summaryrefslogtreecommitdiff
path: root/sys/dev/raidframe/rf_evenodd_dagfuncs.c
blob: 2762ac725af75eb39d8c85b3a96f26df86604f6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
/*	$OpenBSD: rf_evenodd_dagfuncs.c,v 1.1 1999/01/11 14:29:21 niklas Exp $	*/
/*	$NetBSD: rf_evenodd_dagfuncs.c,v 1.1 1998/11/13 04:20:29 oster Exp $	*/
/*
 * Copyright (c) 1995 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Author: ChangMing Wu
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

/*
 * Code for RAID-EVENODD  architecture.
 */

#include "rf_types.h"
#include "rf_raid.h"
#include "rf_dag.h"
#include "rf_dagffrd.h"
#include "rf_dagffwr.h"
#include "rf_dagdegrd.h"
#include "rf_dagdegwr.h"
#include "rf_dagutils.h"
#include "rf_dagfuncs.h"
#include "rf_threadid.h"
#include "rf_etimer.h"
#include "rf_general.h"
#include "rf_configure.h"
#include "rf_parityscan.h"
#include "rf_sys.h"
#include "rf_evenodd.h"
#include "rf_evenodd_dagfuncs.h"

/* These redundant functions are for small write */
RF_RedFuncs_t rf_EOSmallWritePFuncs = { rf_RegularXorFunc, "Regular Old-New P", rf_SimpleXorFunc, "Simple Old-New P" };
RF_RedFuncs_t rf_EOSmallWriteEFuncs = { rf_RegularONEFunc, "Regular Old-New E", rf_SimpleONEFunc, "Regular Old-New E" }; 

/* These redundant functions are for degraded read */
RF_RedFuncs_t rf_eoPRecoveryFuncs =  { rf_RecoveryXorFunc, "Recovery Xr", rf_RecoveryXorFunc, "Recovery Xr"};
RF_RedFuncs_t rf_eoERecoveryFuncs = { rf_RecoveryEFunc, "Recovery E Func", rf_RecoveryEFunc, "Recovery E Func" };

/**********************************************************************************************
 *   the following encoding node functions is used in  EO_000_CreateLargeWriteDAG 
 **********************************************************************************************/
int rf_RegularPEFunc(node)
  RF_DagNode_t  *node;
{
   rf_RegularESubroutine(node,node->results[1]);   
   rf_RegularXorFunc(node);    /* does the wakeup here! */
#if 1
   return(0); /* XXX This was missing... GO */
#endif
}


/************************************************************************************************
 *  For EO_001_CreateSmallWriteDAG, there are (i)RegularONEFunc() and (ii)SimpleONEFunc() to
 *  be used. The previous case is when write access at least sectors of full stripe unit.
 *  The later function is used when the write access two stripe units but with total sectors
 *  less than sectors per SU. In this case, the access of parity and 'E' are shown as disconnected
 *  areas in their stripe unit and  parity write and 'E' write are both devided into two distinct
 *  writes( totally four). This simple old-new write and regular old-new write happen as in RAID-5
 ************************************************************************************************/

/* Algorithm: 
     1. Store the difference of old data and new data in the Rod buffer.
     2. then encode this buffer into the buffer which already have old 'E' information inside it, 
	the result can be shown to be the new 'E' information.
     3. xor the Wnd buffer into the difference buffer to recover the  original old data.
   Here we have another alternative: to allocate a temporary buffer for storing the difference of 
   old data and new data, then encode temp buf into old 'E' buf to form new 'E', but this approach 
   take the same speed as the previous, and need more memory.
*/
int rf_RegularONEFunc(node)
  RF_DagNode_t  *node;
{
  RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams-1].p;
  RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) &raidPtr->Layout;
  int EpdaIndex = (node->numParams-1)/2 - 1; /* the parameter of node where you can find e-pda */ 
  int i, k, retcode = 0;
  int suoffset, length;
  RF_RowCol_t scol;
  char *srcbuf, *destbuf;
  RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
  RF_Etimer_t timer;
  RF_PhysDiskAddr_t *pda, *EPDA = (RF_PhysDiskAddr_t *) node->params[EpdaIndex].p; 
  int ESUOffset = rf_StripeUnitOffset(layoutPtr, EPDA->startSector); /* generally zero  */

  RF_ASSERT( EPDA->type == RF_PDA_TYPE_Q );
  RF_ASSERT(ESUOffset == 0);

  RF_ETIMER_START(timer);
 
  /* Xor the Wnd buffer into Rod buffer, the difference of old data and new data is stored in Rod buffer */
  for( k=0; k< EpdaIndex; k += 2) {
   length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *)node->params[k].p)->numSector );
   retcode = rf_bxor( node->params[k+EpdaIndex+3].p, node->params[k+1].p, length, node->dagHdr->bp);   
  }
  /* Start to encoding the buffer storing the difference of old data and new data into 'E' buffer  */
  for (i=0; i<EpdaIndex; i+=2) if (node->params[i+1].p != node->results[0]) { /* results[0] is buf ptr of E */
    pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    srcbuf = (char *) node->params[i+1].p;
    scol = rf_EUCol(layoutPtr, pda->raidAddress );
    suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr,suoffset); 
    rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
  }
  /* Recover the original old data to be used by parity encoding function in XorNode */
  for( k=0; k< EpdaIndex; k += 2) {
   length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *)node->params[k].p)->numSector );
   retcode = rf_bxor( node->params[k+EpdaIndex+3].p, node->params[k+1].p, length, node->dagHdr->bp);
  }
  RF_ETIMER_STOP(timer);
  RF_ETIMER_EVAL(timer);
  tracerec->q_us += RF_ETIMER_VAL_US(timer);
  rf_GenericWakeupFunc(node, 0);  
#if 1
  return(0); /* XXX this was missing.. GO */
#endif
}

int rf_SimpleONEFunc(node)
  RF_DagNode_t   *node;
{
  RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams-1].p;
  RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) &raidPtr->Layout;
  RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
  int retcode = 0;
  char *srcbuf, *destbuf;
  RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
  int length;
  RF_RowCol_t scol;
  RF_Etimer_t timer;

