1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
|
/* $OpenBSD: rf_dagffrd.c,v 1.3 2000/01/11 18:02:21 peter Exp $ */
/* $NetBSD: rf_dagffrd.c,v 1.4 2000/01/07 03:40:58 oster Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* rf_dagffrd.c
*
* code for creating fault-free read DAGs
*
*/
#include "rf_types.h"
#include "rf_raid.h"
#include "rf_dag.h"
#include "rf_dagutils.h"
#include "rf_dagfuncs.h"
#include "rf_debugMem.h"
#include "rf_memchunk.h"
#include "rf_general.h"
#include "rf_dagffrd.h"
/******************************************************************************
*
* General comments on DAG creation:
*
* All DAGs in this file use roll-away error recovery. Each DAG has a single
* commit node, usually called "Cmt." If an error occurs before the Cmt node
* is reached, the execution engine will halt forward execution and work
* backward through the graph, executing the undo functions. Assuming that
* each node in the graph prior to the Cmt node are undoable and atomic - or -
* does not make changes to permanent state, the graph will fail atomically.
* If an error occurs after the Cmt node executes, the engine will roll-forward
* through the graph, blindly executing nodes until it reaches the end.
* If a graph reaches the end, it is assumed to have completed successfully.
*
* A graph has only 1 Cmt node.
*
*/
/******************************************************************************
*
* The following wrappers map the standard DAG creation interface to the
* DAG creation routines. Additionally, these wrappers enable experimentation
* with new DAG structures by providing an extra level of indirection, allowing
* the DAG creation routines to be replaced at this single point.
*/
void
rf_CreateFaultFreeReadDAG(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList)
{
rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
RF_IO_TYPE_READ);
}
/******************************************************************************
*
* DAG creation code begins here
*/
/******************************************************************************
*
* creates a DAG to perform a nonredundant read or write of data within one
* stripe.
* For reads, this DAG is as follows:
*
* /---- read ----\
* Header -- Block ---- read ---- Commit -- Terminate
* \---- read ----/
*
* For writes, this DAG is as follows:
*
* /---- write ----\
* Header -- Commit ---- write ---- Block -- Terminate
* \---- write ----/
*
* There is one disk node per stripe unit accessed, and all disk nodes are in
* parallel.
*
* Tricky point here: The first disk node (read or write) is created
* normally. Subsequent disk nodes are created by copying the first one,
* and modifying a few params. The "succedents" and "antecedents" fields are
* _not_ re-created in each node, but rather left pointing to the same array
* that was malloc'd when the first node was created. Thus, it's essential
* that when this DAG is freed, the succedents and antecedents fields be freed
* in ONLY ONE of the read nodes. This does not apply to the "params" field
* because it is recreated for each READ node.
*
* Note that normal-priority accesses do not need to be tagged with their
* parity stripe ID, because they will never be promoted. Hence, I've
* commented-out the code to do this, and marked it with UNNEEDED.
*
*****************************************************************************/
void
rf_CreateNonredundantDAG(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList,
RF_IoType_t type)
{
RF_DagNode_t *nodes, *diskNodes, *blockNode, *commitNode, *termNode;
RF_PhysDiskAddr_t *pda = asmap->physInfo;
int (*doFunc) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
int i, n, totalNumNodes;
char *name;
n = asmap->numStripeUnitsAccessed;
dag_h->creator = "NonredundantDAG";
RF_ASSERT(RF_IO_IS_R_OR_W(type));
switch (type) {
case RF_IO_TYPE_READ:
doFunc = rf_DiskReadFunc;
undoFunc = rf_DiskReadUndoFunc;
name = "R ";
if (rf_dagDebug)
printf("[Creating non-redundant read DAG]\n");
break;
case RF_IO_TYPE_WRITE:
doFunc = rf_DiskWriteFunc;
undoFunc = rf_DiskWriteUndoFunc;
name = "W ";
if (rf_dagDebug)
printf("[Creating non-redundant write DAG]\n");
break;
default:
RF_PANIC();
}
/*
* For reads, the dag can not commit until the block node is reached.
