summaryrefslogtreecommitdiff
path: root/sys/dev/raidframe/rf_dagutils.c
blob: b0d41a7c106515fcbe3a98204247831caed5f51c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
/*	$OpenBSD: rf_dagutils.c,v 1.2 1999/02/16 00:02:33 niklas Exp $	*/
/*	$NetBSD: rf_dagutils.c,v 1.3 1999/02/05 00:06:08 oster Exp $	*/
/*
 * Copyright (c) 1995 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Authors: Mark Holland, William V. Courtright II, Jim Zelenka
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

/******************************************************************************
 *
 * rf_dagutils.c -- utility routines for manipulating dags
 *
 *****************************************************************************/

#include "rf_archs.h"
#include "rf_types.h"
#include "rf_threadstuff.h"
#include "rf_raid.h"
#include "rf_dag.h"
#include "rf_dagutils.h"
#include "rf_dagfuncs.h"
#include "rf_general.h"
#include "rf_freelist.h"
#include "rf_map.h"
#include "rf_shutdown.h"
#include "rf_sys.h"

#define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))

RF_RedFuncs_t rf_xorFuncs = {
	rf_RegularXorFunc, "Reg Xr",
rf_SimpleXorFunc, "Simple Xr"};

RF_RedFuncs_t rf_xorRecoveryFuncs = {
	rf_RecoveryXorFunc, "Recovery Xr",
rf_RecoveryXorFunc, "Recovery Xr"};

static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
static void rf_PrintDAG(RF_DagHeader_t *);
static int 
rf_ValidateBranch(RF_DagNode_t *, int *, int *,
    RF_DagNode_t **, int);
static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
static void rf_ValidateVisitedBits(RF_DagHeader_t *);

/******************************************************************************
 *
 * InitNode - initialize a dag node
 *
 * the size of the propList array is always the same as that of the
 * successors array.
 *
 *****************************************************************************/
void 
rf_InitNode(
    RF_DagNode_t * node,
    RF_NodeStatus_t initstatus,
    int commit,
    int (*doFunc) (RF_DagNode_t * node),
    int (*undoFunc) (RF_DagNode_t * node),
    int (*wakeFunc) (RF_DagNode_t * node, int status),
    int nSucc,
    int nAnte,
    int nParam,
    int nResult,
    RF_DagHeader_t * hdr,
    char *name,
    RF_AllocListElem_t * alist)
{
	void  **ptrs;
	int     nptrs;

	if (nAnte > RF_MAX_ANTECEDENTS)
		RF_PANIC();
	node->status = initstatus;
	node->commitNode = commit;
	node->doFunc = doFunc;
	node->undoFunc = undoFunc;
	node->wakeFunc = wakeFunc;
	node->numParams = nParam;
	node->numResults = nResult;
	node->numAntecedents = nAnte;
	node->numAntDone = 0;
	node->next = NULL;
	node->numSuccedents = nSucc;
	node->name = name;
	node->dagHdr = hdr;
	node->visited = 0;

	/* allocate all the pointers with one call to malloc */
	nptrs = nSucc + nAnte + nResult + nSucc;

	if (nptrs <= RF_DAG_PTRCACHESIZE) {
		/*
	         * The dag_ptrs field of the node is basically some scribble
	         * space to be used here. We could get rid of it, and always
	         * allocate the range of pointers, but that's expensive. So,
	         * we pick a "common case" size for the pointer cache. Hopefully,
	         * we'll find that:
	         * (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
	         *     only a little bit (least efficient case)
	         * (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
	         *     (wasted memory)
	         */
		ptrs = (void **) node->dag_ptrs;
	} else {
		RF_CallocAndAdd(ptrs, nptrs, sizeof(void *), (void **), alist);
	}
	node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
	node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
	node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
	node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;

	if (nParam) {
		if (nParam <= RF_DAG_PARAMCACHESIZE) {
			node->params = (RF_DagParam_t *) node->dag_params;
		} else {
			RF_CallocAndAdd(node->params, nParam, sizeof(RF_DagParam_t), (RF_DagParam_t *), alist);
		}
	} else {
		node->params = NULL;
	}
}



/******************************************************************************
 *
 * allocation and deallocation routines
 *
 *****************************************************************************/

void 
rf_FreeDAG(dag_h)
	RF_DagHeader_t *dag_h;
{
	RF_AccessStripeMapHeader_t *asmap, *t_asmap;
	RF_DagHeader_t *nextDag;
	int     i;

	while (dag_h) {
		nextDag = dag_h->next;
		for (i = 0; dag_h->memChunk[i] && i < RF_MAXCHUNKS; i++) {
			/* release mem chunks */
			rf_ReleaseMemChunk(dag_h->memChunk[i]);
			dag_h->memChunk[i] = NULL;
		}