  RF_ASSERT( ((RF_PhysDiskAddr_t *)node->params[2].p)->type == RF_PDA_TYPE_Q );
  if (node->dagHdr->status == rf_enable) { 
     RF_ETIMER_START(timer);
     length = rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *)node->params[4].p)->numSector );/* this is a pda of writeDataNodes */
     /* bxor to buffer of readDataNodes */
     retcode = rf_bxor( node->params[5].p, node->params[1].p, length, node->dagHdr->bp);
     /* find out the corresponding colume in encoding matrix for write colume to be encoded into redundant disk 'E' */
     scol = rf_EUCol(layoutPtr, pda->raidAddress ); 
     srcbuf = node->params[1].p;
     destbuf = node->params[3].p;
     /* Start encoding process */
     rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);   
     rf_bxor( node->params[5].p, node->params[1].p, length, node->dagHdr->bp);
     RF_ETIMER_STOP(timer); RF_ETIMER_EVAL(timer); tracerec->q_us += RF_ETIMER_VAL_US(timer); 

  }
  return(rf_GenericWakeupFunc(node, retcode));     /* call wake func explicitly since no I/O in this node */
}


/****** called by rf_RegularPEFunc(node) and rf_RegularEFunc(node) in f.f. large write  ********/
void rf_RegularESubroutine(node, ebuf)
  RF_DagNode_t  *node;
  char          *ebuf;
{
  RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams-1].p;
  RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) &raidPtr->Layout;
  RF_PhysDiskAddr_t *pda;
  int i, suoffset;
  RF_RowCol_t scol;
  char *srcbuf, *destbuf;
  RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
  RF_Etimer_t timer;

  RF_ETIMER_START(timer);
  for (i=0; i<node->numParams-2; i+=2) {
    RF_ASSERT( node->params[i+1].p != ebuf );
    pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    scol = rf_EUCol(layoutPtr, pda->raidAddress );
    srcbuf = (char *) node->params[i+1].p;
    destbuf = ebuf + rf_RaidAddressToByte(raidPtr, suoffset );
    rf_e_encToBuf(raidPtr,  scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
  }
  RF_ETIMER_STOP(timer);
  RF_ETIMER_EVAL(timer);
  tracerec->xor_us += RF_ETIMER_VAL_US(timer);
}


/*******************************************************************************************
 *			 Used in  EO_001_CreateLargeWriteDAG                      
 ******************************************************************************************/
int rf_RegularEFunc(node)  
  RF_DagNode_t  *node;
{
   rf_RegularESubroutine(node, node->results[0]);  
   rf_GenericWakeupFunc(node, 0);
#if 1
   return(0); /* XXX this was missing?.. GO */
#endif
}

/*******************************************************************************************
 * This degraded function allow only two case: 
 *  1. when write access the full failed stripe unit, then the access can be more than 
 *     one tripe units.
 *  2. when write access only part of the failed SU, we assume accesses of more than 
 *     one stripe unit is not allowed so that the write can be dealt with like a 
 *     large write. 
 *  The following function is based on these assumptions. So except in the second case, 
 *  it looks the same as a large write encodeing function. But this is not exactly the
 *  normal way for doing a degraded write, since raidframe have to break cases of access 
 *  other than the above two into smaller accesses. We may have to change 
 *  DegrESubroutin in the future.  
 *******************************************************************************************/
void rf_DegrESubroutine(node, ebuf)
  RF_DagNode_t  *node;
  char          *ebuf;
{
  RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams-1].p;
  RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) &raidPtr->Layout;
  RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams-2].p;
  RF_PhysDiskAddr_t *pda;
  int i, suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
  RF_RowCol_t scol;
  char *srcbuf, *destbuf;
  RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
  RF_Etimer_t timer;

  RF_ETIMER_START(timer);
  for (i=0; i<node->numParams-2; i+=2) {
    RF_ASSERT( node->params[i+1].p != ebuf );
    pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    scol = rf_EUCol(layoutPtr, pda->raidAddress );
    srcbuf = (char *) node->params[i+1].p;
    destbuf = ebuf + rf_RaidAddressToByte(raidPtr, suoffset-failedSUOffset);
    rf_e_encToBuf(raidPtr, scol, srcbuf, RF_EO_MATRIX_DIM - 2, destbuf, pda->numSector);
  }

  RF_ETIMER_STOP(timer); RF_ETIMER_EVAL(timer); tracerec->q_us += RF_ETIMER_VAL_US(timer);
}


