1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
|
/* $OpenBSD: rf_diskqueue.c,v 1.2 1999/02/16 00:02:39 niklas Exp $ */
/* $NetBSD: rf_diskqueue.c,v 1.6 1999/02/05 00:06:09 oster Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Mark Holland
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/****************************************************************************************
*
* rf_diskqueue.c -- higher-level disk queue code
*
* the routines here are a generic wrapper around the actual queueing
* routines. The code here implements thread scheduling, synchronization,
* and locking ops (see below) on top of the lower-level queueing code.
*
* to support atomic RMW, we implement "locking operations". When a locking op
* is dispatched to the lower levels of the driver, the queue is locked, and no further
* I/Os are dispatched until the queue receives & completes a corresponding "unlocking
* operation". This code relies on the higher layers to guarantee that a locking
* op will always be eventually followed by an unlocking op. The model is that
* the higher layers are structured so locking and unlocking ops occur in pairs, i.e.
* an unlocking op cannot be generated until after a locking op reports completion.
* There is no good way to check to see that an unlocking op "corresponds" to the
* op that currently has the queue locked, so we make no such attempt. Since by
* definition there can be only one locking op outstanding on a disk, this should
* not be a problem.
*
* In the kernel, we allow multiple I/Os to be concurrently dispatched to the disk
* driver. In order to support locking ops in this environment, when we decide to
* do a locking op, we stop dispatching new I/Os and wait until all dispatched I/Os
* have completed before dispatching the locking op.
*
* Unfortunately, the code is different in the 3 different operating states
* (user level, kernel, simulator). In the kernel, I/O is non-blocking, and
* we have no disk threads to dispatch for us. Therefore, we have to dispatch
* new I/Os to the scsi driver at the time of enqueue, and also at the time
* of completion. At user level, I/O is blocking, and so only the disk threads
* may dispatch I/Os. Thus at user level, all we can do at enqueue time is
* enqueue and wake up the disk thread to do the dispatch.
*
***************************************************************************************/
#include "rf_types.h"
#include "rf_threadstuff.h"
#include "rf_threadid.h"
#include "rf_raid.h"
#include "rf_diskqueue.h"
#include "rf_alloclist.h"
#include "rf_acctrace.h"
#include "rf_etimer.h"
#include "rf_configure.h"
#include "rf_general.h"
#include "rf_freelist.h"
#include "rf_debugprint.h"
#include "rf_shutdown.h"
#include "rf_cvscan.h"
#include "rf_sstf.h"
#include "rf_fifo.h"
static int init_dqd(RF_DiskQueueData_t *);
static void clean_dqd(RF_DiskQueueData_t *);
static void rf_ShutdownDiskQueueSystem(void *);
/* From rf_kintf.c */
int rf_DispatchKernelIO(RF_DiskQueue_t *, RF_DiskQueueData_t *);
#define Dprintf1(s,a) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
#define Dprintf2(s,a,b) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
#define Dprintf3(s,a,b,c) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
#define Dprintf4(s,a,b,c,d) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
#define Dprintf5(s,a,b,c,d,e) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
#define SIGNAL_DISK_QUEUE(_q_,_wh_)
#define WAIT_DISK_QUEUE(_q_,_wh_)
/*****************************************************************************************
*
* the disk queue switch defines all the functions used in the different queueing
* disciplines
* queue ID, init routine, enqueue routine, dequeue routine
*
****************************************************************************************/
static RF_DiskQueueSW_t diskqueuesw[] = {
{"fifo", /* FIFO */
rf_FifoCreate,
rf_FifoEnqueue,
rf_FifoDequeue,
rf_FifoPeek,
rf_FifoPromote},
{"cvscan", /* cvscan */
rf_CvscanCreate,
rf_CvscanEnqueue,
rf_CvscanDequeue,
rf_CvscanPeek,
rf_CvscanPromote},
{"sstf", /* shortest seek time first */
rf_SstfCreate,
rf_SstfEnqueue,
rf_SstfDequeue,
rf_SstfPeek,
rf_SstfPromote},
{"scan", /* SCAN (two-way elevator) */
rf_ScanCreate,
rf_SstfEnqueue,
rf_ScanDequeue,
rf_ScanPeek,
rf_SstfPromote},
{"cscan", /* CSCAN (one-way elevator) */