		RF_ASSERT(i == dag_h->chunkIndex);
		if (dag_h->xtraChunkCnt > 0) {
			/* free xtraMemChunks */
			for (i = 0; dag_h->xtraMemChunk[i] && i < dag_h->xtraChunkIndex; i++) {
				rf_ReleaseMemChunk(dag_h->xtraMemChunk[i]);
				dag_h->xtraMemChunk[i] = NULL;
			}
			RF_ASSERT(i == dag_h->xtraChunkIndex);
			/* free ptrs to xtraMemChunks */
			RF_Free(dag_h->xtraMemChunk, dag_h->xtraChunkCnt * sizeof(RF_ChunkDesc_t *));
		}
		rf_FreeAllocList(dag_h->allocList);
		for (asmap = dag_h->asmList; asmap;) {
			t_asmap = asmap;
			asmap = asmap->next;
			rf_FreeAccessStripeMap(t_asmap);
		}
		rf_FreeDAGHeader(dag_h);
		dag_h = nextDag;
	}
}

RF_PropHeader_t *
rf_MakePropListEntry(
    RF_DagHeader_t * dag_h,
    int resultNum,
    int paramNum,
    RF_PropHeader_t * next,
    RF_AllocListElem_t * allocList)
{
	RF_PropHeader_t *p;

	RF_CallocAndAdd(p, 1, sizeof(RF_PropHeader_t),
	    (RF_PropHeader_t *), allocList);
	p->resultNum = resultNum;
	p->paramNum = paramNum;
	p->next = next;
	return (p);
}

static RF_FreeList_t *rf_dagh_freelist;

#define RF_MAX_FREE_DAGH 128
#define RF_DAGH_INC       16
#define RF_DAGH_INITIAL   32

static void rf_ShutdownDAGs(void *);
static void 
rf_ShutdownDAGs(ignored)
	void   *ignored;
{
	RF_FREELIST_DESTROY(rf_dagh_freelist, next, (RF_DagHeader_t *));
}

int 
rf_ConfigureDAGs(listp)
	RF_ShutdownList_t **listp;
{
	int     rc;

	RF_FREELIST_CREATE(rf_dagh_freelist, RF_MAX_FREE_DAGH,
	    RF_DAGH_INC, sizeof(RF_DagHeader_t));
	if (rf_dagh_freelist == NULL)
		return (ENOMEM);
	rc = rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
	if (rc) {
		RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
		    __FILE__, __LINE__, rc);
		rf_ShutdownDAGs(NULL);
		return (rc);
	}
	RF_FREELIST_PRIME(rf_dagh_freelist, RF_DAGH_INITIAL, next,
	    (RF_DagHeader_t *));
	return (0);
}

RF_DagHeader_t *
rf_AllocDAGHeader()
{
	RF_DagHeader_t *dh;

	RF_FREELIST_GET(rf_dagh_freelist, dh, next, (RF_DagHeader_t *));
	if (dh) {
		bzero((char *) dh, sizeof(RF_DagHeader_t));
	}
	return (dh);
}

void 
rf_FreeDAGHeader(RF_DagHeader_t * dh)
{
	RF_FREELIST_FREE(rf_dagh_freelist, dh, next);
}
/* allocates a buffer big enough to hold the data described by pda */
void   *
rf_AllocBuffer(
    RF_Raid_t * raidPtr,
    RF_DagHeader_t * dag_h,
    RF_PhysDiskAddr_t * pda,
    RF_AllocListElem_t * allocList)
{
	char   *p;

	RF_MallocAndAdd(p, pda->numSector << raidPtr->logBytesPerSector,
	    (char *), allocList);
	return ((void *) p);
}
/******************************************************************************
 *
 * debug routines
 *
 *****************************************************************************/

char   *
rf_NodeStatusString(RF_DagNode_t * node)
{
	switch (node->status) {
		case rf_wait:return ("wait");
	case rf_fired:
		return ("fired");
	case rf_good:
		return ("good");
	case rf_bad:
		return ("bad");
	default:
		return ("?");
	}
}

void 
rf_PrintNodeInfoString(RF_DagNode_t * node)
{
	RF_PhysDiskAddr_t *pda;
	int     (*df) (RF_DagNode_t *) = node->doFunc;
	int     i, lk, unlk;
	void   *bufPtr;

