succedents[nWndNodes + 1] = wnqNode;
		wnqNode->antecedents[0] = commitNode;
		wnqNode->antType[0] = rf_control;
	}
	/* link write new data nodes to unblock node */
	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
	for (i = 0; i < nWndNodes; i++) {
		RF_ASSERT(wndNodes[i].numSuccedents == 1);
		wndNodes[i].succedents[0] = unblockNode;
		unblockNode->antecedents[i] = &wndNodes[i];
		unblockNode->antType[i] = rf_control;
	}

	/* link write new parity node to unblock node */
	RF_ASSERT(wnpNode->numSuccedents == 1);
	wnpNode->succedents[0] = unblockNode;
	unblockNode->antecedents[nWndNodes] = wnpNode;
	unblockNode->antType[nWndNodes] = rf_control;

	/* link write new q node to unblock node */
	if (nfaults == 2) {
		RF_ASSERT(wnqNode->numSuccedents == 1);
		wnqNode->succedents[0] = unblockNode;
		unblockNode->antecedents[nWndNodes + 1] = wnqNode;
		unblockNode->antType[nWndNodes + 1] = rf_control;
	}
	/* link unblock node to term node */
	RF_ASSERT(unblockNode->numSuccedents == 1);
	RF_ASSERT(termNode->numAntecedents == 1);
	RF_ASSERT(termNode->numSuccedents == 0);
	unblockNode->succedents[0] = termNode;
	termNode->antecedents[0] = unblockNode;
	termNode->antType[0] = rf_control;
}
#define CONS_PDA(if,start,num) \
  pda_p->row = asmap->if->row;    pda_p->col = asmap->if->col; \
  pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
  pda_p->numSector = num; \
  pda_p->next = NULL; \
  RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)

void 
rf_WriteGenerateFailedAccessASMs(
    RF_Raid_t * raidPtr,
    RF_AccessStripeMap_t * asmap,
    RF_PhysDiskAddr_t ** pdap,
    int *nNodep,
    RF_PhysDiskAddr_t ** pqpdap,
    int *nPQNodep,
    RF_AllocListElem_t * allocList)
{
	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
	int     PDAPerDisk, i;
	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
	int     numDataCol = layoutPtr->numDataCol;
	int     state;
	unsigned napdas;
	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
	RF_PhysDiskAddr_t *pda_p;
	RF_RaidAddr_t sosAddr;

	/* determine how many pda's we will have to generate per unaccess
	 * stripe. If there is only one failed data unit, it is one; if two,
	 * possibly two, depending wether they overlap. */

	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
	fone_end = fone_start + fone->numSector;

	if (asmap->numDataFailed == 1) {
		PDAPerDisk = 1;
		state = 1;
		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
		pda_p = *pqpdap;
		/* build p */
		CONS_PDA(parityInfo, fone_start, fone->numSector);
		pda_p->type = RF_PDA_TYPE_PARITY;
		pda_p++;
		/* build q */
		CONS_PDA(qInfo, fone_start, fone->numSector);
		pda_p->type = RF_PDA_TYPE_Q;
	} else {
		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
		ftwo_end = ftwo_start + ftwo->numSector;
		if (fone->numSector + ftwo->numSector > secPerSU) {
			PDAPerDisk = 1;
			state = 2;
			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
			pda_p = *pqpdap;
			CONS_PDA(parityInfo, 0, secPerSU);
			pda_p->type = RF_PDA_TYPE_PARITY;
			pda_p++;
			CONS_PDA(qInfo, 0, secPerSU);
			pda_p->type = RF_PDA_TYPE_Q;
		} else {
			PDAPerDisk = 2;
			state = 3;
			/* four of them, fone, then ftwo */
			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
			pda_p = *pqpdap;
			CONS_PDA(parityInfo, fone_start, fone->numSector);
			pda_p->type = RF_PDA_TYPE_PARITY;
			pda_p++;
			CONS_PDA(qInfo, fone_start, fone->numSector);
			pda_p->type = RF_PDA_TYPE_Q;
			pda_p++;
			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
			pda_p->type = RF_PDA_TYPE_PARITY;
			pda_p++;
			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
			pda_p->type = RF_PDA_TYPE_Q;
		}
	}
	/* figure out number of nonaccessed pda */
	napdas = PDAPerDisk * (numDataCol - 2);
	*nPQNodep = PDAPerDisk;