rf_CscanCreate,
rf_SstfEnqueue,
rf_CscanDequeue,
rf_CscanPeek,
rf_SstfPromote},
#if !defined(_KERNEL) && RF_INCLUDE_QUEUE_RANDOM > 0
/* to make a point to Chris :-> */
{"random", /* random */
rf_FifoCreate,
rf_FifoEnqueue,
rf_RandomDequeue,
rf_RandomPeek,
rf_FifoPromote},
#endif /* !KERNEL && RF_INCLUDE_QUEUE_RANDOM > 0 */
};
#define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
static RF_FreeList_t *rf_dqd_freelist;
#define RF_MAX_FREE_DQD 256
#define RF_DQD_INC 16
#define RF_DQD_INITIAL 64
#include <sys/buf.h>
static int
init_dqd(dqd)
RF_DiskQueueData_t *dqd;
{
/* XXX not sure if the following malloc is appropriate... probably not
* quite... */
dqd->bp = (struct buf *) malloc(sizeof(struct buf), M_RAIDFRAME, M_NOWAIT);
if (dqd->bp == NULL) {
return (ENOMEM);
}
memset(dqd->bp, 0, sizeof(struct buf)); /* if you don't do it, nobody
* else will.. */
return (0);
}
static void
clean_dqd(dqd)
RF_DiskQueueData_t *dqd;
{
free(dqd->bp, M_RAIDFRAME);
}
/* configures a single disk queue */
static int
config_disk_queue(
RF_Raid_t * raidPtr,
RF_DiskQueue_t * diskqueue,
RF_RowCol_t r, /* row & col -- debug only. BZZT not any
* more... */
RF_RowCol_t c,
RF_DiskQueueSW_t * p,
RF_SectorCount_t sectPerDisk,
dev_t dev,
int maxOutstanding,
RF_ShutdownList_t ** listp,
RF_AllocListElem_t * clList)
{
int rc;
diskqueue->row = r;
diskqueue->col = c;
diskqueue->qPtr = p;
diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
diskqueue->dev = dev;
diskqueue->numOutstanding = 0;
diskqueue->queueLength = 0;
diskqueue->maxOutstanding = maxOutstanding;
diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
diskqueue->nextLockingOp = NULL;
diskqueue->unlockingOp = NULL;
diskqueue->numWaiting = 0;
diskqueue->flags = 0;
diskqueue->raidPtr = raidPtr;
diskqueue->rf_cinfo = &raidPtr->raid_cinfo[r][c];
rc = rf_create_managed_mutex(listp, &diskqueue->mutex);
if (rc) {
RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
return (rc);
}
rc = rf_create_managed_cond(listp, &diskqueue->cond);
if (rc) {
RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
return (rc);
}
return (0);
}
static void
rf_ShutdownDiskQueueSystem(ignored)
void *ignored;
{
RF_FREELIST_DESTROY_CLEAN(rf_dqd_freelist, next, (RF_DiskQueueData_t *), clean_dqd);
}
int
rf_ConfigureDiskQueueSystem(listp)
RF_ShutdownList_t **listp;
{
int rc;
RF_FREELIST_CREATE(rf_dqd_freelist, RF_MAX_FREE_DQD,
RF_DQD_INC, sizeof(RF_DiskQueueData_t));
if (rf_dqd_freelist == NULL)
return (ENOMEM);
rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
if (rc) {
RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
__FILE__, __LINE__, rc);
rf_ShutdownDiskQueueSystem(NULL);
return (rc);
}
RF_FREELIST_PRIME_INIT(rf_dqd_freelist, RF_DQD_INITIAL, next,
(RF_DiskQueueData_t *), init_dqd);
return (0);
}
int
rf_ConfigureDiskQueues(
RF_ShutdownList_t ** listp,
RF_Raid_t * raidPtr,
RF_Config_t * cfgPtr)
{
RF_DiskQueue_t **diskQueues, *spareQueues;
RF_DiskQueueSW_t *p;
RF_RowCol_t r, c;
int rc, i;
raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
p = &diskqueuesw[i];
break;
}
}
if (p == NULL) {
RF_ERRORMSG2("Unknown queue type \"%s\". Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
p = &diskqueuesw[0];
}
RF_CallocAndAdd(diskQueues, raidPtr->numRow, sizeof(RF_DiskQueue_t *), (RF_DiskQueue_t **), raidPtr->cleanupList);
if (diskQueues == NULL) {
return (ENOMEM);
}
raidPtr->Queues = diskQueues;
for (r = 0; r < raidPtr->numRow; r++) {
RF_CallocAndAdd(diskQueues[r], raidPtr->numCol + ((r == 0) ? raidPtr->numSpare : 0), sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *), raidPtr->cleanupList);
if (diskQueues[r] == NULL)
return (ENOMEM);
for (c = 0; c < raidPtr->numCol; c++) {
rc = config_disk_queue(raidPtr, &diskQueues[r][c], r, c, p,
raidPtr->sectorsPerDisk, raidPtr->Disks[r][c].dev,
cfgPtr->maxOutstandingDiskReqs, listp, raidPtr->cleanupList);
if (rc)
return (rc);
}
}
spareQueues = &raidPtr->Queues[0][raidPtr->numCol];
for (r = 0; r < raidPtr->numSpare; r++) {
rc = config_disk_queue(raidPtr, &spareQueues[r],
0, raidPtr->numCol + r, p,
raidPtr->sectorsPerDisk,
raidPtr->Disks[0][raidPtr->numCol + r].dev,
cfgPtr->maxOutstandingDiskReqs, listp,
raidPtr->cleanupList);
if (rc)
return (rc);
}
return (0);
}
/* Enqueue a disk I/O
*
* Unfortunately, we have to do things differently in the different
* environments (simulator, user-level, kernel).