	if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
	    || (df == rf_DiskReadMirrorIdleFunc)
	    || (df == rf_DiskReadMirrorPartitionFunc)) {
		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
		bufPtr = (void *) node->params[1].p;
		lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
		unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
		RF_ASSERT(!(lk && unlk));
		printf("r %d c %d offs %ld nsect %d buf 0x%lx %s\n", pda->row, pda->col,
		    (long) pda->startSector, (int) pda->numSector, (long) bufPtr,
		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
		return;
	}
	if (df == rf_DiskUnlockFunc) {
		pda = (RF_PhysDiskAddr_t *) node->params[0].p;
		lk = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
		unlk = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
		RF_ASSERT(!(lk && unlk));
		printf("r %d c %d %s\n", pda->row, pda->col,
		    (lk) ? "LOCK" : ((unlk) ? "UNLK" : "nop"));
		return;
	}
	if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
	    || (df == rf_RecoveryXorFunc)) {
		printf("result buf 0x%lx\n", (long) node->results[0]);
		for (i = 0; i < node->numParams - 1; i += 2) {
			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
			printf("    buf 0x%lx r%d c%d offs %ld nsect %d\n",
			    (long) bufPtr, pda->row, pda->col,
			    (long) pda->startSector, (int) pda->numSector);
		}
		return;
	}
#if RF_INCLUDE_PARITYLOGGING > 0
	if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
		for (i = 0; i < node->numParams - 1; i += 2) {
			pda = (RF_PhysDiskAddr_t *) node->params[i].p;
			bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
			printf(" r%d c%d offs %ld nsect %d buf 0x%lx\n",
			    pda->row, pda->col, (long) pda->startSector,
			    (int) pda->numSector, (long) bufPtr);
		}
		return;
	}
#endif				/* RF_INCLUDE_PARITYLOGGING > 0 */

	if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
		printf("\n");
		return;
	}
	printf("?\n");
}

static void 
rf_RecurPrintDAG(node, depth, unvisited)
	RF_DagNode_t *node;
	int     depth;
	int     unvisited;
{
	char   *anttype;
	int     i;

	node->visited = (unvisited) ? 0 : 1;
	printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
	    node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
	    node->numSuccedents, node->numSuccFired, node->numSuccDone,
	    node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
	for (i = 0; i < node->numSuccedents; i++) {
		printf("%d%s", node->succedents[i]->nodeNum,
		    ((i == node->numSuccedents - 1) ? "\0" : " "));
	}
	printf("} A{");
	for (i = 0; i < node->numAntecedents; i++) {
		switch (node->antType[i]) {
		case rf_trueData:
			anttype = "T";
			break;
		case rf_antiData:
			anttype = "A";
			break;
		case rf_outputData:
			anttype = "O";
			break;
		case rf_control:
			anttype = "C";
			break;
		default:
			anttype = "?";
			break;
		}
		printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
	}
	printf("}; ");
	rf_PrintNodeInfoString(node);
	for (i = 0; i < node->numSuccedents; i++) {
		if (node->succedents[i]->visited == unvisited)
			rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
	}
}

static void 
rf_PrintDAG(dag_h)
	RF_DagHeader_t *dag_h;
{
	int     unvisited, i;
	char   *status;

	/* set dag status */
	switch (dag_h->status) {
	case rf_enable:
		status = "enable";
		break;
	case rf_rollForward:
		status = "rollForward";
		break;
	case rf_rollBackward:
		status = "rollBackward";
		break;
	default:
		status = "illegal!";
		break;
	}
	/* find out if visited bits are currently set or clear */
	unvisited = dag_h->succedents[0]->visited;

	printf("DAG type:  %s\n", dag_h->creator);
	printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)};  info\n");
	printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
	    status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
	for (i = 0; i < dag_h->numSuccedents; i++) {
		printf("%d%s", dag_h->succedents[i]->nodeNum,
		    ((i == dag_h->numSuccedents - 1) ? "\0" : " "));
	}
	printf("};\n");
	for (i = 0; i < dag_h->numSuccedents; i++) {
		if (dag_h->succedents[i]->visited == unvisited)
			rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
	}
}
/* assigns node numbers */
int 
rf_AssignNodeNums(RF_DagHeader_t * dag_h)
{
	int     unvisited, i, nnum;
	RF_DagNode_t *node;

	nnum = 0;
	unvisited = dag_h->succedents[0]->visited;

	dag_h->nodeNum = nnum++;
	for (i = 0; i < dag_h->numSuccedents; i++) {
		node = dag_h->succedents[i];
		if (node->visited == unvisited) {
			nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
		}
	}
	return (nnum);
}

int 
rf_RecurAssignNodeNums(node, num, unvisited)
	RF_DagNode_t *node;
	int     num;
	int     unvisited;
{
	int     i;

	node->visited = (unvisited) ? 0 : 1;

	node->nodeNum = num++;
	for (i = 0; i < node->numSuccedents; i++) {
		if (node->succedents[i]->visited == unvisited) {
			num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
		}
	}
	return (num);
}
/* set the header pointers in each node to "newptr" */
void 
rf_ResetDAGHeaderPointers(dag_h, newptr)
	RF_DagHeader_t *dag_h;
	RF_DagHeader_t *newptr;
{
	int     i;
	for (i = 0; i < dag_h->numSuccedents; i++)
		if (dag_h->succedents[i]->dagHdr != newptr)
			rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
}