* for writes, the dag commits immediately.
*/
dag_h->numCommitNodes = 1;
dag_h->numCommits = 0;
dag_h->numSuccedents = 1;
/*
* Node count:
* 1 block node
* n data reads (or writes)
* 1 commit node
* 1 terminator node
*/
RF_ASSERT(n > 0);
totalNumNodes = n + 3;
RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
(RF_DagNode_t *), allocList);
i = 0;
diskNodes = &nodes[i];
i += n;
blockNode = &nodes[i];
i += 1;
commitNode = &nodes[i];
i += 1;
termNode = &nodes[i];
i += 1;
RF_ASSERT(i == totalNumNodes);
/* initialize nodes */
switch (type) {
case RF_IO_TYPE_READ:
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
break;
case RF_IO_TYPE_WRITE:
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
NULL, n, 1, 0, 0, dag_h, "Cmt", allocList);
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
NULL, 0, n, 0, 0, dag_h, "Trm", allocList);
break;
default:
RF_PANIC();
}
for (i = 0; i < n; i++) {
RF_ASSERT(pda != NULL);
rf_InitNode(&diskNodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc,
1, 1, 4, 0, dag_h, name, allocList);
diskNodes[i].params[0].p = pda;
diskNodes[i].params[1].p = pda->bufPtr;
/* parity stripe id is not necessary */
diskNodes[i].params[2].v = 0;
diskNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
pda = pda->next;
}
/*
* Connect nodes.
*/
/* connect hdr to block node */
RF_ASSERT(blockNode->numAntecedents == 0);
dag_h->succedents[0] = blockNode;
if (type == RF_IO_TYPE_READ) {
/* connecting a nonredundant read DAG */
RF_ASSERT(blockNode->numSuccedents == n);
RF_ASSERT(commitNode->numAntecedents == n);
for (i = 0; i < n; i++) {
/* connect block node to each read node */
RF_ASSERT(diskNodes[i].numAntecedents == 1);
blockNode->succedents[i] = &diskNodes[i];
diskNodes[i].antecedents[0] = blockNode;
diskNodes[i].antType[0] = rf_control;
/* connect each read node to the commit node */
RF_ASSERT(diskNodes[i].numSuccedents == 1);
diskNodes[i].succedents[0] = commitNode;
commitNode->antecedents[i] = &diskNodes[i];
commitNode->antType[i] = rf_control;
}
/* connect the commit node to the term node */
RF_ASSERT(commitNode->numSuccedents == 1);
RF_ASSERT(termNode->numAntecedents == 1);
RF_ASSERT(termNode->numSuccedents == 0);
commitNode->succedents[0] = termNode;
termNode->antecedents[0] = commitNode;
termNode->antType[0] = rf_control;
} else {
/* connecting a nonredundant write DAG */
/* connect the block node to the commit node */
RF_ASSERT(blockNode->numSuccedents == 1);
RF_ASSERT(commitNode->numAntecedents == 1);
blockNode->succedents[0] = commitNode;
commitNode->antecedents[0] = blockNode;
commitNode->antType[0] = rf_control;
RF_ASSERT(commitNode->numSuccedents == n);
RF_ASSERT(termNode->numAntecedents == n);
RF_ASSERT(termNode->numSuccedents == 0);
for (i = 0; i < n; i++) {
/* connect the commit node to each write node */
RF_ASSERT(diskNodes[i].numAntecedents == 1);
commitNode->succedents[i] = &diskNodes[i];
diskNodes[i].antecedents[0] = commitNode;
diskNodes[i].antType[0] = rf_control;
/* connect each write node to the term node */
RF_ASSERT(diskNodes[i].numSuccedents == 1);
diskNodes[i].succedents[0] = termNode;
termNode->antecedents[i] = &diskNodes[i];
termNode->antType[i] = rf_control;
}
}
}
/******************************************************************************
* Create a fault-free read DAG for RAID level 1
*
* Hdr -> Nil -> Rmir -> Cmt -> Trm
*
* The "Rmir" node schedules a read from the disk in the mirror pair with the
* shortest disk queue. the proper queue is selected at Rmir execution. this
* deferred mapping is unlike other archs in RAIDframe which generally fix
* mapping at DAG creation time.
