1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
|
/* $OpenBSD: rnd.c,v 1.125 2011/01/07 04:38:00 deraadt Exp $ */
/*
* Copyright (c) 1996, 1997, 2000-2002 Michael Shalayeff.
* Copyright (c) 2008 Damien Miller.
* Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, and the entire permission notice in its entirety,
* including the disclaimer of warranties.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* ALTERNATIVELY, this product may be distributed under the terms of
* the GNU Public License, in which case the provisions of the GPL are
* required INSTEAD OF the above restrictions. (This clause is
* necessary due to a potential bad interaction between the GPL and
* the restrictions contained in a BSD-style copyright.)
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This routine gathers environmental noise from device drivers, etc.,
* and returns good random numbers, suitable for cryptographic or
* other use.
*
* Theory of operation
* ===================
*
* Computers are very predictable devices. Hence it is extremely hard
* to produce truly random numbers on a computer --- as opposed to
* pseudo-random numbers, which can be easily generated by using an
* algorithm. Unfortunately, it is very easy for attackers to guess
* the sequence of pseudo-random number generators, and for some
* applications this is not acceptable. Instead, we must try to
* gather "environmental noise" from the computer's environment, which
* must be hard for outside attackers to observe and use to
* generate random numbers. In a Unix environment, this is best done
* from inside the kernel.
*
* Sources of randomness from the environment include inter-keyboard
* timings, inter-interrupt timings from some interrupts, and other
* events which are both (a) non-deterministic and (b) hard for an
* outside observer to measure. Randomness from these sources is
* added to the "entropy pool", which is mixed using a CRC-like function.
* This is not cryptographically strong, but it is adequate assuming
* the randomness is not chosen maliciously, and it is fast enough that
* the overhead of doing it on every interrupt is very reasonable.
* As random bytes are mixed into the entropy pool, the routines keep
* an *estimate* of how many bits of randomness have been stored into
* the random number generator's internal state.
*
* When random bytes are desired, they are obtained by taking the MD5
* hash of the content of the entropy pool. The MD5 hash avoids
* exposing the internal state of the entropy pool. It is believed to
* be computationally infeasible to derive any useful information
* about the input of MD5 from its output. Even if it is possible to
* analyze MD5 in some clever way, as long as the amount of data
* returned from the generator is less than the inherent entropy in
* the pool, the output data is totally unpredictable. For this
* reason, the routine decreases its internal estimate of how many
* bits of "true randomness" are contained in the entropy pool as it
* outputs random numbers.
*
* If this estimate goes to zero, the MD5 hash will continue to generate
* output since there is no true risk because the MD5 output is not
* exported outside this subsystem. It is next used as input to seed a
* RC4 stream cipher. Attempts are made to follow best practice
* regarding this stream cipher - the first chunk of output is discarded
* and the cipher is re-seeded from time to time. This design provides
* very high amounts of output data from a potentially small entropy
* base, at high enough speeds to encourage use of random numbers in
* nearly any situation.
*
* The output of this single RC4 engine is then shared amongst many
* consumers in the kernel and userland via a few interfaces:
* arc4random_buf(), arc4random(), arc4random_uniform(), randomread()
* for the set of /dev/random nodes, and the sysctl kern.arandom.
*
* Exported interfaces ---- input
* ==============================
*
* The current exported interfaces for gathering environmental noise
* from the devices are:
*
* void add_true_randomness(int data);
* void add_timer_randomness(int data);
* void add_mouse_randomness(int mouse_data);
* void add_net_randomness(int isr);
* void add_tty_randomness(int c);
* void add_disk_randomness(int n);
* void add_audio_randomness(int n);
* void add_video_randomness(int n);
*
* add_true_randomness() uses true random number generators present
* on some cryptographic and system chipsets. Entropy accounting
* is not quitable, no timing is done, supplied 32 bits of pure entropy
* are hashed into the pool plain and blindly, increasing the counter.
*
* add_timer_randomness() uses the random driver itselves timing,
* measuring extract_entropy() and rndioctl() execution times.