void 
rf_RecurResetDAGHeaderPointers(node, newptr)
	RF_DagNode_t *node;
	RF_DagHeader_t *newptr;
{
	int     i;
	node->dagHdr = newptr;
	for (i = 0; i < node->numSuccedents; i++)
		if (node->succedents[i]->dagHdr != newptr)
			rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
}


void 
rf_PrintDAGList(RF_DagHeader_t * dag_h)
{
	int     i = 0;

	for (; dag_h; dag_h = dag_h->next) {
		rf_AssignNodeNums(dag_h);
		printf("\n\nDAG %d IN LIST:\n", i++);
		rf_PrintDAG(dag_h);
	}
}

static int 
rf_ValidateBranch(node, scount, acount, nodes, unvisited)
	RF_DagNode_t *node;
	int    *scount;
	int    *acount;
	RF_DagNode_t **nodes;
	int     unvisited;
{
	int     i, retcode = 0;

	/* construct an array of node pointers indexed by node num */
	node->visited = (unvisited) ? 0 : 1;
	nodes[node->nodeNum] = node;

	if (node->next != NULL) {
		printf("INVALID DAG: next pointer in node is not NULL\n");
		retcode = 1;
	}
	if (node->status != rf_wait) {
		printf("INVALID DAG: Node status is not wait\n");
		retcode = 1;
	}
	if (node->numAntDone != 0) {
		printf("INVALID DAG: numAntDone is not zero\n");
		retcode = 1;
	}
	if (node->doFunc == rf_TerminateFunc) {
		if (node->numSuccedents != 0) {
			printf("INVALID DAG: Terminator node has succedents\n");
			retcode = 1;
		}
	} else {
		if (node->numSuccedents == 0) {
			printf("INVALID DAG: Non-terminator node has no succedents\n");
			retcode = 1;
		}
	}
	for (i = 0; i < node->numSuccedents; i++) {
		if (!node->succedents[i]) {
			printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
			retcode = 1;
		}
		scount[node->succedents[i]->nodeNum]++;
	}
	for (i = 0; i < node->numAntecedents; i++) {
		if (!node->antecedents[i]) {
			printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
			retcode = 1;
		}
		acount[node->antecedents[i]->nodeNum]++;
	}
	for (i = 0; i < node->numSuccedents; i++) {
		if (node->succedents[i]->visited == unvisited) {
			if (rf_ValidateBranch(node->succedents[i], scount,
				acount, nodes, unvisited)) {
				retcode = 1;
			}
		}
	}
	return (retcode);
}

static void 
rf_ValidateBranchVisitedBits(node, unvisited, rl)
	RF_DagNode_t *node;
	int     unvisited;
	int     rl;
{
	int     i;

	RF_ASSERT(node->visited == unvisited);
	for (i = 0; i < node->numSuccedents; i++) {
		if (node->succedents[i] == NULL) {
			printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
			RF_ASSERT(0);
		}
		rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
	}
}
/* NOTE:  never call this on a big dag, because it is exponential
 * in execution time
 */
static void 
rf_ValidateVisitedBits(dag)
	RF_DagHeader_t *dag;
{
	int     i, unvisited;

	unvisited = dag->succedents[0]->visited;

	for (i = 0; i < dag->numSuccedents; i++) {
		if (dag->succedents[i] == NULL) {
			printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
			RF_ASSERT(0);
		}
		rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
	}
}
/* validate a DAG.  _at entry_ verify that:
 *   -- numNodesCompleted is zero
 *   -- node queue is null
 *   -- dag status is rf_enable
 *   -- next pointer is null on every node
 *   -- all nodes have status wait
 *   -- numAntDone is zero in all nodes
 *   -- terminator node has zero successors
 *   -- no other node besides terminator has zero successors
 *   -- no successor or antecedent pointer in a node is NULL
 *   -- number of times that each node appears as a successor of another node
 *      is equal to the antecedent count on that node
 *   -- number of times that each node appears as an antecedent of another node
 *      is equal to the succedent count on that node
 *   -- what else?
 */
int 
rf_ValidateDAG(dag_h)
	RF_DagHeader_t *dag_h;
{
	int     i, nodecount;
	int    *scount, *acount;/* per-node successor and antecedent counts */
	RF_DagNode_t **nodes;	/* array of ptrs to nodes in dag */
	int     retcode = 0;
	int     unvisited;
	int     commitNodeCount = 0;

	if (rf_validateVisitedDebug)
		rf_ValidateVisitedBits(dag_h);

	if (dag_h->numNodesCompleted != 0) {
		printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
		retcode = 1;
		goto validate_dag_bad;
	}
	if (dag_h->status != rf_enable) {
		printf("INVALID DAG: not enabled\n");
		retcode = 1;
		goto validate_dag_bad;
	}
	if (dag_h->numCommits != 0) {
		printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
		retcode = 1;
		goto validate_dag_bad;
	}
	if (dag_h->numSuccedents != 1) {
		/* currently, all dags must have only one succedent */
		printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
		retcode = 1;
		goto validate_dag_bad;
	}
	nodecount = rf_AssignNodeNums(dag_h);

	unvisited = dag_h->succedents[0]->visited;