* At user level, all I/O is blocking, so we have 1 or more threads/disk
* and the thread that enqueues is different from the thread that dequeues.
* In the kernel, I/O is non-blocking and so we'd like to have multiple
* I/Os outstanding on the physical disks when possible.
*
* when any request arrives at a queue, we have two choices:
* dispatch it to the lower levels
* queue it up
*
* kernel rules for when to do what:
* locking request: queue empty => dispatch and lock queue,
* else queue it
* unlocking req : always dispatch it
* normal req : queue empty => dispatch it & set priority
* queue not full & priority is ok => dispatch it
* else queue it
*
* user-level rules:
* always enqueue. In the special case of an unlocking op, enqueue
* in a special way that will cause the unlocking op to be the next
* thing dequeued.
*
* simulator rules:
* Do the same as at user level, with the sleeps and wakeups suppressed.
*/
void
rf_DiskIOEnqueue(queue, req, pri)
RF_DiskQueue_t *queue;
RF_DiskQueueData_t *req;
int pri;
{
int tid;
RF_ETIMER_START(req->qtime);
rf_get_threadid(tid);
RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
req->priority = pri;
if (rf_queueDebug && (req->numSector == 0)) {
printf("Warning: Enqueueing zero-sector access\n");
}
/*
* kernel
*/
RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
/* locking request */
if (RF_LOCKING_REQ(req)) {
if (RF_QUEUE_EMPTY(queue)) {
Dprintf3("Dispatching pri %d locking op to r %d c %d (queue empty)\n", pri, queue->row, queue->col);
RF_LOCK_QUEUE(queue);
rf_DispatchKernelIO(queue, req);
} else {
queue->queueLength++; /* increment count of number
* of requests waiting in this
* queue */
Dprintf3("Enqueueing pri %d locking op to r %d c %d (queue not empty)\n", pri, queue->row, queue->col);
req->queue = (void *) queue;
(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
}
}
/* unlocking request */
else
if (RF_UNLOCKING_REQ(req)) { /* we'll do the actual unlock
* when this I/O completes */
Dprintf3("Dispatching pri %d unlocking op to r %d c %d\n", pri, queue->row, queue->col);
RF_ASSERT(RF_QUEUE_LOCKED(queue));
rf_DispatchKernelIO(queue, req);
}
/* normal request */
else
if (RF_OK_TO_DISPATCH(queue, req)) {
Dprintf3("Dispatching pri %d regular op to r %d c %d (ok to dispatch)\n", pri, queue->row, queue->col);
rf_DispatchKernelIO(queue, req);
} else {
queue->queueLength++; /* increment count of
* number of requests
* waiting in this queue */
Dprintf3("Enqueueing pri %d regular op to r %d c %d (not ok to dispatch)\n", pri, queue->row, queue->col);
req->queue = (void *) queue;
(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
}
RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
}
/* get the next set of I/Os started, kernel version only */
void
rf_DiskIOComplete(queue, req, status)
RF_DiskQueue_t *queue;
RF_DiskQueueData_t *req;
int status;
{
int done = 0;
RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
/* unlock the queue: (1) after an unlocking req completes (2) after a
* locking req fails */
if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
Dprintf2("DiskIOComplete: unlocking queue at r %d c %d\n", queue->row, queue->col);
RF_ASSERT(RF_QUEUE_LOCKED(queue) && (queue->unlockingOp == NULL));
RF_UNLOCK_QUEUE(queue);
}
queue->numOutstanding--;
RF_ASSERT(queue->numOutstanding >= 0);
/* dispatch requests to the disk until we find one that we can't. */
/* no reason to continue once we've filled up the queue */
/* no reason to even start if the queue is locked */
while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
if (queue->nextLockingOp) {
req = queue->nextLockingOp;
queue->nextLockingOp = NULL;
Dprintf3("DiskIOComplete: a pri %d locking req was pending at r %d c %d\n", req->priority, queue->row, queue->col);
} else {
req = (queue->qPtr->Dequeue) (queue->qHdr);
if (req != NULL) {
Dprintf3("DiskIOComplete: extracting pri %d req from queue at r %d c %d\n", req->priority, queue->row, queue->col);
} else {
Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