*
* Parameters: raidPtr - description of the physical array
* asmap - logical & physical addresses for this access
* bp - buffer ptr (for holding read data)
* flags - general flags (e.g. disk locking)
* allocList - list of memory allocated in DAG creation
*****************************************************************************/
static void
CreateMirrorReadDAG(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList,
int (*readfunc) (RF_DagNode_t * node))
{
RF_DagNode_t *readNodes, *nodes, *blockNode, *commitNode, *termNode;
RF_PhysDiskAddr_t *data_pda = asmap->physInfo;
RF_PhysDiskAddr_t *parity_pda = asmap->parityInfo;
int i, n, totalNumNodes;
n = asmap->numStripeUnitsAccessed;
dag_h->creator = "RaidOneReadDAG";
if (rf_dagDebug) {
printf("[Creating RAID level 1 read DAG]\n");
}
/*
* This dag can not commit until the commit node is reached
* errors prior to the commit point imply the dag has failed.
*/
dag_h->numCommitNodes = 1;
dag_h->numCommits = 0;
dag_h->numSuccedents = 1;
/*
* Node count:
* n data reads
* 1 block node
* 1 commit node
* 1 terminator node
*/
RF_ASSERT(n > 0);
totalNumNodes = n + 3;
RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
(RF_DagNode_t *), allocList);
i = 0;
readNodes = &nodes[i];
i += n;
blockNode = &nodes[i];
i += 1;
commitNode = &nodes[i];
i += 1;
termNode = &nodes[i];
i += 1;
RF_ASSERT(i == totalNumNodes);
/* initialize nodes */
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
rf_NullNodeUndoFunc, NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
rf_NullNodeUndoFunc, NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
for (i = 0; i < n; i++) {
RF_ASSERT(data_pda != NULL);
RF_ASSERT(parity_pda != NULL);
rf_InitNode(&readNodes[i], rf_wait, RF_FALSE, readfunc,
rf_DiskReadMirrorUndoFunc, rf_GenericWakeupFunc, 1, 1, 5, 0, dag_h,
"Rmir", allocList);
readNodes[i].params[0].p = data_pda;
readNodes[i].params[1].p = data_pda->bufPtr;
/* parity stripe id is not necessary */
readNodes[i].params[2].p = 0;
readNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
readNodes[i].params[4].p = parity_pda;
data_pda = data_pda->next;
parity_pda = parity_pda->next;
}
/*
* Connect nodes
*/
/* connect hdr to block node */
RF_ASSERT(blockNode->numAntecedents == 0);
dag_h->succedents[0] = blockNode;
/* connect block node to read nodes */
RF_ASSERT(blockNode->numSuccedents == n);
for (i = 0; i < n; i++) {
RF_ASSERT(readNodes[i].numAntecedents == 1);
blockNode->succedents[i] = &readNodes[i];
readNodes[i].antecedents[0] = blockNode;
readNodes[i].antType[0] = rf_control;
}
/* connect read nodes to commit node */
RF_ASSERT(commitNode->numAntecedents == n);
for (i = 0; i < n; i++) {
RF_ASSERT(readNodes[i].numSuccedents == 1);
readNodes[i].succedents[0] = commitNode;
commitNode->antecedents[i] = &readNodes[i];
commitNode->antType[i] = rf_control;
}
/* connect commit node to term node */
RF_ASSERT(commitNode->numSuccedents == 1);
RF_ASSERT(termNode->numAntecedents == 1);
RF_ASSERT(termNode->numSuccedents == 0);
commitNode->succedents[0] = termNode;
termNode->antecedents[0] = commitNode;
termNode->antType[0] = rf_control;
}
void
rf_CreateMirrorIdleReadDAG(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList)
{
CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
rf_DiskReadMirrorIdleFunc);
}
void
rf_CreateMirrorPartitionReadDAG(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList)
{
CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
rf_DiskReadMirrorPartitionFunc);
}
|