	RF_Calloc(scount, nodecount, sizeof(int), (int *));
	RF_Calloc(acount, nodecount, sizeof(int), (int *));
	RF_Calloc(nodes, nodecount, sizeof(RF_DagNode_t *), (RF_DagNode_t **));
	for (i = 0; i < dag_h->numSuccedents; i++) {
		if ((dag_h->succedents[i]->visited == unvisited)
		    && rf_ValidateBranch(dag_h->succedents[i], scount,
			acount, nodes, unvisited)) {
			retcode = 1;
		}
	}
	/* start at 1 to skip the header node */
	for (i = 1; i < nodecount; i++) {
		if (nodes[i]->commitNode)
			commitNodeCount++;
		if (nodes[i]->doFunc == NULL) {
			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
			retcode = 1;
			goto validate_dag_out;
		}
		if (nodes[i]->undoFunc == NULL) {
			printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
			retcode = 1;
			goto validate_dag_out;
		}
		if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
			printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
			    nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
			retcode = 1;
			goto validate_dag_out;
		}
		if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
			printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
			    nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
			retcode = 1;
			goto validate_dag_out;
		}
	}

	if (dag_h->numCommitNodes != commitNodeCount) {
		printf("INVALID DAG: incorrect commit node count.  hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
		    dag_h->numCommitNodes, commitNodeCount);
		retcode = 1;
		goto validate_dag_out;
	}
validate_dag_out:
	RF_Free(scount, nodecount * sizeof(int));
	RF_Free(acount, nodecount * sizeof(int));
	RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
	if (retcode)
		rf_PrintDAGList(dag_h);

	if (rf_validateVisitedDebug)
		rf_ValidateVisitedBits(dag_h);

	return (retcode);

validate_dag_bad:
	rf_PrintDAGList(dag_h);
	return (retcode);
}


/******************************************************************************
 *
 * misc construction routines
 *
 *****************************************************************************/

void 
rf_redirect_asm(
    RF_Raid_t * raidPtr,
    RF_AccessStripeMap_t * asmap)
{
	int     ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
	int     row = asmap->physInfo->row;
	int     fcol = raidPtr->reconControl[row]->fcol;
	int     srow = raidPtr->reconControl[row]->spareRow;
	int     scol = raidPtr->reconControl[row]->spareCol;
	RF_PhysDiskAddr_t *pda;

	RF_ASSERT(raidPtr->status[row] == rf_rs_reconstructing);
	for (pda = asmap->physInfo; pda; pda = pda->next) {
		if (pda->col == fcol) {
			if (rf_dagDebug) {
				if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap,
					pda->startSector)) {
					RF_PANIC();
				}
			}
			/* printf("Remapped data for large write\n"); */
			if (ds) {
				raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
				    &pda->row, &pda->col, &pda->startSector, RF_REMAP);
			} else {
				pda->row = srow;
				pda->col = scol;
			}
		}
	}
	for (pda = asmap->parityInfo; pda; pda = pda->next) {
		if (pda->col == fcol) {
			if (rf_dagDebug) {
				if (!rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, pda->startSector)) {
					RF_PANIC();
				}
			}
		}
		if (ds) {
			(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
		} else {
			pda->row = srow;
			pda->col = scol;
		}
	}
}


/* this routine allocates read buffers and generates stripe maps for the
 * regions of the array from the start of the stripe to the start of the
 * access, and from the end of the access to the end of the stripe.  It also
 * computes and returns the number of DAG nodes needed to read all this data.
 * Note that this routine does the wrong thing if the access is fully
 * contained within one stripe unit, so we RF_ASSERT against this case at the
 * start.
 */
void 
rf_MapUnaccessedPortionOfStripe(
    RF_Raid_t * raidPtr,
    RF_RaidLayout_t * layoutPtr,/* in: layout information */
    RF_AccessStripeMap_t * asmap,	/* in: access stripe map */
    RF_DagHeader_t * dag_h,	/* in: header of the dag to create */
    RF_AccessStripeMapHeader_t ** new_asm_h,	/* in: ptr to array of 2
						 * headers, to be filled in */
    int *nRodNodes,		/* out: num nodes to be generated to read
				 * unaccessed data */
    char **sosBuffer,		/* out: pointers to newly allocated buffer */
    char **eosBuffer,
    RF_AllocListElem_t * allocList)
{
	RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
	RF_SectorNum_t sosNumSector, eosNumSector;

	RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
	/* generate an access map for the region of the array from start of
	 * stripe to start of access */
	new_asm_h[0] = new_asm_h[1] = NULL;
	*nRodNodes = 0;
	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
		sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
		sosNumSector = asmap->raidAddress - sosRaidAddress;
		RF_MallocAndAdd(*sosBuffer, rf_RaidAddressToByte(raidPtr, sosNumSector), (char *), allocList);
		new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
		new_asm_h[0]->next = dag_h->asmList;
		dag_h->asmList = new_asm_h[0];
		*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;

		RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
		/* we're totally within one stripe here */
		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
			rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
	}
	/* generate an access map for the region of the array from end of
	 * access to end of stripe */
	if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
		eosRaidAddress = asmap->endRaidAddress;
		eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
		RF_MallocAndAdd(*eosBuffer, rf_RaidAddressToByte(raidPtr, eosNumSector), (char *), allocList);
		new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
		new_asm_h[1]->next = dag_h->asmList;
		dag_h->asmList = new_asm_h[1];
		*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;

		RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
		/* we're totally within one stripe here */
		if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
			rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
	}
}



/* returns non-zero if the indicated ranges of stripe unit offsets overlap */
int 
rf_PDAOverlap(
    RF_RaidLayout_t * layoutPtr,
    RF_PhysDiskAddr_t * src,
    RF_PhysDiskAddr_t * dest)
{
	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
	/* use -1 to be sure we stay within SU */
	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
	return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
}


/* GenerateFailedAccessASMs
 *
 * this routine figures out what portion of the stripe needs to be read
 * to effect the degraded read or write operation.  It's primary function
 * is to identify everything required to recover the data, and then
 * eliminate anything that is already being accessed by the user.
 *
 * The main result is two new ASMs, one for the region from the start of the
 * stripe to the start of the access, and one for the region from the end of
 * the access to the end of the stripe.  These ASMs describe everything that
 * needs to be read to effect the degraded access.  Other results are:
 *    nXorBufs -- the total number of buffers that need to be XORed together to
 *                recover the lost data,
 *    rpBufPtr -- ptr to a newly-allocated buffer to hold the parity.  If NULL
 *                at entry, not allocated.
 *    overlappingPDAs --
 *                describes which of the non-failed PDAs in the user access
 *                overlap data that needs to be read to effect recovery.
 *                overlappingPDAs[i]==1 if and only if, neglecting the failed
 *                PDA, the ith pda in the input asm overlaps data that needs
 *                to be read for recovery.
 */
 /* in: asm - ASM for the actual access, one stripe only */
 /* in: faildPDA - which component of the access has failed */
 /* in: dag_h - header of the DAG we're going to create */
 /* out: new_asm_h - the two new ASMs */
 /* out: nXorBufs - the total number of xor bufs required */
 /* out: rpBufPtr - a buffer for the parity read */
void 
rf_GenerateFailedAccessASMs(
    RF_Raid_t * raidPtr,
    RF_AccessStripeMap_t * asmap,
    RF_PhysDiskAddr_t * failedPDA,
    RF_DagHeader_t * dag_h,
    RF_AccessStripeMapHeader_t ** new_asm_h,
    int *nXorBufs,
    char **rpBufPtr,
    char *overlappingPDAs,
    RF_AllocListElem_t * allocList)
{
	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);

	/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
	RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;

	RF_SectorCount_t numSect[2], numParitySect;
	RF_PhysDiskAddr_t *pda;
	char   *rdBuf, *bufP;
	int     foundit, i;

	bufP = NULL;
	foundit = 0;
	/* first compute the following raid addresses: start of stripe,
	 * (sosAddr) MIN(start of access, start of failed SU),   (sosEndAddr)
	 * MAX(end of access, end of failed SU),       (eosStartAddr) end of
	 * stripe (i.e. start of next stripe)   (eosAddr) */
	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
	sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
	eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
	eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);

	/* now generate access stripe maps for each of the above regions of
	 * the stripe.  Use a dummy (NULL) buf ptr for now */

	new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
	new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;

	/* walk through the PDAs and range-restrict each SU to the region of
	 * the SU touched on the failed PDA.  also compute total data buffer
	 * space requirements in this step.  Ignore the parity for now. */

	numSect[0] = numSect[1] = 0;
	if (new_asm_h[0]) {
		new_asm_h[0]->next = dag_h->asmList;
		dag_h->asmList = new_asm_h[0];
		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
			numSect[0] += pda->numSector;
		}
	}
	if (new_asm_h[1]) {
		new_asm_h[1]->next = dag_h->asmList;
		dag_h->asmList = new_asm_h[1];
		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
			numSect[1] += pda->numSector;
		}
	}
	numParitySect = failedPDA->numSector;