/**************************************************************************************
 * This function is used in case where one data disk failed and both redundant disks 
 * alive. It is used in the EO_100_CreateWriteDAG. Note: if there is another disk
 * failed in the stripe but not accessed at this time, then we should, instead, use
 * the rf_EOWriteDoubleRecoveryFunc().
 **************************************************************************************/
int rf_Degraded_100_EOFunc(node)
  RF_DagNode_t  *node;
{
  rf_DegrESubroutine(node, node->results[1]);
  rf_RecoveryXorFunc(node);  /* does the wakeup here! */
#if 1
  return(0); /* XXX this was missing... SHould these be void functions??? GO */
#endif
}

/**************************************************************************************
 * This function is to encode one sector in one of the data disks to the E disk.
 * However, in evenodd this function can also be used as decoding function to recover 
 * data from dead disk in the case of parity failure and a single data failure.
 **************************************************************************************/
void rf_e_EncOneSect(
  RF_RowCol_t   srcLogicCol,
  char         *srcSecbuf,
  RF_RowCol_t   destLogicCol,
  char         *destSecbuf,
  int           bytesPerSector)
{
  int S_index;  /* index of the EU in the src col which need be Xored into all EUs in a dest sector */
  int numRowInEncMatix = (RF_EO_MATRIX_DIM) -1; 
  RF_RowCol_t j, indexInDest,   /* row index of an encoding unit in the destination colume of encoding matrix */
              indexInSrc;  /* row index of an encoding unit in the source colume used for recovery */
  int bytesPerEU = bytesPerSector/numRowInEncMatix;

#if RF_EO_MATRIX_DIM > 17
  int shortsPerEU = bytesPerEU/sizeof(short);
  short *destShortBuf, *srcShortBuf1, *srcShortBuf2;
  register short temp1;
#elif RF_EO_MATRIX_DIM == 17
  int longsPerEU = bytesPerEU/sizeof(long);
  long *destLongBuf, *srcLongBuf1, *srcLongBuf2;
  register long temp1;
#endif

#if RF_EO_MATRIX_DIM > 17
  RF_ASSERT( sizeof(short) == 2 || sizeof(short) == 1 );
  RF_ASSERT( bytesPerEU % sizeof(short) == 0 );
#elif RF_EO_MATRIX_DIM == 17
  RF_ASSERT( sizeof(long) == 8 || sizeof(long) == 4 );
  RF_ASSERT( bytesPerEU % sizeof(long) == 0);
#endif

  S_index = rf_EO_Mod( ( RF_EO_MATRIX_DIM -1 + destLogicCol - srcLogicCol), RF_EO_MATRIX_DIM);
#if RF_EO_MATRIX_DIM > 17
  srcShortBuf1 = (short *)(srcSecbuf + S_index * bytesPerEU);
#elif RF_EO_MATRIX_DIM == 17
  srcLongBuf1 = (long *)(srcSecbuf + S_index * bytesPerEU);
#endif

  for( indexInDest = 0; indexInDest < numRowInEncMatix ; indexInDest++){
     indexInSrc = rf_EO_Mod( (indexInDest + destLogicCol - srcLogicCol), RF_EO_MATRIX_DIM );

#if RF_EO_MATRIX_DIM > 17
     destShortBuf = (short *)(destSecbuf + indexInDest * bytesPerEU);
     srcShortBuf2 = (short *)(srcSecbuf + indexInSrc * bytesPerEU);
     for(j=0; j < shortsPerEU; j++) {
        temp1 = destShortBuf[j]^srcShortBuf1[j];
        /* note: S_index won't be at the end row for any src col! */
        if(indexInSrc != RF_EO_MATRIX_DIM -1) destShortBuf[j] = (srcShortBuf2[j])^temp1;
        /* if indexInSrc is at the end row, ie. RF_EO_MATRIX_DIM -1, then all elements are zero! */
	else destShortBuf[j] = temp1;
     }

#elif RF_EO_MATRIX_DIM == 17
     destLongBuf = (long *)(destSecbuf + indexInDest * bytesPerEU);
     srcLongBuf2 = (long *)(srcSecbuf + indexInSrc * bytesPerEU);
     for(j=0; j < longsPerEU; j++) {
        temp1 = destLongBuf[j]^srcLongBuf1[j];
        if(indexInSrc != RF_EO_MATRIX_DIM -1) destLongBuf[j] = (srcLongBuf2[j])^temp1;
        else destLongBuf[j] = temp1;
     }
#endif
  }
}

void rf_e_encToBuf(
  RF_Raid_t    *raidPtr,
  RF_RowCol_t   srcLogicCol,
  char         *srcbuf,
  RF_RowCol_t   destLogicCol,
  char         *destbuf,
  int           numSector)
{
  int i, bytesPerSector = rf_RaidAddressToByte(raidPtr, 1);

  for (i=0; i < numSector; i++)
  {
     rf_e_EncOneSect( srcLogicCol, srcbuf, destLogicCol, destbuf, bytesPerSector);
     srcbuf += bytesPerSector; 
     destbuf += bytesPerSector; 
  }
}