	*nNodep = napdas;
	if (napdas == 0)
		return;		/* short circuit */

	/* allocate up our list of pda's */

	RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
	*pdap = pda_p;

	/* linkem together */
	for (i = 0; i < (napdas - 1); i++)
		pda_p[i].next = pda_p + (i + 1);

	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
	for (i = 0; i < numDataCol; i++) {
		if ((pda_p - (*pdap)) == napdas)
			continue;
		pda_p->type = RF_PDA_TYPE_DATA;
		pda_p->raidAddress = sosAddr + (i * secPerSU);
		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
		/* skip over dead disks */
		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
			continue;
		switch (state) {
		case 1:	/* fone */
			pda_p->numSector = fone->numSector;
			pda_p->raidAddress += fone_start;
			pda_p->startSector += fone_start;
			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
			break;
		case 2:	/* full stripe */
			pda_p->numSector = secPerSU;
			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
			break;
		case 3:	/* two slabs */
			pda_p->numSector = fone->numSector;
			pda_p->raidAddress += fone_start;
			pda_p->startSector += fone_start;
			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
			pda_p++;
			pda_p->type = RF_PDA_TYPE_DATA;
			pda_p->raidAddress = sosAddr + (i * secPerSU);
			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
			pda_p->numSector = ftwo->numSector;
			pda_p->raidAddress += ftwo_start;
			pda_p->startSector += ftwo_start;
			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
			break;
		default:
			RF_PANIC();
		}
		pda_p++;
	}

	RF_ASSERT(pda_p - *pdap == napdas);
	return;
}
#define DISK_NODE_PDA(node)  ((node)->params[0].p)

#define DISK_NODE_PARAMS(_node_,_p_) \
  (_node_).params[0].p = _p_ ; \
  (_node_).params[1].p = (_p_)->bufPtr; \
  (_node_).params[2].v = parityStripeID; \
  (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)

void 
rf_DoubleDegSmallWrite(
    RF_Raid_t * raidPtr,
    RF_AccessStripeMap_t * asmap,
    RF_DagHeader_t * dag_h,
    void *bp,
    RF_RaidAccessFlags_t flags,
    RF_AllocListElem_t * allocList,
    char *redundantReadNodeName,
    char *redundantWriteNodeName,
    char *recoveryNodeName,
    int (*recovFunc) (RF_DagNode_t *))
{
	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
	RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
	       *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
	RF_PhysDiskAddr_t *pda, *pqPDAs;
	RF_PhysDiskAddr_t *npdas;
	int     nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
	RF_ReconUnitNum_t which_ru;
	int     nPQNodes;
	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);

	/* simple small write case - First part looks like a reconstruct-read
	 * of the failed data units. Then a write of all data units not
	 * failed. */


	/* Hdr | ------Block- /  /         \   Rrd  Rrd ...  Rrd  Rp Rq \  \
	 * /  -------PQ----- /   \   \ Wud   Wp  WQ	     \    |   /
	 * --Unblock- | T
	 * 
	 * Rrd = read recovery data  (potentially none) Wud = write user data
	 * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
	 * (could be two)
	 * 
	 */

	rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);

	RF_ASSERT(asmap->numDataFailed == 1);

	nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
	nReadNodes = nRrdNodes + 2 * nPQNodes;
	nWriteNodes = nWudNodes + 2 * nPQNodes;
	nNodes = 4 + nReadNodes + nWriteNodes;

	RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
	blockNode = nodes;
	unblockNode = blockNode + 1;
	termNode = unblockNode + 1;
	recoveryNode = termNode + 1;
	rrdNodes = recoveryNode + 1;
	rpNodes = rrdNodes + nRrdNodes;
	rqNodes = rpNodes + nPQNodes;
	wudNodes = rqNodes + nPQNodes;
	wpNodes = wudNodes + nWudNodes;
	wqNodes = wpNodes + nPQNodes;

	dag_h->creator = "PQ_DDSimpleSmallWrite";
	dag_h->numSuccedents = 1;
	dag_h->succedents[0] = blockNode;
	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
	termNode->antecedents[0] = unblockNode;
	termNode->antType[0] = rf_control;