	/* allocate buffer space for the data & parity we have to read to
	 * recover from the failure */

	if (numSect[0] + numSect[1] + ((rpBufPtr) ? numParitySect : 0)) {	/* don't allocate parity
										 * buf if not needed */
		RF_MallocAndAdd(rdBuf, rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (char *), allocList);
		bufP = rdBuf;
		if (rf_degDagDebug)
			printf("Newly allocated buffer (%d bytes) is 0x%lx\n",
			    (int) rf_RaidAddressToByte(raidPtr, numSect[0] + numSect[1] + numParitySect), (unsigned long) bufP);
	}
	/* now walk through the pdas one last time and assign buffer pointers
	 * (ugh!).  Again, ignore the parity.  also, count nodes to find out
	 * how many bufs need to be xored together */
	(*nXorBufs) = 1;	/* in read case, 1 is for parity.  In write
				 * case, 1 is for failed data */
	if (new_asm_h[0]) {
		for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
			pda->bufPtr = bufP;
			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
		}
		*nXorBufs += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
	}
	if (new_asm_h[1]) {
		for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
			pda->bufPtr = bufP;
			bufP += rf_RaidAddressToByte(raidPtr, pda->numSector);
		}
		(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
	}
	if (rpBufPtr)
		*rpBufPtr = bufP;	/* the rest of the buffer is for
					 * parity */

	/* the last step is to figure out how many more distinct buffers need
	 * to get xor'd to produce the missing unit.  there's one for each
	 * user-data read node that overlaps the portion of the failed unit
	 * being accessed */

	for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
		if (pda == failedPDA) {
			i--;
			foundit = 1;
			continue;
		}
		if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
			overlappingPDAs[i] = 1;
			(*nXorBufs)++;
		}
	}
	if (!foundit) {
		RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
		RF_ASSERT(0);
	}
	if (rf_degDagDebug) {
		if (new_asm_h[0]) {
			printf("First asm:\n");
			rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
		}
		if (new_asm_h[1]) {
			printf("Second asm:\n");
			rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
		}
	}
}


/* adjusts the offset and number of sectors in the destination pda so that
 * it covers at most the region of the SU covered by the source PDA.  This
 * is exclusively a restriction:  the number of sectors indicated by the
 * target PDA can only shrink.
 *
 * For example:  s = sectors within SU indicated by source PDA
 *               d = sectors within SU indicated by dest PDA
 *               r = results, stored in dest PDA
 *
 * |--------------- one stripe unit ---------------------|
 * |           sssssssssssssssssssssssssssssssss         |
 * |    ddddddddddddddddddddddddddddddddddddddddddddd    |
 * |           rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr         |
 *
 * Another example:
 *
 * |--------------- one stripe unit ---------------------|
 * |           sssssssssssssssssssssssssssssssss         |
 * |    ddddddddddddddddddddddd                          |
 * |           rrrrrrrrrrrrrrrr                          |
 *
 */
void 
rf_RangeRestrictPDA(
    RF_Raid_t * raidPtr,
    RF_PhysDiskAddr_t * src,
    RF_PhysDiskAddr_t * dest,
    int dobuffer,
    int doraidaddr)
{
	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
	RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
	RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
	RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);	/* use -1 to be sure we
													 * stay within SU */
	RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
	RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector);	/* stripe unit boundary */

	dest->startSector = subAddr + RF_MAX(soffs, doffs);
	dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;

	if (dobuffer)
		dest->bufPtr += (soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0;
	if (doraidaddr) {
		dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
		    rf_StripeUnitOffset(layoutPtr, dest->startSector);
	}
}
/*
 * Want the highest of these primes to be the largest one
 * less than the max expected number of columns (won't hurt
 * to be too small or too large, but won't be optimal, either)
 * --jimz
 */
#define NLOWPRIMES 8
static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
/*****************************************************************************
 * compute the workload shift factor.  (chained declustering)
 *
 * return nonzero if access should shift to secondary, otherwise,
 * access is to primary
 *****************************************************************************/
int 
rf_compute_workload_shift(
    RF_Raid_t * raidPtr,
    RF_PhysDiskAddr_t * pda)
{
	/*
         * variables:
         *  d   = column of disk containing primary
         *  f   = column of failed disk
         *  n   = number of disks in array
         *  sd  = "shift distance" (number of columns that d is to the right of f)
         *  row = row of array the access is in
         *  v   = numerator of redirection ratio
         *  k   = denominator of redirection ratio
         */
	RF_RowCol_t d, f, sd, row, n;
	int     k, v, ret, i;

	row = pda->row;
	n = raidPtr->numCol;

	/* assign column of primary copy to d */
	d = pda->col;

	/* assign column of dead disk to f */
	for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[row][f].status)) && (f < n)); f++);

	RF_ASSERT(f < n);
	RF_ASSERT(f != d);

	sd = (f > d) ? (n + d - f) : (d - f);
	RF_ASSERT(sd < n);