/**************************************************************************************  
 * when parity die and one data die, We use second redundant information, 'E', 
 * to recover the data in dead disk. This function is used in the recovery node of 
 * for EO_110_CreateReadDAG 
 **************************************************************************************/
int rf_RecoveryEFunc(node)   
  RF_DagNode_t  *node;
{
  RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams-1].p;
  RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) &raidPtr->Layout;
  RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams-2].p;
  RF_RowCol_t scol, /*source logical column*/ 
              fcol = rf_EUCol(layoutPtr, failedPDA->raidAddress ); /* logical column of failed SU */
  int i;
  RF_PhysDiskAddr_t *pda;
  int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr,failedPDA->startSector);
  char *srcbuf, *destbuf;
  RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
  RF_Etimer_t timer;

  bzero( (char *)node->results[0], rf_RaidAddressToByte(raidPtr,failedPDA->numSector));
  if (node->dagHdr->status == rf_enable) {
    RF_ETIMER_START(timer);
    for (i=0; i<node->numParams-2; i+=2) if (node->params[i+1].p != node->results[0]) {
      pda = (RF_PhysDiskAddr_t *) node->params[i].p;
      if( i == node->numParams - 4 ) scol = RF_EO_MATRIX_DIM - 2; /* the colume of redundant E */
      else scol = rf_EUCol(layoutPtr, pda->raidAddress ); 
      srcbuf = (char *) node->params[i+1].p;
      suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
      destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr,suoffset-failedSUOffset);
      rf_e_encToBuf(raidPtr,  scol, srcbuf, fcol, destbuf, pda->numSector);
    }          
    RF_ETIMER_STOP(timer);
    RF_ETIMER_EVAL(timer);
    tracerec->xor_us += RF_ETIMER_VAL_US(timer);
  }
  return (rf_GenericWakeupFunc(node, 0)); /* node execute successfully */
}

/**************************************************************************************
 * This function is used in the case where one data and the parity have filed.
 * (in EO_110_CreateWriteDAG )
 **************************************************************************************/
int rf_EO_DegradedWriteEFunc(RF_DagNode_t *node)
{
  rf_DegrESubroutine(node, node->results[0]);
  rf_GenericWakeupFunc(node, 0);
#if 1
  return(0); /* XXX Yet another one!! GO */
#endif
}


                                                       
/**************************************************************************************
 *  		THE FUNCTION IS FOR DOUBLE DEGRADED READ AND WRITE CASES
 **************************************************************************************/

void rf_doubleEOdecode(
  RF_Raid_t     *raidPtr,
  char         **rrdbuf,
  char         **dest,
  RF_RowCol_t   *fcol,
  char          *pbuf,
  char          *ebuf)
{
  RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) &(raidPtr->Layout);
  int i, j, k, f1, f2, row;
  int rrdrow, erow, count = 0;
  int bytesPerSector = rf_RaidAddressToByte(raidPtr, 1 );
  int numRowInEncMatix = (RF_EO_MATRIX_DIM) -1;
#if 0
  int pcol = (RF_EO_MATRIX_DIM) - 1; 
#endif
  int ecol = (RF_EO_MATRIX_DIM) - 2;
  int bytesPerEU = bytesPerSector/numRowInEncMatix;
  int numDataCol  = layoutPtr->numDataCol;
#if RF_EO_MATRIX_DIM > 17
  int shortsPerEU = bytesPerEU/sizeof(short);
  short *rrdbuf_current, *pbuf_current, *ebuf_current;
  short *dest_smaller, *dest_smaller_current, *dest_larger, *dest_larger_current;
  register short *temp;
  short *P;

  RF_ASSERT( bytesPerEU % sizeof(short) == 0);
  RF_Malloc(P, bytesPerEU, (short *));
  RF_Malloc(temp, bytesPerEU, (short *));
#elif RF_EO_MATRIX_DIM == 17
  int longsPerEU = bytesPerEU/sizeof(long);
  long *rrdbuf_current, *pbuf_current, *ebuf_current; 
  long *dest_smaller, *dest_smaller_current, *dest_larger, *dest_larger_current;
  register long *temp;
  long *P;