}
}
if (req) {
queue->queueLength--; /* decrement count of number
* of requests waiting in this
* queue */
RF_ASSERT(queue->queueLength >= 0);
}
if (!req)
done = 1;
else
if (RF_LOCKING_REQ(req)) {
if (RF_QUEUE_EMPTY(queue)) { /* dispatch it */
Dprintf3("DiskIOComplete: dispatching pri %d locking req to r %d c %d (queue empty)\n", req->priority, queue->row, queue->col);
RF_LOCK_QUEUE(queue);
rf_DispatchKernelIO(queue, req);
done = 1;
} else { /* put it aside to wait for
* the queue to drain */
Dprintf3("DiskIOComplete: postponing pri %d locking req to r %d c %d\n", req->priority, queue->row, queue->col);
RF_ASSERT(queue->nextLockingOp == NULL);
queue->nextLockingOp = req;
done = 1;
}
} else
if (RF_UNLOCKING_REQ(req)) { /* should not happen:
* unlocking ops should
* not get queued */
RF_ASSERT(RF_QUEUE_LOCKED(queue)); /* support it anyway for
* the future */
Dprintf3("DiskIOComplete: dispatching pri %d unl req to r %d c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->row, queue->col);
rf_DispatchKernelIO(queue, req);
done = 1;
} else
if (RF_OK_TO_DISPATCH(queue, req)) {
Dprintf3("DiskIOComplete: dispatching pri %d regular req to r %d c %d (ok to dispatch)\n", req->priority, queue->row, queue->col);
rf_DispatchKernelIO(queue, req);
} else { /* we can't dispatch it,
* so just re-enqueue
* it. */
/* potential trouble here if
* disk queues batch reqs */
Dprintf3("DiskIOComplete: re-enqueueing pri %d regular req to r %d c %d\n", req->priority, queue->row, queue->col);
queue->queueLength++;
(queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
done = 1;
}
}
RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
}
/* promotes accesses tagged with the given parityStripeID from low priority
* to normal priority. This promotion is optional, meaning that a queue
* need not implement it. If there is no promotion routine associated with
* a queue, this routine does nothing and returns -1.
*/
int
rf_DiskIOPromote(queue, parityStripeID, which_ru)
RF_DiskQueue_t *queue;
RF_StripeNum_t parityStripeID;
RF_ReconUnitNum_t which_ru;
{
int retval;
if (!queue->qPtr->Promote)
return (-1);
RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
return (retval);
}
RF_DiskQueueData_t *
rf_CreateDiskQueueData(
RF_IoType_t typ,
RF_SectorNum_t ssect,
RF_SectorCount_t nsect,
caddr_t buf,
RF_StripeNum_t parityStripeID,
RF_ReconUnitNum_t which_ru,
int (*wakeF) (void *, int),
void *arg,
RF_DiskQueueData_t * next,
RF_AccTraceEntry_t * tracerec,
void *raidPtr,
RF_DiskQueueDataFlags_t flags,
void *kb_proc)
{
RF_DiskQueueData_t *p;
RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
p->sectorOffset = ssect + rf_protectedSectors;
p->numSector = nsect;
p->type = typ;
p->buf = buf;
p->parityStripeID = parityStripeID;
p->which_ru = which_ru;
p->CompleteFunc = wakeF;
p->argument = arg;
p->next = next;
p->tracerec = tracerec;
p->priority = RF_IO_NORMAL_PRIORITY;
p->AuxFunc = NULL;
p->buf2 = NULL;
p->raidPtr = raidPtr;
p->flags = flags;
p->b_proc = kb_proc;
return (p);
}
RF_DiskQueueData_t *
rf_CreateDiskQueueDataFull(
RF_IoType_t typ,
RF_SectorNum_t ssect,
RF_SectorCount_t nsect,
caddr_t buf,
RF_StripeNum_t parityStripeID,
RF_ReconUnitNum_t which_ru,
int (*wakeF) (void *, int),
void *arg,
RF_DiskQueueData_t * next,
RF_AccTraceEntry_t * tracerec,
int priority,
int (*AuxFunc) (void *,...),
caddr_t buf2,
void *raidPtr,
RF_DiskQueueDataFlags_t flags,
void *kb_proc)
{
RF_DiskQueueData_t *p;
RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
p->sectorOffset = ssect + rf_protectedSectors;
p->numSector = nsect;
p->type = typ;
p->buf = buf;
p->parityStripeID = parityStripeID;
p->which_ru = which_ru;
p->CompleteFunc = wakeF;
p->argument = arg;
p->next = next;
p->tracerec = tracerec;
p->priority = priority;
p->AuxFunc = AuxFunc;
p->buf2 = buf2;
p->raidPtr = raidPtr;
p->flags = flags;
p->b_proc = kb_proc;
return (p);
}
void
rf_FreeDiskQueueData(p)
RF_DiskQueueData_t *p;
{
RF_FREELIST_FREE_CLEAN(rf_dqd_freelist, p, next, clean_dqd);
}
|