*
* add_mouse_randomness() uses the mouse interrupt timing, as well as
* the reported position of the mouse from the hardware.
*
* add_net_randomness() times the finishing time of net input.
*
* add_tty_randomness() uses the inter-keypress timing, as well as the
* character as random inputs into the entropy pool.
*
* add_disk_randomness() times the finishing time of disk requests as well
* as feeding both xfer size & time into the entropy pool.
*
* add_audio_randomness() times the finishing of audio codec dma
* requests for both recording and playback, apparently supplies quite
* a lot of entropy. I'd blame it on low resolution audio clock generators.
*
* All of these routines (except for add_true_randomness() of course)
* try to estimate how many bits of randomness are in a particular
* randomness source. They do this by keeping track of the first and
* second order deltas of the event timings.
*
* Acknowledgements:
* =================
*
* Ideas for constructing this random number generator were derived
* from Pretty Good Privacy's random number generator, and from private
* discussions with Phil Karn. Colin Plumb provided a faster random
* number generator, which speeds up the mixing function of the entropy
* pool, taken from PGPfone. Dale Worley has also contributed many
* useful ideas and suggestions to improve this driver.
*
* Any flaws in the design are solely my responsibility, and should
* not be attributed to the Phil, Colin, or any of the authors of PGP.
*
* Further background information on this topic may be obtained from
* RFC 1750, "Randomness Recommendations for Security", by Donald
* Eastlake, Steve Crocker, and Jeff Schiller.
*
* Using a RC4 stream cipher as 2nd stage after the MD5 output
* is the result of work by David Mazieres.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/disk.h>
#include <sys/limits.h>
#include <sys/time.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <sys/fcntl.h>
#include <sys/timeout.h>
#include <sys/mutex.h>
#include <sys/msgbuf.h>
#include <crypto/md5.h>
#include <crypto/arc4.h>
#include <dev/rndvar.h>
/*
* For the purposes of better mixing, we use the CRC-32 polynomial as
* well to make a twisted Generalized Feedback Shift Register
*
* (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
* Transactions on Modeling and Computer Simulation 2(3):179-194.
* Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
* II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
*
* Thanks to Colin Plumb for suggesting this.
*
* We have not analyzed the resultant polynomial to prove it primitive;
* in fact it almost certainly isn't. Nonetheless, the irreducible factors
* of a random large-degree polynomial over GF(2) are more than large enough
* that periodicity is not a concern.
*
* The input hash is much less sensitive than the output hash. All
* we want from it is to be a good non-cryptographic hash -
* i.e. to not produce collisions when fed "random" data of the sort
* we expect to see. As long as the pool state differs for different
* inputs, we have preserved the input entropy and done a good job.
* The fact that an intelligent attacker can construct inputs that
* will produce controlled alterations to the pool's state is not
* important because we don't consider such inputs to contribute any
* randomness. The only property we need with respect to them is that
* the attacker can't increase his/her knowledge of the pool's state.
* Since all additions are reversible (knowing the final state and the
* input, you can reconstruct the initial state), if an attacker has
* any uncertainty about the initial state, he/she can only shuffle
* that uncertainty about, but never cause any collisions (which would
* decrease the uncertainty).
*
* The chosen system lets the state of the pool be (essentially) the input
* modulo the generator polynomial. Now, for random primitive polynomials,
* this is a universal class of hash functions, meaning that the chance
* of a collision is limited by the attacker's knowledge of the generator
* polynomial, so if it is chosen at random, an attacker can never force
* a collision. Here, we use a fixed polynomial, but we *can* assume that
* ###--> it is unknown to the processes generating the input entropy. <-###
* Because of this important property, this is a good, collision-resistant
* hash; hash collisions will occur no more often than chance.
*/
/*
* Stirring polynomials over GF(2) for various pool sizes. Used in
* add_entropy_words() below.
*
* The polynomial terms are chosen to be evenly spaced (minimum RMS
* distance from evenly spaced; except for the last tap, which is 1 to
* get the twisting happening as fast as possible.