	/* init the block and unblock nodes */
	/* The block node has all the read nodes as successors */
	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
	for (i = 0; i < nReadNodes; i++)
		blockNode->succedents[i] = rrdNodes + i;

	/* The unblock node has all the writes as successors */
	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
	for (i = 0; i < nWriteNodes; i++) {
		unblockNode->antecedents[i] = wudNodes + i;
		unblockNode->antType[i] = rf_control;
	}
	unblockNode->succedents[0] = termNode;

#define INIT_READ_NODE(node,name) \
  rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
  (node)->succedents[0] = recoveryNode; \
  (node)->antecedents[0] = blockNode; \
  (node)->antType[0] = rf_control;

	/* build the read nodes */
	pda = npdas;
	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
		INIT_READ_NODE(rrdNodes + i, "rrd");
		DISK_NODE_PARAMS(rrdNodes[i], pda);
	}

	/* read redundancy pdas */
	pda = pqPDAs;
	INIT_READ_NODE(rpNodes, "Rp");
	RF_ASSERT(pda);
	DISK_NODE_PARAMS(rpNodes[0], pda);
	pda++;
	INIT_READ_NODE(rqNodes, redundantReadNodeName);
	RF_ASSERT(pda);
	DISK_NODE_PARAMS(rqNodes[0], pda);
	if (nPQNodes == 2) {
		pda++;
		INIT_READ_NODE(rpNodes + 1, "Rp");
		RF_ASSERT(pda);
		DISK_NODE_PARAMS(rpNodes[1], pda);
		pda++;
		INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
		RF_ASSERT(pda);
		DISK_NODE_PARAMS(rqNodes[1], pda);
	}
	/* the recovery node has all reads as precedessors and all writes as
	 * successors. It generates a result for every write P or write Q
	 * node. As parameters, it takes a pda per read and a pda per stripe
	 * of user data written. It also takes as the last params the raidPtr
	 * and asm. For results, it takes PDA for P & Q. */


	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
	    nWriteNodes,	/* succesors */
	    nReadNodes,		/* preds */
	    nReadNodes + nWudNodes + 3,	/* params */
	    2 * nPQNodes,	/* results */
	    dag_h, recoveryNodeName, allocList);



	for (i = 0; i < nReadNodes; i++) {
		recoveryNode->antecedents[i] = rrdNodes + i;
		recoveryNode->antType[i] = rf_control;
		recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
	}
	for (i = 0; i < nWudNodes; i++) {
		recoveryNode->succedents[i] = wudNodes + i;
	}
	recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
	recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
	recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;

	for (; i < nWriteNodes; i++)
		recoveryNode->succedents[i] = wudNodes + i;

	pda = pqPDAs;
	recoveryNode->results[0] = pda;
	pda++;
	recoveryNode->results[1] = pda;
	if (nPQNodes == 2) {
		pda++;
		recoveryNode->results[2] = pda;
		pda++;
		recoveryNode->results[3] = pda;
	}
	/* fill writes */
#define INIT_WRITE_NODE(node,name) \
  rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
    (node)->succedents[0] = unblockNode; \
    (node)->antecedents[0] = recoveryNode; \
    (node)->antType[0] = rf_control;

	pda = asmap->physInfo;
	for (i = 0; i < nWudNodes; i++) {
		INIT_WRITE_NODE(wudNodes + i, "Wd");
		DISK_NODE_PARAMS(wudNodes[i], pda);
		recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
		pda = pda->next;
	}
	/* write redundancy pdas */
	pda = pqPDAs;
	INIT_WRITE_NODE(wpNodes, "Wp");
	RF_ASSERT(pda);
	DISK_NODE_PARAMS(wpNodes[0], pda);
	pda++;
	INIT_WRITE_NODE(wqNodes, "Wq");
	RF_ASSERT(pda);
	DISK_NODE_PARAMS(wqNodes[0], pda);
	if (nPQNodes == 2) {
		pda++;
		INIT_WRITE_NODE(wpNodes + 1, "Wp");
		RF_ASSERT(pda);
		DISK_NODE_PARAMS(wpNodes[1], pda);
		pda++;
		INIT_WRITE_NODE(wqNodes + 1, "Wq");
		RF_ASSERT(pda);
		DISK_NODE_PARAMS(wqNodes[1], pda);
	}
}