  RF_ASSERT( bytesPerEU % sizeof(long) == 0);
  RF_Malloc(P, bytesPerEU, (long *));
  RF_Malloc(temp, bytesPerEU, (long *));
#endif
  RF_ASSERT( *((long *)dest[0]) == 0);
  RF_ASSERT( *((long *)dest[1]) == 0);
  bzero((char *)P, bytesPerEU);  
  bzero((char *)temp, bytesPerEU);
  RF_ASSERT( *P == 0 );
  /* calculate the 'P' parameter, which, not parity, is the Xor of all elements in 
     the last two column, ie. 'E' and 'parity' colume, see the Ref. paper by Blaum, et al 1993  */
  for( i=0; i< numRowInEncMatix; i++) 
       for( k=0; k< longsPerEU; k++) { 
#if RF_EO_MATRIX_DIM > 17
            ebuf_current = ((short *)ebuf) + i*shortsPerEU + k;
            pbuf_current = ((short *)pbuf) + i*shortsPerEU + k;
#elif RF_EO_MATRIX_DIM == 17
            ebuf_current = ((long *)ebuf) + i*longsPerEU + k;
            pbuf_current = ((long *)pbuf) + i*longsPerEU + k;
#endif
            P[k] ^= *ebuf_current;
            P[k] ^= *pbuf_current;
       }
  RF_ASSERT( fcol[0] != fcol[1] );
  if( fcol[0] < fcol[1] ) { 
#if RF_EO_MATRIX_DIM > 17
        dest_smaller = (short *)(dest[0]);
        dest_larger = (short *)(dest[1]);
#elif RF_EO_MATRIX_DIM == 17
	dest_smaller = (long *)(dest[0]); 
	dest_larger = (long *)(dest[1]); 
#endif
	f1 = fcol[0]; 
	f2 = fcol[1]; 
  }
  else { 
#if RF_EO_MATRIX_DIM > 17
        dest_smaller = (short *)(dest[1]);
        dest_larger = (short *)(dest[0]);
#elif RF_EO_MATRIX_DIM == 17
	dest_smaller = (long *)(dest[1]); 
	dest_larger = (long *)(dest[0]); 
#endif
	f1 = fcol[1]; 
	f2 = fcol[0]; 
  }
  row = (RF_EO_MATRIX_DIM) -1;
  while( (row = rf_EO_Mod( (row+f1-f2), RF_EO_MATRIX_DIM )) != ( (RF_EO_MATRIX_DIM) -1) )
  {   
#if RF_EO_MATRIX_DIM > 17
       dest_larger_current = dest_larger + row*shortsPerEU;
       dest_smaller_current = dest_smaller + row*shortsPerEU;
#elif RF_EO_MATRIX_DIM == 17
       dest_larger_current = dest_larger + row*longsPerEU;
       dest_smaller_current = dest_smaller + row*longsPerEU;
#endif
       /**    Do the diagonal recovery. Initially, temp[k] = (failed 1), 
	      which is the failed data in the colume which has smaller col index. **/
       /*   step 1:  ^(SUM of nonfailed in-diagonal A(rrdrow,0..m-3))         */
       for( j=0; j< numDataCol; j++)
       {     
             if( j == f1 || j == f2 ) continue;
             rrdrow = rf_EO_Mod( (row+f2-j), RF_EO_MATRIX_DIM );
	     if ( rrdrow != (RF_EO_MATRIX_DIM) -1 ) {
#if RF_EO_MATRIX_DIM > 17
                 rrdbuf_current = (short *)(rrdbuf[j]) + rrdrow * shortsPerEU;
                 for (k=0; k< shortsPerEU; k++) temp[k] ^= *(rrdbuf_current + k);
#elif RF_EO_MATRIX_DIM == 17
	         rrdbuf_current = (long *)(rrdbuf[j]) + rrdrow * longsPerEU;
                 for (k=0; k< longsPerEU; k++) temp[k] ^= *(rrdbuf_current + k);
#endif
	     }
       }         
       /*   step 2:  ^E(erow,m-2), If erow is at the buttom row, don't Xor into it  
	    E(erow,m-2) = (principle diagonal) ^ (failed 1) ^ (failed 2)
                        ^ ( SUM of nonfailed in-diagonal A(rrdrow,0..m-3) ) 
            After this step, temp[k] = (principle diagonal) ^ (failed 2)       */

       erow = rf_EO_Mod( (row+f2-ecol), (RF_EO_MATRIX_DIM) );
       if ( erow != (RF_EO_MATRIX_DIM) -1) {  
#if RF_EO_MATRIX_DIM > 17
           ebuf_current = (short *)ebuf + shortsPerEU * erow;
           for (k=0; k< shortsPerEU; k++) temp[k] ^= *(ebuf_current+k);
#elif RF_EO_MATRIX_DIM == 17
           ebuf_current = (long *)ebuf + longsPerEU * erow;
           for (k=0; k< longsPerEU; k++) temp[k] ^= *(ebuf_current+k);
#endif
       }
       /*   step 3: ^P to obtain the failed data (failed 2).  
	    P can be proved to be actually  (principle diagonal)  
            After this step, temp[k] = (failed 2), the failed data to be recovered */
#if RF_EO_MATRIX_DIM > 17
       for (k=0; k< shortsPerEU; k++) temp[k] ^= P[k];
       /*   Put the data to the destination buffer                              */
       for (k=0; k< shortsPerEU; k++) dest_larger_current[k] = temp[k];
#elif RF_EO_MATRIX_DIM == 17
       for (k=0; k< longsPerEU; k++) temp[k] ^= P[k];
       /*   Put the data to the destination buffer                              */
       for (k=0; k< longsPerEU; k++) dest_larger_current[k] = temp[k];
#endif

       /**          THE FOLLOWING DO THE HORIZONTAL XOR                **/ 
       /*   step 1:  ^(SUM of A(row,0..m-3)), ie. all nonfailed data columes    */ 
       for (j=0; j< numDataCol; j++)      
       {
             if( j == f1 || j == f2 ) continue;
#if RF_EO_MATRIX_DIM > 17
             rrdbuf_current = (short *)(rrdbuf[j]) + row * shortsPerEU;
             for (k=0; k< shortsPerEU; k++) temp[k] ^= *(rrdbuf_current+k);
#elif RF_EO_MATRIX_DIM == 17
	     rrdbuf_current = (long *)(rrdbuf[j]) + row * longsPerEU;
             for (k=0; k< longsPerEU; k++) temp[k] ^= *(rrdbuf_current+k);
#endif
       } 
       /*   step 2: ^A(row,m-1) */
       /*   step 3: Put the data to the destination buffer                             	*/
#if RF_EO_MATRIX_DIM > 17
       pbuf_current = (short *)pbuf + shortsPerEU * row;
       for (k=0; k< shortsPerEU; k++) temp[k] ^= *(pbuf_current+k);
       for (k=0; k< shortsPerEU; k++) dest_smaller_current[k] = temp[k];
#elif RF_EO_MATRIX_DIM == 17
       pbuf_current = (long *)pbuf + longsPerEU * row;
       for (k=0; k< longsPerEU; k++) temp[k] ^= *(pbuf_current+k);      
       for (k=0; k< longsPerEU; k++) dest_smaller_current[k] = temp[k];
#endif
       count++;  
  }
  /*        Check if all Encoding Unit in the data buffer have been decoded, 
	    according EvenOdd theory, if "RF_EO_MATRIX_DIM" is a prime number, 
	    this algorithm will covered all buffer 				 */
  RF_ASSERT( count == numRowInEncMatix );
  RF_Free((char *)P, bytesPerEU);
  RF_Free((char *)temp, bytesPerEU);
}
 