	/*
         * v of every k accesses should be redirected
         *
         * v/k := (n-1-sd)/(n-1)
         */
	v = (n - 1 - sd);
	k = (n - 1);

#if 1
	/*
         * XXX
         * Is this worth it?
         *
         * Now reduce the fraction, by repeatedly factoring
         * out primes (just like they teach in elementary school!)
         */
	for (i = 0; i < NLOWPRIMES; i++) {
		if (lowprimes[i] > v)
			break;
		while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
			v /= lowprimes[i];
			k /= lowprimes[i];
		}
	}
#endif

	raidPtr->hist_diskreq[row][d]++;
	if (raidPtr->hist_diskreq[row][d] > v) {
		ret = 0;	/* do not redirect */
	} else {
		ret = 1;	/* redirect */
	}

#if 0
	printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
	    raidPtr->hist_diskreq[row][d]);
#endif

	if (raidPtr->hist_diskreq[row][d] >= k) {
		/* reset counter */
		raidPtr->hist_diskreq[row][d] = 0;
	}
	return (ret);
}
/*
 * Disk selection routines
 */

/*
 * Selects the disk with the shortest queue from a mirror pair.
 * Both the disk I/Os queued in RAIDframe as well as those at the physical
 * disk are counted as members of the "queue"
 */
void 
rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
{
	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
	RF_RowCol_t rowData, colData, rowMirror, colMirror;
	int     dataQueueLength, mirrorQueueLength, usemirror;
	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
	RF_PhysDiskAddr_t *tmp_pda;
	RF_RaidDisk_t **disks = raidPtr->Disks;
	RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;

	/* return the [row col] of the disk with the shortest queue */
	rowData = data_pda->row;
	colData = data_pda->col;
	rowMirror = mirror_pda->row;
	colMirror = mirror_pda->col;
	dataQueue = &(dqs[rowData][colData]);
	mirrorQueue = &(dqs[rowMirror][colMirror]);

#ifdef RF_LOCK_QUEUES_TO_READ_LEN
	RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
#endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
	dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
#ifdef RF_LOCK_QUEUES_TO_READ_LEN
	RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
	RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
#endif				/* RF_LOCK_QUEUES_TO_READ_LEN */
	mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
#ifdef RF_LOCK_QUEUES_TO_READ_LEN
	RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
#endif				/* RF_LOCK_QUEUES_TO_READ_LEN */

	usemirror = 0;
	if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
		usemirror = 0;
	} else
		if (RF_DEAD_DISK(disks[rowData][colData].status)) {
			usemirror = 1;
		} else
			if (dataQueueLength < mirrorQueueLength) {
				usemirror = 0;
			} else
				if (mirrorQueueLength < dataQueueLength) {
					usemirror = 1;
				} else {
					/* queues are equal length. attempt
					 * cleverness. */
					if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
					    <= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
						usemirror = 0;
					} else {
						usemirror = 1;
					}
				}

	if (usemirror) {
		/* use mirror (parity) disk, swap params 0 & 4 */
		tmp_pda = data_pda;
		node->params[0].p = mirror_pda;
		node->params[4].p = tmp_pda;
	} else {
		/* use data disk, leave param 0 unchanged */
	}
	/* printf("dataQueueLength %d, mirrorQueueLength
	 * %d\n",dataQueueLength, mirrorQueueLength); */
}
/*
 * Do simple partitioning. This assumes that
 * the data and parity disks are laid out identically.
 */
void 
rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
{
	RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
	RF_RowCol_t rowData, colData, rowMirror, colMirror;
	RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
	RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
	RF_PhysDiskAddr_t *tmp_pda;
	RF_RaidDisk_t **disks = raidPtr->Disks;
	RF_DiskQueue_t **dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
	int     usemirror;

	/* return the [row col] of the disk with the shortest queue */
	rowData = data_pda->row;
	colData = data_pda->col;
	rowMirror = mirror_pda->row;
	colMirror = mirror_pda->col;
	dataQueue = &(dqs[rowData][colData]);
	mirrorQueue = &(dqs[rowMirror][colMirror]);

	usemirror = 0;
	if (RF_DEAD_DISK(disks[rowMirror][colMirror].status)) {
		usemirror = 0;
	} else
		if (RF_DEAD_DISK(disks[rowData][colData].status)) {
			usemirror = 1;
		} else
			if (data_pda->startSector < (disks[rowData][colData].numBlocks / 2)) {
				usemirror = 0;
			} else {
				usemirror = 1;
			}

	if (usemirror) {
		/* use mirror (parity) disk, swap params 0 & 4 */
		tmp_pda = data_pda;
		node->params[0].p = mirror_pda;
		node->params[4].p = tmp_pda;
	} else {
		/* use data disk, leave param 0 unchanged */
	}
}