*
* The reultant polynomial is:
* 2^POOLWORDS + 2^POOL_TAP1 + 2^POOL_TAP2 + 2^POOL_TAP3 + 2^POOL_TAP4 + 1
*/
#define POOLBITS (POOLWORDS*32)
#define POOLBYTES (POOLWORDS*4)
#define POOLMASK (POOLWORDS - 1)
#if POOLWORDS == 2048
#define POOL_TAP1 1638
#define POOL_TAP2 1231
#define POOL_TAP3 819
#define POOL_TAP4 411
#elif POOLWORDS == 1024 /* also (819, 616, 410, 207, 2) */
#define POOL_TAP1 817
#define POOL_TAP2 615
#define POOL_TAP3 412
#define POOL_TAP4 204
#elif POOLWORDS == 512 /* also (409,307,206,102,2), (409,309,205,103,2) */
#define POOL_TAP1 411
#define POOL_TAP2 308
#define POOL_TAP3 208
#define POOL_TAP4 104
#elif POOLWORDS == 256
#define POOL_TAP1 205
#define POOL_TAP2 155
#define POOL_TAP3 101
#define POOL_TAP4 52
#elif POOLWORDS == 128 /* also (103, 78, 51, 27, 2) */
#define POOL_TAP1 103
#define POOL_TAP2 76
#define POOL_TAP3 51
#define POOL_TAP4 25
#elif POOLWORDS == 64
#define POOL_TAP1 52
#define POOL_TAP2 39
#define POOL_TAP3 26
#define POOL_TAP4 14
#elif POOLWORDS == 32
#define POOL_TAP1 26
#define POOL_TAP2 20
#define POOL_TAP3 14
#define POOL_TAP4 7
#else
#error No primitive polynomial available for chosen POOLWORDS
#endif
static void dequeue_randomness(void *);
/* Master kernel random number pool. */
struct random_bucket {
u_int add_ptr;
u_int entropy_count;
u_char input_rotate;
u_int32_t pool[POOLWORDS];
u_int tmo;
};
struct random_bucket random_state;
struct mutex rndlock;
/*
* This function adds a byte into the entropy pool. It does not
* update the entropy estimate. The caller must do this if appropriate.
*
* The pool is stirred with a polynomial of degree POOLWORDS over GF(2);
* see POOL_TAP[1-4] above
*
* Rotate the input word by a changing number of bits, to help assure
* that all bits in the entropy get toggled. Otherwise, if the pool
* is consistently feed small numbers (such as keyboard scan codes)
* then the upper bits of the entropy pool will frequently remain
* untouched.
*/
static void
add_entropy_words(const u_int32_t *buf, u_int n)
{
/* derived from IEEE 802.3 CRC-32 */
static const u_int32_t twist_table[8] = {
0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278
};
for (; n--; buf++) {
u_int32_t w = (*buf << random_state.input_rotate) |
(*buf >> (32 - random_state.input_rotate));
u_int i = random_state.add_ptr =
(random_state.add_ptr - 1) & POOLMASK;
/*
* Normally, we add 7 bits of rotation to the pool.
* At the beginning of the pool, add an extra 7 bits
* rotation, so that successive passes spread the
* input bits across the pool evenly.
*/
random_state.input_rotate =
(random_state.input_rotate + (i ? 7 : 14)) & 31;
/* XOR pool contents corresponding to polynomial terms */
w ^= random_state.pool[(i + POOL_TAP1) & POOLMASK] ^
random_state.pool[(i + POOL_TAP2) & POOLMASK] ^
random_state.pool[(i + POOL_TAP3) & POOLMASK] ^
random_state.pool[(i + POOL_TAP4) & POOLMASK] ^
random_state.pool[(i + 1) & POOLMASK] ^
random_state.pool[i]; /* + 2^POOLWORDS */
random_state.pool[i] = (w >> 3) ^ twist_table[w & 7];
}
}
/*
* This function extracts randomness from the entropy pool, and
* returns it in a buffer. This function computes how many remaining
* bits of entropy are left in the pool, but it does not restrict the
* number of bytes that are actually obtained.