/***************************************************************************************
* 	This function is called by double degragded read
* 	EO_200_CreateReadDAG 								      
*
***************************************************************************************/
int rf_EvenOddDoubleRecoveryFunc(node)
  RF_DagNode_t  *node;
{
  int ndataParam = 0; 
  int np = node->numParams;
  RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np-1].p;
  RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np-2].p;
  RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) &(raidPtr->Layout);
  int i, prm, sector, nresults = node->numResults;
  RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
  unsigned sosAddr;
  int two = 0, mallc_one= 0, mallc_two = 0;    /* flags to indicate if memory is allocated */
  int bytesPerSector = rf_RaidAddressToByte(raidPtr, 1 );
  RF_PhysDiskAddr_t *ppda,*ppda2,*epda,*epda2,*pda, *pda0, *pda1, npda;
  RF_RowCol_t fcol[2], fsuoff[2], fsuend[2], numDataCol = layoutPtr->numDataCol;
  char **buf, *ebuf, *pbuf, *dest[2];
  long *suoff=NULL, *suend=NULL, *prmToCol=NULL, psuoff, esuoff;
  RF_SectorNum_t startSector, endSector;
  RF_Etimer_t timer;
  RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;

  RF_ETIMER_START(timer);

  /* Find out the number of parameters which are pdas for data information */
  for (i = 0; i<= np; i++) 
     if( ((RF_PhysDiskAddr_t *)node->params[i].p)->type != RF_PDA_TYPE_DATA) {ndataParam = i ; break; }

  RF_Malloc(buf, numDataCol*sizeof(char *), (char **));
  if (ndataParam != 0 ){
      RF_Malloc(suoff, ndataParam*sizeof(long), (long *) );
      RF_Malloc(suend, ndataParam*sizeof(long), (long *) );
      RF_Malloc(prmToCol, ndataParam*sizeof(long), (long *) );
  }

  if (asmap->failedPDAs[1] &&
      (asmap->failedPDAs[1]->numSector + asmap->failedPDAs[0]->numSector < secPerSU)) {
      RF_ASSERT(0); /* currently, no support for this situation */
      ppda  = node->params[np-6].p;
      ppda2 = node->params[np-5].p;
      RF_ASSERT( ppda2->type == RF_PDA_TYPE_PARITY );
      epda  = node->params[np-4].p;
      epda2 = node->params[np-3].p;
      RF_ASSERT( epda2->type == RF_PDA_TYPE_Q );
      two = 1;
  } 
  else {
      ppda = node->params[np-4].p;
      epda = node->params[np-3].p;
      psuoff = rf_StripeUnitOffset(layoutPtr, ppda->startSector);
      esuoff = rf_StripeUnitOffset(layoutPtr, epda->startSector);
      RF_ASSERT( psuoff == esuoff );
  }
  /*
      the followings have three goals:
      1. determine the startSector to begin decoding and endSector to end decoding.
      2. determine the colume numbers of the two failed disks. 
      3. determine the offset and end offset of the access within each failed stripe unit.
   */
  if( nresults == 1 ) {  
      /* find the startSector to begin decoding */
      pda = node->results[0]; 
      bzero(pda->bufPtr, bytesPerSector*pda->numSector );
      fsuoff[0] = rf_StripeUnitOffset(layoutPtr, pda->startSector );
      fsuend[0] = fsuoff[0] + pda->numSector;
      startSector = fsuoff[0];
      endSector = fsuend[0];

      /* find out the the column of failed disk being accessed */
      fcol[0] = rf_EUCol(layoutPtr, pda->raidAddress ); 

      /* find out the other failed colume not accessed */
      sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
      for (i=0; i < numDataCol; i++) {
          npda.raidAddress = sosAddr + (i * secPerSU);
          (raidPtr->Layout.map->MapSector)(raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0);
          /* skip over dead disks */
          if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status))
              if (i != fcol[0]) break;
      }
      RF_ASSERT (i < numDataCol);
      fcol[1] = i;
  }
  else {
      RF_ASSERT (  nresults == 2 );
      pda0 = node->results[0];  bzero(pda0->bufPtr, bytesPerSector*pda0->numSector );
      pda1 = node->results[1];  bzero(pda1->bufPtr, bytesPerSector*pda1->numSector );
      /* determine the failed colume numbers of the two failed disks. */
      fcol[0] = rf_EUCol(layoutPtr, pda0->raidAddress );
      fcol[1] = rf_EUCol(layoutPtr, pda1->raidAddress );
      /*  determine the offset and end offset of the access within each failed stripe unit. */
      fsuoff[0] = rf_StripeUnitOffset(layoutPtr, pda0->startSector );
      fsuend[0] = fsuoff[0] + pda0->numSector;
      fsuoff[1] = rf_StripeUnitOffset(layoutPtr, pda1->startSector );
      fsuend[1] = fsuoff[1] + pda1->numSector;
      /*  determine the startSector to begin decoding */
      startSector = RF_MIN( pda0->startSector, pda1->startSector );
      /*  determine the endSector to end decoding */
      endSector = RF_MAX( fsuend[0], fsuend[1] );
  }
  /*
	assign the beginning sector and the end sector for each parameter 
	find out the corresponding colume # for each parameter
  */
  for( prm=0; prm < ndataParam; prm++ ) {
      pda = node->params[prm].p;
      suoff[prm] = rf_StripeUnitOffset(layoutPtr, pda->startSector);
      suend[prm] = suoff[prm] + pda->numSector;
      prmToCol[prm] = rf_EUCol(layoutPtr, pda->raidAddress );
  }
  /* 'sector' is the sector for the current decoding algorithm. For each sector in the failed SU,
     find out the corresponding parameters that cover the current sector and that are needed for 
     decoding of this sector in failed SU. 2.  Find out if sector is in the shadow of any accessed 
     failed SU. If not, malloc a temporary space of a sector in size.
  */
  for( sector = startSector; sector < endSector; sector++ ){
     if ( nresults == 2 )
	  if( !(fsuoff[0]<=sector && sector<fsuend[0]) && !(fsuoff[1]<=sector && sector<fsuend[1]) )continue;
     for( prm=0; prm < ndataParam; prm++ )
          if( suoff[prm] <= sector && sector < suend[prm] )
               buf[(prmToCol[prm])] = ((RF_PhysDiskAddr_t *)node->params[prm].p)->bufPtr + 
					rf_RaidAddressToByte(raidPtr, sector-suoff[prm]);
     /* find out if sector is in the shadow of any accessed failed SU. If yes, assign dest[0], dest[1] to point 
	 at suitable position of the buffer corresponding to failed SUs. if no, malloc a temporary space of 
	 a sector in size for destination of decoding. 
      */
     RF_ASSERT( nresults == 1 || nresults == 2 );
     if ( nresults == 1) {
           dest[0] = ((RF_PhysDiskAddr_t *)node->results[0])->bufPtr + rf_RaidAddressToByte(raidPtr, sector-fsuoff[0]);
           /* Always malloc temp buffer to dest[1]  */
           RF_Malloc( dest[1], bytesPerSector, (char *) ); 
	   bzero(dest[1],bytesPerSector); mallc_two = 1; }
      else {
           if( fsuoff[0] <= sector && sector < fsuend[0] )
                  dest[0] = ((RF_PhysDiskAddr_t *)node->results[0])->bufPtr + rf_RaidAddressToByte(raidPtr, sector-fsuoff[0]);
           else { RF_Malloc( dest[0], bytesPerSector, (char *) ); 
		  bzero(dest[0],bytesPerSector); mallc_one = 1; } 
           if( fsuoff[1] <= sector && sector < fsuend[1] )
                  dest[1] = ((RF_PhysDiskAddr_t *)node->results[1])->bufPtr + rf_RaidAddressToByte(raidPtr, sector-fsuoff[1]);
           else { RF_Malloc( dest[1], bytesPerSector, (char *) ); 
                  bzero(dest[1],bytesPerSector); mallc_two = 1; }
           RF_ASSERT( mallc_one == 0 || mallc_two == 0 );
      }
      pbuf = ppda->bufPtr + rf_RaidAddressToByte(raidPtr, sector-psuoff );
      ebuf = epda->bufPtr + rf_RaidAddressToByte(raidPtr, sector-esuoff );
      /*
       * After finish finding all needed sectors, call doubleEOdecode function for decoding 
       * one sector to destination.
       */
      rf_doubleEOdecode(raidPtr, buf, dest, fcol, pbuf, ebuf ); 
      /* free all allocated memory, and mark flag to indicate no memory is being allocated */
      if( mallc_one == 1) RF_Free( dest[0], bytesPerSector );
      if( mallc_two == 1) RF_Free( dest[1], bytesPerSector );
      mallc_one = mallc_two = 0;
  }
  RF_Free(buf, numDataCol*sizeof(char *));
  if (ndataParam != 0){
      RF_Free(suoff, ndataParam*sizeof(long));
      RF_Free(suend, ndataParam*sizeof(long));
      RF_Free(prmToCol, ndataParam*sizeof(long));
  }

  RF_ETIMER_STOP(timer);
  RF_ETIMER_EVAL(timer);
  if (tracerec) {
    tracerec->q_us += RF_ETIMER_VAL_US(timer);
  }
  rf_GenericWakeupFunc(node,0);
#if 1
  return(0); /* XXX is this even close!!?!?!!? GO */
#endif
}


/* currently, only access of one of the two failed SU is allowed in this function.  
 * also, asmap->numStripeUnitsAccessed is limited to be one, the RaidFrame will break large access into 
 * many accesses of single stripe unit.
 */

int rf_EOWriteDoubleRecoveryFunc(node)
  RF_DagNode_t  *node;
{
  int np = node->numParams;
  RF_AccessStripeMap_t *asmap = (RF_AccessStripeMap_t *) node->params[np-1].p;
  RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[np-2].p;
  RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) &(raidPtr->Layout);
  RF_SectorNum_t sector;
  RF_RowCol_t col, scol;
  int prm, i, j;
  RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
  unsigned sosAddr;
  unsigned bytesPerSector = rf_RaidAddressToByte(raidPtr, 1 );
  RF_int64 numbytes;
  RF_SectorNum_t startSector, endSector;
  RF_PhysDiskAddr_t *ppda,*epda,*pda, *fpda, npda;
  RF_RowCol_t fcol[2], numDataCol = layoutPtr->numDataCol;
  char **buf; /* buf[0], buf[1], buf[2], ...etc. point to buffer storing data read from col0, col1, col2 */ 
  char *ebuf, *pbuf, *dest[2], *olddata[2];
  RF_Etimer_t timer;
  RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;