*/
static void
extract_entropy(u_int8_t *buf, int nbytes)
{
u_char buffer[16];
MD5_CTX tmp;
u_int i;
add_timer_randomness(nbytes);
while (nbytes) {
i = MIN(nbytes, sizeof(buffer));
/* Hash the pool to get the output */
MD5Init(&tmp);
mtx_enter(&rndlock);
MD5Update(&tmp, (u_int8_t*)random_state.pool,
sizeof(random_state.pool));
if (random_state.entropy_count / 8 > i)
random_state.entropy_count -= i * 8;
else
random_state.entropy_count = 0;
mtx_leave(&rndlock);
MD5Final(buffer, &tmp);
/* Copy data to destination buffer */
bcopy(buffer, buf, i);
nbytes -= i;
buf += i;
/* Modify pool so next hash will produce different results */
add_timer_randomness(nbytes);
dequeue_randomness(NULL);
}
/* Wipe data from memory */
bzero(&tmp, sizeof(tmp));
bzero(buffer, sizeof(buffer));
}
/* Entropy crediting API and handling of entropy-bearing events */
#define QEVLEN (1024 / sizeof(struct rand_event))
#define QEVSLOW (QEVLEN * 3 / 4) /* yet another 0.75 for 60-minutes hour /-; */
#define QEVSBITS 10
/* There is one of these per entropy source */
struct timer_rand_state {
u_int last_time;
u_int last_delta;
u_int last_delta2;
u_int dont_count_entropy : 1;
u_int max_entropy : 1;
};
struct rand_event {
struct timer_rand_state *re_state;
u_int re_nbits;
u_int re_time;
u_int re_val;
};
struct timer_rand_state rnd_states[RND_SRC_NUM];
struct rand_event rnd_event_space[QEVLEN];
struct rand_event *rnd_event_head = rnd_event_space;
struct rand_event *rnd_event_tail = rnd_event_space;
struct timeout rnd_timeout;
struct rndstats rndstats;
int rnd_attached;
/* must be called at a proper spl, returns ptr to the next event */
static __inline struct rand_event *
rnd_get(void)
{
struct rand_event *p = rnd_event_tail;
if (p == rnd_event_head)
return NULL;
if (p + 1 >= &rnd_event_space[QEVLEN])
rnd_event_tail = rnd_event_space;
else
rnd_event_tail++;
return p;
}
/* must be called at a proper spl, returns next available item */
static __inline struct rand_event *
rnd_put(void)
{
struct rand_event *p = rnd_event_head + 1;
if (p >= &rnd_event_space[QEVLEN])
p = rnd_event_space;
if (p == rnd_event_tail)
return NULL;
return rnd_event_head = p;
}
/* must be called at a proper spl, returns number of items in the queue */
static __inline int
rnd_qlen(void)
{
int len = rnd_event_head - rnd_event_tail;
return (len < 0)? -len : len;
}
/*
* This function adds entropy to the entropy pool by using timing
* delays. It uses the timer_rand_state structure to make an estimate
* of how many bits of entropy this call has added to the pool.
*
* The number "val" is also added to the pool - it should somehow describe
* the type of event which just happened. Currently the values of 0-255
* are for keyboard scan codes, 256 and upwards - for interrupts.
* On the i386, this is assumed to be at most 16 bits, and the high bits
* are used for a high-resolution timer.
*/
void
enqueue_randomness(int state, int val)
{
struct timer_rand_state *p;
struct rand_event *rep;
struct timespec ts;
u_int time, nbits;
#ifdef DIAGNOSTIC
if (state < 0 || state >= RND_SRC_NUM)
return;
#endif
p = &rnd_states[state];
val += state << 13;
if (!rnd_attached) {
if ((rep = rnd_put()) == NULL) {
rndstats.rnd_drops++;
return;
}
rep->re_state = &rnd_states[RND_SRC_TIMER];
rep->re_nbits = 0;
rep->re_time = 0;
rep->re_time = val;
return;
}
nanotime(&ts);
time = (ts.tv_nsec >> 10) + (ts.tv_sec << 20);
nbits = 0;
/*
* Calculate the number of bits of randomness that we probably
* added. We take into account the first and second order
* deltas in order to make our estimate.