  RF_ASSERT( asmap->numDataFailed == 1 ); /* currently only support this case, the other failed SU is not being accessed */
  RF_ETIMER_START(timer);
  RF_Malloc(buf, numDataCol*sizeof(char *), (char **));

  ppda = node->results[0];            /* Instead of being buffers, node->results[0] and [1] are Ppda and Epda  */
  epda = node->results[1];
  fpda = asmap->failedPDAs[0];

  /* First, recovery the failed old SU using EvenOdd double decoding      */
  /* determine the startSector and endSector for decoding */
  startSector = rf_StripeUnitOffset(layoutPtr, fpda->startSector );
  endSector = startSector + fpda->numSector;
  /* Assign buf[col] pointers to point to each non-failed colume  and initialize the pbuf 
     and ebuf to point at the beginning of each source buffers and destination buffers */
  for( prm=0; prm < numDataCol-2; prm++ ) {
      pda = (RF_PhysDiskAddr_t *)node->params[prm].p;
      col = rf_EUCol(layoutPtr, pda->raidAddress );
      buf[col] = pda->bufPtr;
  }
  /*  pbuf and ebuf:  they will change values as double recovery decoding goes on */
  pbuf = ppda->bufPtr;   
  ebuf = epda->bufPtr;
  /* find out the logical colume numbers in the encoding matrix of the two failed columes */
  fcol[0] = rf_EUCol(layoutPtr, fpda->raidAddress );

  /* find out the other failed colume not accessed this time */
  sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
  for (i=0; i < numDataCol; i++) {
      npda.raidAddress = sosAddr + (i * secPerSU);
      (raidPtr->Layout.map->MapSector)(raidPtr, npda.raidAddress, &(npda.row), &(npda.col), &(npda.startSector), 0);
      /* skip over dead disks */
      if (RF_DEAD_DISK(raidPtr->Disks[npda.row][npda.col].status))
      if (i != fcol[0]) break;
  }
  RF_ASSERT (i < numDataCol);
  fcol[1] = i;
  /* assign temporary space to put recovered failed SU */
  numbytes = fpda->numSector * bytesPerSector;
  RF_Malloc(olddata[0], numbytes, (char *) ); 
  RF_Malloc(olddata[1], numbytes, (char *) ); 
  dest[0] = olddata[0]; 
  dest[1] = olddata[1]; 
  bzero(olddata[0], numbytes);
  bzero(olddata[1], numbytes);
  /* Begin the recovery decoding, initially buf[j],  ebuf, pbuf, dest[j] have already 
     pointed at the beginning of each source buffers and destination buffers */
  for( sector = startSector, i=0; sector < endSector; sector++ , i++){
      rf_doubleEOdecode(raidPtr, buf, dest, fcol, pbuf, ebuf );
      for (j=0; j < numDataCol; j++) 
           if( ( j != fcol[0]) && ( j != fcol[1] ) ) buf[j] += bytesPerSector;
      dest[0] += bytesPerSector;
      dest[1] += bytesPerSector;
      ebuf += bytesPerSector;
      pbuf += bytesPerSector;
  }
  /* after recovery, the buffer pointed by olddata[0] is the old failed data.
     With new writing data and this old data, use small write to calculate 
     the new redundant informations 
   */
  /*  node->params[ 0, ... PDAPerDisk * (numDataCol - 2)-1 ] are Pdas of Rrd; 
            params[ PDAPerDisk*(numDataCol - 2), ... PDAPerDisk*numDataCol -1 ] are Pdas of Rp, ( Rp2 ), Re, ( Re2 ) ; 
            params[ PDAPerDisk*numDataCol, ... PDAPerDisk*numDataCol +asmap->numStripeUnitsAccessed -asmap->numDataFailed-1]
      	            are Pdas of wudNodes; 
      For current implementation, we assume the simplest case:
           asmap->numStripeUnitsAccessed == 1 and asmap->numDataFailed == 1 ie. PDAPerDisk = 1 
      then node->params[numDataCol] must be the new data to be writen to the failed disk. We first bxor the new data 
      into the old recovered data, then do the same things as small write.
   */
 
  rf_bxor( ((RF_PhysDiskAddr_t *)node->params[numDataCol].p)->bufPtr, olddata[0], numbytes, node->dagHdr->bp);
  /*  do new 'E' calculation  */
  /*  find out the corresponding colume in encoding matrix for write colume to be encoded into redundant disk 'E' */
  scol = rf_EUCol(layoutPtr, fpda->raidAddress );
  /*  olddata[0] now is source buffer pointer; epda->bufPtr is the dest buffer pointer               */
  rf_e_encToBuf(raidPtr, scol, olddata[0], RF_EO_MATRIX_DIM - 2, epda->bufPtr, fpda->numSector);

  /*  do new 'P' calculation  */
   rf_bxor( olddata[0], ppda->bufPtr, numbytes, node->dagHdr->bp);
  /* Free the allocated buffer  */
  RF_Free( olddata[0], numbytes );
  RF_Free( olddata[1], numbytes );
  RF_Free( buf, numDataCol*sizeof(char *));

  RF_ETIMER_STOP(timer);
  RF_ETIMER_EVAL(timer);
  if (tracerec) {
    tracerec->q_us += RF_ETIMER_VAL_US(timer);
  }

  rf_GenericWakeupFunc(node,0);
  return(0);
}