*/
if (!p->dont_count_entropy) {
int delta, delta2, delta3;
delta = time - p->last_time;
delta2 = delta - p->last_delta;
delta3 = delta2 - p->last_delta2;
if (delta < 0) delta = -delta;
if (delta2 < 0) delta2 = -delta2;
if (delta3 < 0) delta3 = -delta3;
if (delta > delta2) delta = delta2;
if (delta > delta3) delta = delta3;
delta3 = delta >>= 1;
/*
* delta &= 0xfff;
* we don't do it since our time sheet is different from linux
*/
if (delta & 0xffff0000) {
nbits = 16;
delta >>= 16;
}
if (delta & 0xff00) {
nbits += 8;
delta >>= 8;
}
if (delta & 0xf0) {
nbits += 4;
delta >>= 4;
}
if (delta & 0xc) {
nbits += 2;
delta >>= 2;
}
if (delta & 2) {
nbits += 1;
delta >>= 1;
}
if (delta & 1)
nbits++;
/*
* the logic is to drop low-entropy entries,
* in hope for dequeuing to be more randomfull
*/
if (rnd_qlen() > QEVSLOW && nbits < QEVSBITS) {
rndstats.rnd_drople++;
return;
}
p->last_time = time;
p->last_delta = delta3;
p->last_delta2 = delta2;
} else if (p->max_entropy)
nbits = 8 * sizeof(val) - 1;
/* given the multi-order delta logic above, this should never happen */
if (nbits >= 32)
return;
mtx_enter(&rndlock);
if ((rep = rnd_put()) == NULL) {
rndstats.rnd_drops++;
mtx_leave(&rndlock);
return;
}
rep->re_state = p;
rep->re_nbits = nbits;
rep->re_time = ts.tv_nsec ^ (ts.tv_sec << 20);
rep->re_val = val;
rndstats.rnd_enqs++;
rndstats.rnd_ed[nbits]++;
rndstats.rnd_sc[state]++;
rndstats.rnd_sb[state] += nbits;
if (rnd_qlen() > QEVSLOW/2 && !random_state.tmo) {
random_state.tmo++;
timeout_add(&rnd_timeout, 1);
}
mtx_leave(&rndlock);
}
/* ARGSUSED */
static void
dequeue_randomness(void *v)
{
struct rand_event *rep;
u_int32_t buf[2];
u_int nbits;
timeout_del(&rnd_timeout);
rndstats.rnd_deqs++;
mtx_enter(&rndlock);
while ((rep = rnd_get())) {
buf[0] = rep->re_time;
buf[1] = rep->re_val;
nbits = rep->re_nbits;
mtx_leave(&rndlock);
add_entropy_words(buf, 2);
rndstats.rnd_total += nbits;
random_state.entropy_count += nbits;
if (random_state.entropy_count > POOLBITS)
random_state.entropy_count = POOLBITS;
mtx_enter(&rndlock);
}
random_state.tmo = 0;
mtx_leave(&rndlock);
}
/*
* Maximum number of bytes to serve directly from the main arc4random
* pool. Larger requests are served from discrete arc4 instances keyed
* from the main pool.
*/
#define ARC4_MAIN_MAX_BYTES 2048
/*
* Key size (in bytes) for arc4 instances setup to serve requests larger
* than ARC4_MAIN_MAX_BYTES.
*/
#define ARC4_SUB_KEY_BYTES (256 / 8)
struct timeout arc4_timeout;
struct rc4_ctx arc4random_state;
int arc4random_initialized;
static void arc4_reinit(void *v);
static void arc4_stir(void);
static void arc4_reinit(void *v);
static void arc4maybeinit(void);
void
randomattach(void)
{
mtx_init(&rndlock, IPL_HIGH);
random_state.add_ptr = 0;
random_state.entropy_count = 0;
rnd_states[RND_SRC_TIMER].dont_count_entropy = 1;
rnd_states[RND_SRC_TRUE].dont_count_entropy = 1;
rnd_states[RND_SRC_TRUE].max_entropy = 1;
if (msgbufp && msgbufp->msg_magic == MSG_MAGIC)
add_entropy_words((u_int32_t *)msgbufp->msg_bufc,
msgbufp->msg_bufs / sizeof(u_int32_t));
timeout_set(&rnd_timeout, dequeue_randomness, NULL);
timeout_set(&arc4_timeout, arc4_reinit, NULL);
arc4_reinit(NULL);
rnd_attached = 1;
}
static void
arc4_stir(void)
{
struct timespec ts;
u_int8_t buf[64], *p;
int i;
/*
* Use MD5 PRNG data and a system timespec; early in the boot
* process this is the best we can do -- some architectures do
* not collect entropy very well during this time, but may have
* clock information which is better than nothing.
*/
extract_entropy((u_int8_t *)buf, sizeof buf);
nanotime(&ts);
for (p = (u_int8_t *)&ts, i = 0; i < sizeof(ts); i++)
buf[i] ^= p[i];
mtx_enter(&rndlock);
rndstats.rnd_used += sizeof(buf) * 8;
if (rndstats.arc4_nstirs > 0)
rc4_crypt(&arc4random_state, buf, buf, sizeof(buf));
rc4_keysetup(&arc4random_state, buf, sizeof(buf));
rndstats.arc4_stirs += sizeof(buf);
rndstats.arc4_nstirs++;
/*
* Throw away the first N words of output, as suggested in the
* paper "Weaknesses in the Key Scheduling Algorithm of RC4"
* by Fluher, Mantin, and Shamir. (N = 256 in our case.)
*/
rc4_skip(&arc4random_state, 256 * 4);
mtx_leave(&rndlock);
}
/*
* Called by timeout to mark arc4 for stirring,
* actual stirring happens on any access attempt.
*/
static void
arc4_reinit(void *v)
{
arc4random_initialized = 0;
}
static void
arc4maybeinit(void)
{
if (!arc4random_initialized) {
#ifdef DIAGNOSTIC
if (!rnd_attached)
panic("arc4maybeinit: premature");
#endif
arc4random_initialized++;
arc4_stir();
/* 10 minutes, per dm@'s suggestion */
timeout_add_sec(&arc4_timeout, 10 * 60);
}
}
/* Return one word of randomness from an RC4 generator */
u_int32_t
arc4random(void)
{
u_int32_t ret;
arc4maybeinit();
mtx_enter(&rndlock);
rc4_getbytes(&arc4random_state, (u_char *)&ret, sizeof(ret));
rndstats.arc4_reads += sizeof(ret);
mtx_leave(&rndlock);
return ret;
}
/*
* Return a "large" buffer of randomness using an independantly-keyed RC4
* generator.
*/
static void
arc4random_buf_large(void *buf, size_t n)
{
u_char lbuf[ARC4_SUB_KEY_BYTES];
struct rc4_ctx lctx;
mtx_enter(&rndlock);
rc4_getbytes(&arc4random_state, lbuf, sizeof(lbuf));
rndstats.arc4_reads += n;
mtx_leave(&rndlock);
rc4_keysetup(&lctx, lbuf, sizeof(lbuf));
rc4_skip(&lctx, 256 * 4);
rc4_getbytes(&lctx, (u_char *)buf, n);
bzero(lbuf, sizeof(lbuf));
bzero(&lctx, sizeof(lctx));
}
/*
* Fill a buffer of arbitrary length with RC4-derived randomness.
*/
void
arc4random_buf(void *buf, size_t n)
{
arc4maybeinit();
/* Satisfy large requests via an independent ARC4 instance */
if (n > ARC4_MAIN_MAX_BYTES) {
arc4random_buf_large(buf, n);
return;
}
mtx_enter(&rndlock);
rc4_getbytes(&arc4random_state, (u_char *)buf, n);
rndstats.arc4_reads += n;
mtx_leave(&rndlock);
}
/*
* Calculate a uniformly distributed random number less than upper_bound
* avoiding "modulo bias".
*
* Uniformity is achieved by generating new random numbers until the one
* returned is outside the range [0, 2**32 % upper_bound). This
* guarantees the selected random number will be inside
* [2**32 % upper_bound, 2**32) which maps back to [0, upper_bound)
* after reduction modulo upper_bound.
*/
u_int32_t
arc4random_uniform(u_int32_t upper_bound)
{
u_int32_t r, min;
if (upper_bound < 2)
return 0;
#if (ULONG_MAX > 0xffffffffUL)
min = 0x100000000UL % upper_bound;
#else
/* Calculate (2**32 % upper_bound) avoiding 64-bit math */
if (upper_bound > 0x80000000)
min = 1 + ~upper_bound; /* 2**32 - upper_bound */
else {
/* (2**32 - x) % x == 2**32 % x when x <= 2**31 */
min = ((0xffffffff - upper_bound) + 1) % upper_bound;
}
#endif
/*
* This could theoretically loop forever but each retry has
* p > 0.5 (worst case, usually far better) of selecting a
* number inside the range we need, so it should rarely need
* to re-roll.
*/
for (;;) {
r = arc4random();
if (r >= min)
break;
}
return r % upper_bound;
}
int
randomopen(dev_t dev, int flag, int mode, struct proc *p)
{
return 0;
}
int
randomclose(dev_t dev, int flag, int mode, struct proc *p)
{
return 0;
}
int
randomread(dev_t dev, struct uio *uio, int ioflag)
{
u_char lbuf[ARC4_SUB_KEY_BYTES];
struct rc4_ctx lctx;
size_t total = uio->uio_resid;
u_char *buf;
int myctx = 0, ret = 0;
if (uio->uio_resid == 0)
return 0;
buf = malloc(2 * PAGE_SIZE, M_TEMP, M_WAITOK);
if (total > ARC4_MAIN_MAX_BYTES) {
mtx_enter(&rndlock);
rc4_getbytes(&arc4random_state, lbuf, sizeof(lbuf));
rndstats.arc4_reads += sizeof(lbuf);
mtx_leave(&rndlock);
rc4_keysetup(&lctx, lbuf, sizeof(lbuf));
rc4_skip(&lctx, 256 * 4);
myctx = 1;
}
while (ret == 0 && uio->uio_resid > 0) {
int n = min(2 * PAGE_SIZE, uio->uio_resid);
if (myctx)
rc4_getbytes(&lctx, buf, n);
else
arc4random_buf(buf, n);
ret = uiomove((caddr_t)buf, n, uio);
if (ret == 0 && uio->uio_resid > 0)
yield();
}
free(buf, M_TEMP);
return ret;
}
int
randomwrite(dev_t dev, struct uio *uio, int flags)
{
int ret = 0, newdata = 0;
u_int32_t *buf;
if (uio->uio_resid == 0)
return 0;
buf = malloc(POOLBYTES, M_TEMP, M_WAITOK);
while (!ret && uio->uio_resid > 0) {
u_int n = min(POOLBYTES, uio->uio_resid);
ret = uiomove(buf, n, uio);
if (ret)
break;
while (n % sizeof(u_int32_t))
((u_int8_t *)buf)[n++] = 0;
add_entropy_words(buf, n / 4);
if (ret == 0 && uio->uio_resid > 0)
yield();
newdata = 1;
}
if (newdata) {
mtx_enter(&rndlock);
arc4random_initialized = 0;
mtx_leave(&rndlock);
}
free(buf, M_TEMP);
return ret;
}
int
randomioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
{
switch (cmd) {
case FIOASYNC:
/* No async flag in softc so this is a no-op. */
break;
case FIONBIO:
/* Handled in the upper FS layer. */
break;
default:
return ENOTTY;
}
return 0;
}
|